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We investigate the existence and linear stability of coupled vortex solitons supported by cascaded four-wave
mixing in a Raman active medium excited away from the resonance. We present a detailed analysis for the
two- and three-component vortex solitons and demonstrate the formation of stable and unstable vortex solitons,
and associated spatiotemporal helical beams, under the conditions of the simultaneous frequency and vortex
comb generation.
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I. INTRODUCTION

Optical vortices are point phase singularities of the elec-
tromagnetic field, with the beam intensity vanishing at the
singularity and the field phase changing by 2�l along any
closed loop around it. l=0, �1, �2, . . . is known as the or-
bital angular momentum quantum number or vortex charge.
In a nonlinear medium vortices can propagate undistorted
due to a balance between diffraction and nonlinearity, and
form so-called vortex solitons �1�. Nonlinearity can also trig-
ger frequency conversion accompanied by the conversion of
the charge l. In particular, in the second-order harmonic gen-
eration process, the fundamental field carrying a vortex with
the charge l is converted into the second-order harmonic field
with the charge 2l �1–6�. Analogous conversion rules have
been reported for the degenerate four-wave mixing in Kerr-
like materials �7� and for the three-wave Raman resonant
process �8�. Multicomponent vortex solitons sustained by the
interaction of the beams with different frequencies in both
quadratic and cubic materials are also well known, though
under the most typical conditions the finite radius vortex
solitons break into filaments due to azimuthal instabilities
�1,2,4,5�.

While the above-mentioned experimental and theoretical
research of nonlinear vortex charge conversion has focused
on cases involving a small number of frequency components,
typically two or three, the efforts directed toward short pulse
generation have resulted in the development of techniques
leading to the generation of dozens of coherent frequency
sidebands, by means of cascaded four-wave mixing in Ra-
man active gases �9,10�. The latter technique does not rely on
the waveguide or cavity geometries to boost nonlinear inter-
action and is therefore suitable for the simultaneous fre-
quency and vortex charge conversion. This idea has been
explored by our group and we have recently demonstrated
simultaneous generation of frequency and vortex combs �11�
in a Raman medium excited off-resonance with the two
pump beams, when one of the two carries a unit vortex and
the other is vortex free. We have derived the vortex conver-
sion rules and demonstrated that the simultaneous frequency
and vortex combs are shaped in the form of the spatiotem-
poral helical beams �11�. On the focusing side of the Raman
resonance, the multicomponent vortex solitons have been
found.

The aim of this work is to report regular tracing of the
multicomponent vortex solitons in the parameter space and
to study their linear stability with respect to perturbations.
Our analysis shows that the spectrally symmetric soliton so-
lutions centered around the vortex-free frequency component
are typically unstable, although the instability fully develops
only after long propagation distances. At the same time, the
asymmetric solitons, for example those where all the gener-
ated components are the Stokes ones, have a broad stability
range. Based on the results of the linear stability analysis for
two and three component solitons, we demonstrate the same
general tendencies of the soliton dynamics for the case of
many coupled sidebands.

II. MODEL

The dimensionless model describing the evolution of the
sidebands in an off-resonantly excited Raman medium is
�9,11�

i�zEn −
1

2
�En = �nEn + Q�En−1 + QEn+1, �1�

where n=−M +1, . . . ,0 , . . . ,N �M ,N�0�, and �=�x
2+�y

2. En
are the dimensionless amplitudes of the sidebands, such that
the total field is given by

Etot = �
n

En�x,y,z�ei�nt−iKnz, �2�

where �n= ��0+n�mod� /�mod, �mod=�1−�0 is the modula-
tion frequency �i.e., the frequency difference between the
two driving fields�. N is the number of the anti-Stokes com-
ponents and M −1 is the number of the Stokes components.
Taking into account the E0 field, we have M +N interacting
Raman sidebands. The physical frequencies and wave num-
bers are represented by the lower case letters �n and kn,
while their dimensionless counterparts by the upper case: �n
and Kn. The dimensionless time t is measured in units of
1 /�mod, the propagation coordinate z is in units of L, and the
transverse coordinates �x ,y� are in units of �Lc /�0. Kn
= ��0+n�mod�L /c are the scaled free space wave numbers.
Here, L= ��	�0N�b��−1 characterizes the coupling length
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over which power is transferred between neighboring side-
bands in the absence of dispersion. ��376 is the free space
impedance, N is the density of molecules, and b is a coeffi-
cient characterizing the material dependent coupling between
the sidebands �9�. The weak frequency dependence of b is
neglected for simplicity.

