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We investigate the quantum noise in phase quadratures of resonance fluorescence from a two-level atom
driven by a trichromatic exciting field. It is shown that the noise spectra are crucially dependent on the sum of
relative phases of the sideband components compared to the central component although the sideband exciting
components are much weaker than the central component. When we tune the exciting sidebands on two-photon
resonance with the Mollow sideband transitions and set the phase sum to �, sideband squeezing in the in-phase
quadrature remains almost the same as in the monochromatic case. Once the phase sum is set to zero, the
squeezing is destroyed. The responsible mechanism is explained in terms of two-photon emission processes
induced by the trichromatic components and the interference between these processes.
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Optically coherent control of light-matter interactions lies
at the heart of quantum optics and laser physics. One such
example is resonance fluorescence, i.e., the scattering of light
from free atoms that are irradiated with a near-resonant field.
It was predicted �1� and demonstrated �2� that the spectrum
of the resonance fluorescence from a strongly driven two-
level atom has a three-peaked structure. A central peak is
located at the driving field frequency, and two sidebands are
distant from the central peak by an amount equal to the Rabi
frequency. Theoretical and experimental studies have shown
that the resonance fluorescence has the potential for produc-
ing nonclassical light. In particular, photon antibunching
was presented by Carmichael and Walls �3� and Kimble and
Mandel �4� and demonstrated in many laboratories �5–8�;
sub-Poissonian photon statistics was predicted by Mandel �9�
and verified by several groups �10,11�; squeezing in the
phase quadratures was reported by Walls and Zoller �12� and
Loudon �13�, and observed by Lu et al. �14�.

On the other hand, polychromatic excitation leads to
many novel and important effects in light-matter interactions.
Examples include dressed-state lasers �15�, multiphoton pro-
cesses �16�, intrinsically irreversible laser gain mechanisms
�17�, modifications of the Autler-Townes spectrum �18�,
polychromatic electromagnetically induced transparency
�19�, large self-phase-modulation �20�, population inversion
of a single driven atom in a cavity �21�, bichromatic laser
cooling �22�, and subhalfwavelength atom localization �23�.
The spectrum of fluorescence excited by polychromatic ex-
citation exhibits a comblike structure �24–30�, in which the
peak interval is determined by the modulation frequency, not
by the Rabi frequency as in the monochromatic case. It has
been predicted that bichromatic excitation leads to a strong
photon correlation �31� and an enhancement of noise squeez-
ing in the resonance fluorescence of two-level atoms �32�.
Wu et al. �33� demonstrated the phase-sensitive dynamics of
bichromatically driven two-level atoms. However, the phase
dependence no longer exists for the steady state �25�. A
phase-dependent spectrum occurs when there are more than
two exciting frequency components. Ficek et al. �30� have
investigated the phase-dependent effects when the symmetri-
cal sideband components have equal relative phases com-
pared to the central component. In particular, in the quin-
tuchromatic excitation case, there is a flip of the spectral

peaks between two different frequencies when two pairs of
sideband driving components simultaneously change their
respective phases from 0 to �. When a very large number of
frequency components have the same relative phase, the
fluorescence spectrum can disappear or return to the Mollow
structure, depending on whether or not the sideband Rabi
frequencies are equal to that of the central component. Most
recently we have presented the effects of the sum of the
relative phases of the sideband components compared to the
central component when the symmetrical sidebands have dif-
ferent relative phases �34�. In the trichromatic case, the fluo-
rescence spectrum is determined by the phase sum, not sim-
ply by the respective phases. The spectral lines are
selectively eliminated simply by varying the phase sum.

Some questions remain: What is the phase dependence of
the noise spectra? How do the exciting sidebands change the
sideband squeezing in the phase quadratures? In this paper
we address these two questions. We show that the exciting
sidebands have remarkable effects on the noise spectra even
when the sidebands are much weaker than the central com-
ponent. When the exciting sidebands are tuned on two-
photon resonance with the Mollow sideband transitions and
the phase sum is set to �, the sideband squeezing that ap-
pears in the monochromatic case is kept almost unchanged.
However, when we switch the phase sum to zero, the squeez-
ing is almost washed out. Such phase dependence is attrib-
uted to the sideband-induced two-photon transitions in the
dressed-state picture created by the central component of the
trichromatic field.