L varies from 1 to a few mm for D2 and H2 gases �9�, so
that one unit of x corresponds to a few tens of microns. Q is
the Raman coherence responsible for the coupling between
the sidebands. Neglecting dissipation due to finite linewidth
of atomic transition and finite dephasing time, in the adia-
batic approximation �9,11,12�

Q�En� =
sgn�
�S

2�
2 + �S�2
, S = �

n

EnEn+1
� , �3�

where 
= ��mod−�r� / ��b�I0� is the scaled modulus of the de-
tuning of the modulation frequency from the Raman fre-
quency �r. We also note that the above result is obtained
under the assumption of equal Stark shifts of molecular lev-
els, which is the case for large detunings �9�. While �
� can
always be fixed to unity by proper rescaling of the field am-
plitudes, its sign controls the effective type of nonlinearity in
Eqs. �1�: positive �negative� 
 corresponds to the focusing
�defocusing� nonlinearity �11,13�, see Fig. 1. In what follows
we consider the case of the focusing nonlinearity �13,14�,
�
=1�, which is known to support bright soliton solutions
�15,16�.

�Q� varies from 0 to 1/2 for �S� /
 varying from 0 to �.
Therefore nonlinear interaction between harmonics is satu-
rated at high powers or, equivalently, at small detunings
��mod−�r�. En

�I0 are the dimensional amplitudes of the har-
monics. For D2 and H2 gases 
=1 corresponds to I0
	0.1 GW /cm2, provided ��mod−�r�	1 GHz. �n
���n�
is the propagation constant of the nth harmonic.

III. SOLITON SOLUTIONS: GENERAL FRAMEWORK

In this and the next chapter we describe the general
framework for finding the stationary soliton solutions and
studying their linear stability. Application of these techniques
to the cases of two and three components are described in
detail in Secs. V and VI. The fact that Eqs. �1� and �3� are
invariant with respect to En→En exp�i�� and En
→En exp�in�, where � and  are arbitrary constants
�11,12�, implies the conservation of the two integrals P
=�nIn and R=�nnIn, where In=/dxdy�En�2, and suggests the
following ansatz for the soliton solutions:

En�x,y,z� = fn�r�exp�iln� + i��1 + �2n�z� . �4�

Here r and � are the polar radius and angle, ln= l0+n�l1
− l0� is the vortex charge of the nth harmonic, and �1,2 are
free parameters associated with the above symmetries. The
choice of l0 and l1 defines the step, �l= l1− l0, in which the
vortex charge is changing between the adjacent sidebands.
fn�r� are real functions obeying

−
1

2
�d2fn

dr2 +
1

r

df

dr
−

ln
2

r2 fn� = ��1 + �2n + �n�fn + q�fn−1 + fn+1� ,

�5�

where q=Q�fn�. The boundary conditions are �4�

fn�r� → cn
�0�r�ln�, r → 0, �6�

fn�r� → cn
���e

−r�−2��1+�2n+�n�

�r
, r → � , �7�

where cn
�0,�� are real constants. Equation �6� naturally implies

that the amplitude of a vortex carrying component ln�0 is
zero at the phase singularity and that the vortex free compo-
nents ln=0 reach some constant value at r=0. For the fields
to decay to zero at r→�, one needs to select �1,2 to satisfy

�1 + �2n + �n � 0 �8�

simultaneously for all n. Without any loss of generality �0
can always be set to zero by the rotation of the common
phase �11�. Thus, fixing �0=0 we find that the above in-
equality for n=0 gives �1�0. At the boundary points of the
above conditions fn tends to zero. Detuning the �1,2 values
away from these boundaries into the range where In is in-
creasing eventually leads to the coherence tending to its
maximal value q=1 /2. Examples of the radial profiles of the
vortex solitons are shown in Fig. 2 for the asymmetric con-
figuration with only Stokes components being excited �N
=0�. When the propagation constants �n are symmetric
around the central component: �n=�−n, Eq. �5� are invariant
under the transformation n→−n, �2→−�2, ln→−ln. In this
case solitons in the opposite configuration, with only anti-
Stokes components being excited �M =1�, have exactly the
same structure as those shown in Fig. 2.

In the vortex soliton case the q=1 /2 limit is achieved not
only through the growing amplitudes, but also through the
expansion of the rings and flattening of their profiles. The
soliton existence boundary corresponding to q=1 /2 can be
worked out neglecting the x and y dependence of En. Subse-
quently one can disregard the left-hand sides in Eq. �5�, as-
sume q=1 /2 and work out constraints on the �1 and �2 val-
ues from the solvability conditions of the resulting
homogeneous equations ��1+�2n+�n�fn+ �fn−1+ fn+1� /2=0.
Examples of the existence domains in the ��1 ,�2� plane can
be seen in Figs. 3�a� and 7.

IV. LINEAR STABILITY ANALYSIS: GENERAL
FRAMEWORK

Stability of the vortex solutions is of course an important
problem, since similar solutions in other models are known

FIG. 1. �Color online� Off-resonant excitations of the Raman
transition creating either focusing or defocusing nonlinearities. �r is
the Raman frequency and �mod=�1−�0, where �1��0 are the
pump frequencies.
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to exhibit strong modulational instability along the rings
�4,5,17�. This instability can be suppressed by nonlocal non-
linearities �18,19�, and in some cases when the higher order
nonlinearities �e.g., quintic� are assumed to dominate over
the lower order ones �e.g., cubic�, see, e.g., Refs. �7,20�. Our
model is particularly interesting because, as we will demon-
strate below, it allows the existence of a sufficiently broad
parameter range, where stable vortex solitons exist with the
local type of nonlinearity derived from the first principles.
The latter is true since the nonlinearity in Eq. �1� is calcu-
lated from the Schrödinger equation for a Raman medium
driven far from the resonance �9,12�.

In order to analyze the linear stability we add small per-
turbations �n to the vortex solitons and substitute the follow-
ing ansatz:

En = �fn�r� + �n�r,�,z��exp�i��1 + �2n�z + iln�� �9�

into Eq. �1�. After linearization we find

i�z�n −
1

2
��rr

2 +
1

r
�r +

1

r2 ����
2 + i2ln�� − ln

2���n

= ��1 + pn��n + q��n−1 + �n+1� + �
m

Anm�m + Bnm�m
� � ,

�10�

where

Anm = fn−1Mm + fn+1Pm, �11�

Bnm = fn−1Pm + fn+1Mm, �12�

Mm 

dq�

dfm
=

�2
2 + s2�fm−1 − s2fm+1

4�
2 + s2�3/2 , �13�

Pm 

dq

dfm
=

�2
2 + s2�fm+1 − s2fm−1

4�
2 + s2�3/2 , �14�

n ,m=−M +1, . . . ,0 , . . . ,N, and s=S�fn�.
Expanding perturbations into azimutal harmonics �4�

�n�r,�,z� = �
J�0

hn,J
+ �r,z�exp�iJ�� + �hn,J

− �r,z��� exp�− iJ��� ,

�15�

we assume hn,J
� �r ,z�=gn,J

� �r�exp��Jz� and derive the eigen-
value problem

i�J�gJ
+

gJ
−� = � L+ B

− B − L−��gJ
+

gJ
−� , �16�

where gJ
�= g1−M,J

� , g2−M,J
� , . . . , g0,J

� , . . . , gN,J
� �T. L� and

B are the �N+M�� �N+M� matrix operators. Elements of B
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FIG. 2. �Color online� Soliton radial profiles for the configura-
tion with only Stokes components being excited �N=0�, �n

=0.005n2 �which corresponds to normal dispersion�, charge conver-
sion step is unity: ln=n. �a� Two coupled fields �M =2�, �1=−0.25,
�2=−0.4 �black curves�, �2=−0.7 �red �gray� curves�. Solid
�dashed� curves correspond to f0 �f−1�; �b� five coupled fields �M
=5�, �1=−0.25, �2=−0.7.
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FIG. 3. �Color online� �a� Region of existence of coupled vortex
solitons for the case of two fields, �1=0.005. Straight blue lines
correspond to the boundaries of existence in Eq. �8�, red �gray�
curve–to the dispersion �2