Consider a two-level atom, which has ground and excited
states �1� and �2�. The atom is driven by a trichromatic field
1
2 �E0+E1ei�t+E2e−i�t�e−i�0t+c.c., where c.c. is the complex
conjugate, Ej �j=0,1 ,2� are the amplitudes of the various
components, �0 is the central frequency, and � is the fre-
quency difference. The master equation for the reduced den-
sity � is derived in an appropriate rotating frame and in the
dipole approximation as

d�

dt
= −

i

�
�H,�� + L� , �1�

where H is the Hamiltonian of the system,
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H = − ���22 −
�

2
��0 + �1ei�t + �2e−i�t��21 + H.c., �2�

with H.c. being the Hermitian conjugate. L� is the damping
term

L� =
	

2
�2�12��21 − �22� − ��22� , �3�

which describes the atomic spontaneous emission from �2� to
�1� at the rate 	. In Eqs. �1�–�3�, � jk= �j��k� represent the
atomic projection operators for j=k and the flip operators for
j�k �j , k=1,2�. � j =dEj /� �j=0,1 ,2� are complex Rabi
frequencies associated with the respective components, and d
is the atomic transition electric dipole moment. �=�0−�21
is the detuning between the central field frequency �0 and
the atomic frequency �21. By arranging the expectation val-
ues into a column vector X�t�= ���12� , ��21� , ��22��T, we write
the equation of motion in the compact form

d

dt
X�t� = Q�t�X�t� + R�t� , �4�

where Q�t� is the coupling matrix

Q�t� = �− 
 0 − 2b

0 − 
� − 2b�

b� b − 	
	 , �5�

and R�t� is the inhomogeneous term R�t�= �b ,b� ,0�T, 
= 	
2

+ i�, and b�t�= i
2 ��0+�1ei�t+�2e−i�t�. ��11� is obtained by

the closure relation ��11�+ ��22�=1.
Note that the coupling matrix Q and the inhomogeneous

term R are both time dependent via the parameter b. Follow-
ing the same techniques as in Ref. �35�, we solve Eq. �4� in
three steps. �i� Make the harmonic expansion on the compo-
nents Xk�t�=
l=−�

� Xk
�l��t�eil�t, where Xk

�l� �k=1,2 ,3� represent
the slowly varying amplitudes. �ii� Substitute the expanded
terms into Eq. �4�, equate the coefficients of the harmonic of
�, and obtain an infinite series of equations for the slowly
varying amplitudes. �iii� Arrange the slowly varying ampli-
tudes into a column vector X̄ as

X̄ = �. . . ;X1
�−N�,X2

�−N�,X3
�−N�; . . . ;X1

�0�,X2
�0�,X3

�0�; . . . ;X1
�N�,X2

�N�,X3
�N�; . . .�T, �6�

write the infinite set of equations in a compact form, and
then obtain the steady state solution �t→�� as

X̄ = − Q̄−1R̄ , �7�

where the matrix Q̄ and the column vector R̄, which are not
written here, are obtained from Eq. �4� and the above three
steps. The numerical calculation is performed by truncating
the set of equations at a large value N that is necessary to
achieve accuracy.

The incoherent spectrum of the scattered field Ein�t� is
usually defined as �36�

Sin��� =
1

2�
�

−�

�

d� lim
t→�

�Ein
�−��r,t + ��Ein

�+��r,t��e−i��. �8�

Relating the field operators to the atomic operators, we write
the spectrum �36�

Sin��� = 	u�r�Re �
0

�

d� lim
t→�

���21�t + ����12�t��e−i��,

�9�

where �A=A− �A�, and u�r�= �3 /8��sin2 , with  the angle
between the observation direction r and the atomic transition
dipole moment d. The two-time correlation function in Eq.
�9� can be calculated by introducing the correlation matrix
Y��� with its three components

Y��� = ����12�t + ����12�t��,���21�t + ��

���12�t��,���22�t + ����12�t���T. �10�

According to the quantum regression theorem �37�, for �
�0, the two-time average Y��� satisfies the same equation of
motion as the one-time average X�t� with vanishing inhomo-
geneous term,

d

d�
Y = QY . �11�

Using the same techniques for solving X�t� and the Laplace
transform Y�z�= 1

2��0
�Y���e−zt we obtain the incoherent spec-

trum

Sin��� =
	

2
u�r�Re�Y2

�0��i�� + Y2
�0��− i��� , �12�

where the indices 2 and 0 in Y2
�0� have the same meanings as

those in X2
�0�.