�sat� of high-intensity constant amplitude
waves, Eq. �20�. Shaded area indicates region of unstable solutions
for the configuration �l0=0, l1=1�, open squares and filled circles
correspond to numerically found instability thresholds for the J=1
and J=2 unstable perturbations, respectively �see main body text
for details and Figs. 4–6�. �b� Soliton power P and maximum value
of the coherence q versus �2 at fixed value of �1=−0.25. Approach-
ing the boundary �2

�sat���1� q is saturated at its maximum value �q�
=0.5, while the norm tends to infinity.
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are Bnm and they are defined in Eq. �12�, and the elements of
L� are

Lnm
� = �n,m� 1

2r

d

dr
�r

d

dr
� −

�J � ln�2

2r2 + �1 + �2n + �n�
+ q��n+1,m + �n−1,m� + Anm, �17�

where �n,m is the Kronecker symbol. For a solution fn to be
linearly unstable there must exist �J with Re��J��0. Bound-
ary conditions for eigenstates gJ

� are defined in a similar way
to the boundary conditions for fn �see Eqs. �6� and �7��, but
with ln being replaced by ln�J. We solve the eigenvalue
problem in Eq. �16� numerically, replacing differential opera-
tors by the second-order finite differences. Note that accurate
stability analysis of the multicomponent solutions is rather
complicated. Therefore we will reveal basic mechanisms of
instabilities of coupled vortex solitons by focusing on two-
and three-component configurations. Then we will demon-
strate by numerical modeling of Eqs. �1�, that the instability
and stabilization mechanisms found in the simplest cases can
be seen in the multicomponent dynamics.

V. TWO-COMPONENT VORTEX SOLITONS

We start with the simplest configuration of two sidebands,
that is n=0,1 �N=M =1� in Eqs. �1�. This applies, e.g., to the
opposite circularly polarized driving fields E0 and E1, when
the cascaded generation of Stokes and anti-Stokes harmonics
is forbidden due to angular momentum selection rules �15�.
The propagation equations in this case are

�i�z −
1

2
� − �0�E0 =

�E1�2E0

2�
2 + �E0�2�E1�2
, �18�

�i�z −
1

2
� − �1�E1 =

�E0�2E1

2�
2 + �E0�2�E1�2
. �19�

Equations �18� and �19� explicitly express a known fact that
the fields interacting via the Raman nonlinearity do not have
nonlinear self-action. This property does not depend on the
number of interacting components.

Bright �vortex free� spatial solitons in the two-component
Raman model have been studied in Refs. �15,16� and the
associated self-focusing effects have been observed in Refs.
�13,14�. Also, there are closely related recent results on spa-
tial solitons in Raman active liquids �21,22�. The papers in
Ref. �23� have analyzed the two-component temporal Raman
solitons existing in the presence of group velocity dispersion,
i.e., when the transverse Laplacian is replaced with the
second-order time derivative. The above two-component
model is also similar to that for the so-called holographic
solitons �24�.

The existence conditions for soliton solutions in Eqs. �8�
are reduced to the joint inequalities �1�0 and �2�−�1
−�1, which define a semi-infinite region in ��1 ,�2� bounded
by the two rays, see Fig. 3�a�. Another boundary is derived
from the q=1 /2 condition and is given by

�2 � �2
�s� =

1

4�1
− �1 − �1. �20�

Our linear stability analysis demonstrates that the soliton
with l0=0 and l1=1 is unstable only inside the sufficiently
narrow range of �1,2 corresponding to the relatively small
values of q, see Fig. 3. As soon as q increases and the satu-
ration effects become important the solution becomes stable.
Note that the saturation of the self-focusing nonlinearity does
not stabilize the vortices in the models with the nonlinear
self-action effects �4�. It suggests that the absence of the
self-action plays an important role in stabilization of the vor-
tex solitons. In its instability range, the vortex soliton is un-
stable with two eigenvalues �J=1 and �J=2 having positive
real parts, see Fig. 4. Fixing �1 we numerically find the criti-
cal values of �2, at which the two instabilities disappear, see
circles and squares in Fig. 3�a�. Selective numerical runs for
the cases l0=0, �l1��2 and l0=1, �l1��1 suggest that they are
unstable with respect to azimuthal instabilities through large
parts of their existence domains.