The normally ordered noise spectrum of the fluorescence
field is usually defined as �36�

Sx�y� = �
−�

�

d� lim
t→�

�:�Ex�y��r,t + ���Ex�y��r,t�:�ei��,

�13�

where Ex�y��r , t� is the slowly varying in-phase �out-of-phase�
quadrature operator of the fluorescent radiation field. Using
the relation between the fluorescent field and the atomic flip
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operators in the far radiation zone, we write the spectrum in
the form

Sx�y���� = 	 Re�
0

�

d� lim
t→�

cos����

�����21�t + ����12�t��

� ���12�t + ����12�t��� . �14�

When Sx�y�����0 the fluorescent light shows quadrature
squeezing. The value Sx�y����=− 1

4 corresponds to the maxi-
mal degree 100% of squeezing. The noise spectrum for x �y�
quadrature is obtained as

Sx�y���� =
	

2
Re�Y2

�0��i�� + Y2
�0��− i�� � Y1

�0��i��

� Y1
�0��− i��� . �15�

Sx�y���� is a measure of the deviation from the shot noise
limit. A negative spectrum is a signature of a nonclassical
state of the field.

In our calculations, we scale the Rabi frequencies
��� j� , j=0,1 ,2� and the frequency differences �� ,� ,�� in
units of 	. Without loss of generality, we assume the Rabi
frequency �0 to be real, and choose � j = �� j�e−i�j �j=1,2�,
where � j is the phase of the sideband component Ej relative
to the central component E0. For convenience we define the
phase sum �=�1+�2. First, we show the phase dependence
of the fluorescence spectrum. In Fig. 1 we plot Sin��� for
�=0 �solid lines� and � �dotted lines�. The other parameters
are chosen as �a� �0=16, ��1�= ��2�=3, �=12, �=10, �b�
�0=40, ��1�= ��2�=5, �=30, �=25. The frequencies of the
exciting sidebands are on two-photon resonance with the

Mollow sideband transitions, �= 1
2�̄, where �̄=�2+�0

2 is
the separation of the dressed states in the same doublet, as
will be shown below. For comparison, we have plotted the
spectra for monochromatic excitation ��1=�2=0, thin dash-
dot-dotted lines�. It has become clear that for the monochro-
matic case sideband squeezing is present only when ��0
�38�. So we focus on the case of ��0. In the presence of the
exciting sidebands, the spectrum has an asymmetrical struc-
ture when ��0. This is in sharp contrast to the monochro-
matic case, in which the fluorescence spectrum has sym-
metrical structure even when the exciting field is detuned
from the atomic transition �1�. In the figure we have chosen
different ratios of the sideband Rabi frequencies to that of the
central component,

��1,2�

�̄
=0.15 �Fig. 1�a�� and 0.1 �Fig. 1�b��.

The condition ��1,2���̄ is better satisfied for the latter than
for the former. When the conditions 	� ��1,2�� ��0 , ����
and �� �̄

2 are satisfied, the fluorescence spectrum for the
trichromatic excitation displays the following features. �i�
The frequencies at which spectral peaks occur for the mono-
chromatic case are hardly modified. �ii� There appear addi-

tional minor sidebands at ���m+ 1
2 ��̄, m=0,1 ,2 , . . . .

These originate from the harmonics of the modulating field.

�iii� The heights of the spectral peaks at �=0, ��̄ are
greatly increased or decreased for �=0, but are kept almost
unchanged for �=�. In addition, when we take ��0, the
spectrum switches symmetrically from the left to the right
half regime.

Next, we show the phase dependence of the noise spec-
trum. In Fig. 2 we plot the noise spectrum Sx��� for the same
parameters as in Fig. 1. Similar features are found. In
Fig. 2�a�, the spectrum for the monochromatic case has its
minimum value �Sx�min=−0.0638 at a pair of sidebands
�� �20. This corresponds to 25% squeezing at the Mollow

sidebands �= ��̄= �20. For the trichromatic case, the
spectrum for �=� takes its minimum value
�Sx�min=−0.050 at the sidebands �� �20.6. This corre-
sponds to sideband squeezing of 20%. Compared with the
monochromatic case, the squeezing for the trichromatic case
is only slightly decreased. In sharp contrast, for �=0 �solid
lines�, the spectra are close to or above the shot noise limit,
which indicates that squeezing is almost canceled. In Fig.
2�b�, �Sx�min=0.0641 at �� �50.0, squeezing of 25.6% oc-
curs for the monochromatic case. For the trichromatic case,
the spectrum for �=� takes its minimum �Sx�min=−0.057 at
the sidebands �� �50.6. We have 23% squeezing. This
shows that the squeezing is kept almost the same as in the
monochromatic case. For �=0, squeezing no longer exists.
So far, we have considered the effects of the weak sidebands
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FIG. 1. �Color online� Fluorescence spectrum Sin��� for �=0
�solid lines� and � �dotted lines�. The other parameters are chosen
as �a� �0=16, ��1�= ��2�=3, �=12, �=10, �b� �0=40, ��1�= ��2�
=5, �=30, �=25. The spectrum �thin dash-dot-dotted lines� for
�1=�2=0 is plotted for comparison.
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�	� ��1,2�� ��0 , ����� on the noise spectrum. When we in-
crease the Rabi frequencies of the exciting sidebands such
that the above relations are not satisfied, the above noise
squeezing is spoiled. Strong sidebands will wash out any
squeezing. For bichromatic excitation as the extreme case of
trichromatic excitation, no squeezing exists; this is not
shown in our figures.

The mechanism responsible for the squeezing can be
traced to the two-photon emission processes, as shown in
Fig. 3�a�. There are three channels for the two-photon emis-
sion: �i� the absorption of photons of the strong central driv-
ing component ��0� and the emission of photons of side-

bands ��0��̄, also see Fig. 3�b��; �ii� the successive

absorption of photons of the weak high- and low-frequency
driving components ��0��� and the emission of photons of
sidebands ��0��̄�; and �iii� the same as in �ii� except for
the exchange of the high- and low-frequency driving compo-
nents. The two-photon emission occurs at sidebands
��0��̄� due to the Stark splitting by the strong central driv-
ing component ��0� ��1,2��. At the same time, the weak
modulation components cause the two-photon emission of
the same sidebands as above. That is why the squeezing
occurs at sidebands but not at the central frequency as in the
bichromatic case considered by Jakob and Kryuchkyan �32�.
In their case, there is no central component, and the bichro-
matic components are symmetrically detuned from the
atomic resonance frequency. The bichromatic driving field
induces degenerate two-photon emission ��0=�21� �31�.
This determines squeezing at the central frequency �32�. For
the trichromatic case, however, the central driving compo-
nent is much stronger than the driving sidebands and deter-
mines the two-photon emission at sidebands. Usually one
expects that the driving sidebands spoil the squeezing ef-
fects. However, for this particular phase sum, the destructive
effects of the driving sidebands can be suppressed to a neg-
ligible degree. This can be roughly understood by noting that
the above three channels for two-photon emission interfere
with each other. We rewrite the time-dependent Rabi fre-
quency ��t�=�0+2��1�cos��t+

�2−�1

2 �exp�i �
2 �, where we

have used �=�1+�2, ��1�= ��2�. As time passes, the effects
of the respective phases ��1 ,�2� in the term cos��t+

�2−�1

2 �
are averaged out. This indicates that the dynamics and
squeezing properties of the system are independent of the
phases ��1 ,�2�. However, the phase sum � always plays its
role. For �=0, the Rabi frequency reduces to ��t�=�0

+2�1 cos��t+
�2−�1

2 �, the time-dependent part of which is
real and ranges from −2�1 to 2�1. In this case the interfer-
ence decreases the squeezing to such a degree that the
squeezing tends to vanish. For �=�, the Rabi frequency
becomes ��t�=�0+ i2�1 cos��t+

�2−�1

2 �, the time-dependent
part of which is purely imaginary and changes from −i2�1 to
i2�1. In this case, the destructive interference is at the lowest
level and thus the squeezing is kept almost the same as in the
monochromatic case.