To reveal the impact of instabilities on the soliton dynam-
ics, we initialize Eq. �1� with numerically found soliton so-
lutions slightly perturbed along unstable eigenvectors and
perform dynamical simulations. Results are presented in
Figs. 5 and 6 for the J=1 and J=2 unstable eigenvectors,
respectively. Both perturbations break the soliton symmetry
and eventually lead to the formation of a single or a pair of
bright spatial solitons �15,16�.

VI. THREE-COMPONENT VORTEX SOLITONS

The addition of the third component makes the interaction
between the Raman sidebands phase-sensitive, and the
choice of the vortex charges ln in any two fields defines the
charge of the remaining field via the phase-matching condi-
tions �11�. Equation �1� for the three component case with
n=1−M , 2−M , 3−M is

�i�z −
1

2
� − �1−M�E1−M =

C

2
��E2−M�2E1−M + E2−M

2 E3−M
� � ,

�21�

�i�z −
1

2
� − �2−M�E2−M =

C

2
���E1−M�2 + �E3−M�2�E2−M

+ 2E3−ME1−ME2−M
� � , �22�

−0.2 −0.1 0 0.1 0.2 0.3
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0.1
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R
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λ J
)
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FIG. 4. �Color online� Real part of eigenvalues corresponding to
unstable perturbations versus �2 for �1=−0.25.
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�i�z −
1

2
� − �3−M�E3−M =

C

2
��E2−M�2E3−M + E2−M

2 E1−M
� � ,

�23�

here C2=1 / 
2+ �E1−ME2−M
� +E2−ME3−M

� �2�. Fixing l1− l0=1,
we consider two cases �M =3 and M =2�: asymmetric �l−2
=−2, l−1=−1, l0=0� and symmetric �l−1=−1, l0=0 , l1
=1�. The former corresponds to the often encountered case
with negligible anti-Stokes sidebands, and the latter implies
that the first Stokes and first anti-Stokes lines are excited.

The existence boundary for the asymmetric case given by
the condition q=1 /2 is now �2��2

�s�, where

�2
�s� = −

1

4
� 1

�1
− 3�1 − 2�−1 − �−2

−�� 1

2�1
+ �−2 − 2�−1 − �1�2

+ 2 −
1

4�1
2� . �24�

In the symmetric case, the q=1 /2 condition implies
�2

�−���2��2
�+�, where

�2
��� =

1

2
��− ���−

2 −
�+�1 − 4�1

2�
�1

− 2 + 4�1
2� �25�

with ��= ��−1��1�. Together with the conditions in Eqs.
�8�, the above constraints define the regions of the soliton
existence, see Fig. 7.

Stability analysis demonstrates that, similar to the two-
component case with l0=0 and l1=1, the three-component
solitons with l−2=−2, l−1=−1, l0=0 are stable inside a suffi-
ciently wide domain in the ��1 ,�2� plane and, in particular,
in the proximity of the existence boundary given by q=1 /2,
i.e., in the high saturation regime. Close to the lower bound-
ary of the existence domain given by �2= ��1+�−2� /2 there
are three types of instabilities with J=1,2 ,3, see Fig. 7�a�.
We note that the solution with the sidebands generated on the
anti-Stokes side, i.e., the solution with l0=0, l1=1, l2=2, has
the same stability properties as the solution discussed above.
The symmetric case with n=−1,0 , +1 is found to be un-
stable with respect to the J=1 and J=2 instabilities, with the
former one persisting in the entire existence domain, see Fig.
7�b�.

VII. MULTICOMPONENT VORTEX SOLITONS AND
SPATIOTEMPORAL HELICAL BEAMS

The above results show that if the vortex soliton contains
a vortex free component, for example, at n=0, and vortex

FIG. 5. �Color online� Dynamics of the unstable soliton ��1

=−0.25, �2=0� with small perturbation along the J=1 unstable
eigenvector. Cross sections of field intensities �En�2 are plotted for
the 0th �left column� and 1st �right column� harmonics at different
propagation distances z. The initial soliton has a “donut” shape,
which is consistent with the vortex charge l1=1 in the first har-
monic. As the instability evolves, it deforms the excitation toward
usual bright spatial soliton bearing no vortex charge. Note, that the
overall orbital angular momentum is conserved and carried by rap-
idly diffracting radiative waves.

FIG. 6. �Color online� The same as Fig. 5 but with perturbation
along J=2 unstable eigenvector. As the instability evolves, the soli-
ton is transformed into a pair of spatial solitons, which are then
pulled apart and moving in opposite directions.
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carrying sidebands either only on the Stokes or only on the
anti-Stokes sides, it can be stable within a broad range of
parameters �1,2 ensuring that the saturation effects are suffi-
ciently strong. Since in the frequency comb generation ex-
periments with the off-resonant Raman gases the total num-
ber of excited harmonics can go to a few dozen �9,10�, an
important question to be addressed is whether the above
stated principles of the vortex soliton stabilization can be
extended onto multi-component cases. To address this prob-
lem we use numerical integration of Eq. �1� with 11 coupled
sidebands, initialized with the three-component vortex soli-

tons described in the previous section. We consider two
cases: �i� asymmetric case where excitation of the anti-
Stokes lines is suppressed and �ii� symmetric case with ex-
citation of Stokes and anti-Stokes lines being equally prob-
able. In both cases we number the harmonics in a way that
n=0 corresponds to the vortex-free component. Thus we take
M =11, N=0 and M =6, N=5 in Eq. �1� for the asymmetric
and symmetric cases, respectively.

We monitor the evolution of the fields by plotting the total
field intensity Itot= �Etot�2 with Etot defined in Eq. �2�. It has
been demonstrated in Ref. �11� that simultaneous frequency
and vortex combs lead to the helical structure of the total
field intensity Itot, both in �x ,y , t� and �x ,y ,z� subspaces. For
the case of initial conditions where all the fields apart from
the three pumps k−1, k, and k+1 are initially zero, the Itot
can be crudely approximated with �see the Appendix for de-
tails�:

Itot�x,y,z,t� � �fk
�0� + fk−1

�0� e−i� + fk+1
�0� ei��2, �26�

where �= t+�l�−Kz, �l= lk+1− lk is the vortex charge step
between the neighboring sidebands, and K=�modL /c−�2.
For any fixed t and z the total intensity distribution in the
transverse plane is modulated in � with the period defined by
�l, and it rotates in both t and z, forming a spatiotemporal
helix.

�l=1 corresponds to the single-strand helical structure of
Itot, see Figs. 8�a� and 8�b�. Figure 8�a� shows the long dis-
tance evolution of the helix in the case of the asymmetric
excitation, with all the sidebands generated on the Stokes
side, see the corresponding spectrum in Fig. 8�c�. The result-
ing helix in this case keeps its structure fixed over consider-
able propagation lengths. A similar numerical experiment for
the symmetric excitation results in the helical soliton, which
breaks up into filaments after the same propagation distance,
cf. Figs. 8�a� and 8�b�. We found that this break up is caused
by the developing j=3 instability, see Fig. 9. Note, however,
that the total length in the simulations shown in Fig. 8 cor-
responds to a physical distance of order 20 cm, which im-

FIG. 7. �Color online� Region of existence of coupled vortex
solitons for the case of three fields: �a� asymmetric configuration
�l−2=−2, l−1=−1, l0=0�, �−1=0.005, �−2=0.02; �b� symmetric
configuration �l−1=−1, l0=0, l1=1�, �1=�−1=0.005. Open
squares, filled circles, and filled triangles correspond to numerically
found instability thresholds for J=1, J=2, and J=3 unstable pertur-
bations, respectively. Shaded areas indicate regions of unstable
solutions.
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FIG. 8. �Color online� Dynamics of 11
coupled fields initially excited with three-
component solitons. �a� Itot�x ,y ,z , t=0� isointen-
sity �x ,y ,z� plot at 80% at maximum for asym-
metric configuration. Fields n=−2,−1,0 are
initialized with the soliton, �1=−0.25, �2=0.7
�stable for three-component configuration, cf.
Fig. 7�a��. �b� The same as �a� but for symmetric
configuration, fields n=−1,0 ,1 are excited with
the soliton, �1=−0.25, �2=0 �unstable for three-
component configuration, cf. Fig. 7�b��. Isointen-
sity plot is at 60% at maximum; �c� and �d� in-
tensity distribution over harmonics after
propagation distance z=40 for the cases in �a�
and �b�, respectively.
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plies that one can speak about a quasistable propagation of
the helix even in the case of the symmetric excitation of the
Stokes and anti-Stokes sidebands. The z period of the helix
2� /K is not a parameter of our numerical model, and it is
only important when we are calculating Etot. Physically real-
istic values of the adimensional period are of the order of 1
�for a typical modulation frequency �mod of the order of 100
GHz �9��, which makes the helical structure contain several
hundred periods over the distance of 180 adimensional units
required to see the instability. Therefore, to make the struc-
ture of the helices and the break-up process more obvious to
the reader, we have fixed K�0.1, when we have been pro-
ducing the images of the helices in Figs. 8 and 10.