Further, the sideband squeezing and the phase dependence
can be explained in terms of dressed states �39� that are
associated with the strong central component of the trichro-
matic field. By diagnosing the Hamiltonian H=−���22

− �
2 �0��12+�21�, we obtain the dressed states �+ �=s�1�

+c�2�, �−�=c�1�−s�2�, and the corresponding eigenvalues

��= �
2 �−���̄�, where � s

c �=1
2 �

�

2�̄
. This means that the

atomic level is split into two levels, which are shifted from
the original position by �� and separated from each other by

�+−�−=��̄. Using the dressed states we rewrite the Hamil-
tonian for the interaction of the atom with the exciting side-
bands,

Hs = −
�

2
��1ei�t + �2e−i�t��cs�++ − cs�−− + c2�+−ei�̄t

− s2�−+e−i�̄t� + H.c.. �16�
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FIG. 2. �Color online� Noise spectrum Sx��� for the same pa-
rameters as in Fig 1.
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FIG. 3. �Color online� �a� Trichromatic-component-induced
��0 ,�0��� channels for two-photon emission at sidebands

��0��̄�. �b� The dressed states associated with the central exciting
component and the transitions induced by the sideband components.
n is the number of quanta for the central exciting component.
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We focus on the case of ��1,2�� ��0 ,��, i.e., ��1,2���̄.
When we choose �= 1

2�̄, all the one-photon transitions

�� � →
�=�̄/2

�� � induced by the sidebands have the detunings
��, as shown in Fig. 3�b�. Since 1� ��1,2���, the one-
photon transitions are far off resonance with the dressed

transitions. The transitions �+ � →
�=�̄/2

�� � →
�=�̄/2

�+ � and

�−� →
�=�̄/2

�� � →
�=�̄/2

�−� are on the two-photon resonances. The
effective Rabi frequency is small, �eff=

�1�2

� ��̄. The excit-
ing sidebands have no significant effect on the level shift of
the dressed states �� �. Therefore, the spectral lines remain at
�= ��̄, as in the monochromatic case. Minor peaks in the
spectrum at �= �m+ 1

2 ��̄ are the signature of such
�2m+1�-photon transitions, m=0,1 ,2 , . . . . It should be
noted that the two-photon transitions have the same phase �.
The system dynamics and quantum noise are determined by
the phase sum � but not by the respective phases �1,2. As the
phase sum is varied from �=0 to �, both the fluorescence
and noise spectra are significantly changed, as shown by the
numerical results in Figs. 1 and 2.

Finally, we should note that homodyne detection also
causes phase dependence �14�, which was employed to en-
hance the squeezing, as shown by Jakob and Kryuchkyan
�32�. In that case, a strong local oscillator field is used, which
has the same frequency as the fluorescent field. The atomic
radiation field is mixed with a strong local oscillator field
EL= �EL�ei � is the phase of the local oscillator field relative
to the driving field� at a diode detector. The atomic radiation

field contains three parts E�t�= �Ea�+�Ex+ i�Ey, the mean
field �Ea�, and the fluctuating components in phase, �Ex, and
90° out of phase with the driving field, �Ey. In the measure-
ments, the detector measures the total power of the combined
field, proportional to �EL+E�2. The fluctuations in the de-
tected power are determined by the interference terms
�P�t��EL

�E�t�+ELE��t�= �EL��e−iE�t�+eiE��t��. For a weak
driving field, the cross correlation between in-phase and out-
of-phase fluctuations is maximized at the central frequency
for = �

�
4 . For the previous bichromatic case �32�, the

maximum degree of squeezing ��50%� is reached, which is
approximately twice as strong as it is in the monochromatic
case. In the present work, the two-photon emission processes
are modulated by the driving sidebands. Since no local os-
cillator field is used, the squeezing is kept at almost the same
level as in the monochromatic excitation case �38�.

In conclusion, we have shown the phase dependence of
the quantum noise in phase quadratures of resonance fluores-
cence from a two-level atom driven by a trichromatic excit-
ing field. When the conditions �i� 	� ��1,2�� ��0 , ����, �ii�
�� �̄

2 , and �iii� �=� are satisfied, one has almost the same
amount of sideband squeezing as for the monochromatic
case. Switching the phase sum to zero or increasing the side-
bands to a value comparable to that of the central component
leads to disappearance of the sideband squeezing.

This work is supported by the National Natural Science
Foundation of China under Grants No. 10574052 and No.
60778005.
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