Providing the asymmetric excitation conditions and
changing �l to 2 and 3, we have also observed the formation
of the stable double-and triple-strand helices, see Fig. 10.
Note that the formation of similar multiple-strand helices has
been reported in Ref. �25�, as a result of the linear superpo-
sition of the higher order Laguerre-Gauss modes. The helical
soliton beams reported here are qualitatively different from

the so-called spiraling solitons or rotating soliton clusters
�26–30�, which sustain their rotation due to the interaction
between the individual beams accompanied by the conserva-
tion of the angular momentum. In our case the helical evo-
lution does not require the presence of more than one inten-
sity lobe, as shown in Fig. 8, and originates from the
interaction of multiple frequency harmonics carrying pro-
gressively growing vortex charges. Most close known to us
analog of the spatiotemporal helices studied above have been
reported in the context of the sine Gordon equation and can
be observed in a chain of coupled pendulums �31�.

VIII. SUMMARY

In this work we have reported existence conditions and
have carried out linear stability analysis of the two and three
component vortex solitons in an off-resonant Raman me-
dium. We have found that, in the case where the vortex car-
rying Raman side bands are located either only on the Stokes
or only on the anti-Stokes side of the vortex free component,
the vortex solitons have a significant stability domain, corre-
sponding to parameter values ensuring sufficient levels of
nonlinearity saturation. We have also demonstrated that the
same stabilization mechanisms work in the case of many
sideband, leading to the excitation of stable helical beams
with single-, double-, and triple-strand topologies.

APPENDIX

An approximate expression for the z evolution of the si-
multaneous frequency and vortex combs, excited with finite
number of the sidebands, can be found if one neglects dif-
fraction and dispersion. We replace Eq. �4� with En�x ,y ,z�
� fn�z�eiln� and use the fact that under these approximations

i
� fn

�z
= q�fn+1 − fn−1� . �A1�

A solution to an initial value problem for Eqs. �A1� can be
expressed using the Bessel functions Jn�z�. For an initial ex-
citation with N0 adjacent sidebands: fn

�0��0 for n=k ,k
+1, . . . ,k+N0−1, the resulting solution is given by

fn�z� = �
j=k

k+N0−1

f j
�0�e−i��n−j�/2Jn−j�2q0z� , �A2�

where q0=q�z=0�. The simplest case N0=2 has been consid-
ered in Refs. �9,11�. Using the orthogonality of the Bessel
functions �nJn+pJn+q=�p,q, it is easy to show that q�z�
q0
and thus Eq. �A2� satisfies Eq. �A1� for all z. Substituting the
solution �A2� into Eq. �2�, we find the approximate expres-
sion for the total field

FIG. 9. �Color online� Intensity distribution in the transverse
plane of the 0th harmonic after propagation distance z=200 for the
asymmetric �a� and symmetric �b� configurations in Fig. 8. Impact
of the J=3 instability in the case of symmetric configuration is
clearly observed.

FIG. 10. �Color online� Stable double- �a� and triple-strand �b�
helical beams formed by solitons with �l=2 and �l=3, respec-
tively. All the parameters are the same as in Fig. 8�a�.
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Etot � exp�i�0��
n

exp�in��

� �
j=k

k+N0−1

f j
�0�e−i��n−j�/2Jn−j�2q0z�� , �A3�

where �0= l0�+�0t /�mod−K0z, �=�l�+ t−Kz, K0=�0L /c

−�1, K=�modL /c−�2. Using a known identity,
�nJn�x�exp�in��=exp�ix sin����, we derive

Etot � exp�i�0 + i2q0z cos���� �
j=k

k+N0−1

f j
�0� exp�ij�� , �A4�

which is the expression used in Eq. �26�.
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