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We investigate theoretically the main elements of manipulation of light pulses—strong nonlinear slowing
down, trapping, and release on demand—in photorefractive nonlinear media. This includes a study of the
slowing-down characteristics, such as delay time, amplification factor, and nonlinear broadening, for different
types of photorefractive response and interaction geometries, as well as an analysis of the shape of pulses
released after a long storage. The photorefractive manipulation method is shown to be applicable at ambient
temperatures, low light intensities, and wide spectral ranges.
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I. INTRODUCTION

The current burst of research interest in light slowing
down is centered predominantly on nonlinear mechanisms of
this fundamental phenomenon �1–5�. It is well understood
nowadays that nonlinear techniques allow reduction of the
effective velocities of light pulses by many orders of magni-
tude, which exceeds the known capabilities of the linear
schemes �6�. Apart from an obvious fundamental interest, the
slowing-down phenomenon is promising for various applica-
tions, including development of sensitive detectors and delay
lines and, potentially, quantum-information processing �4,7�.

One of the most impressive examples of pulse decelera-
tion �velocity of �17 m /s� occurs in the resonant nonlinear-
ity of ultracold gases �8�; it is closely related to the quantum
effect of electromagnetically induced transparency �EIT� �9�.
Moreover, the EIT-based nonlinear schemes have allowed
also for long-term trapping of light pulses in the form of
atomic coherence with their subsequent release on demand
�10�.

The drawbacks of the EIT-based technique are ultralow
temperatures, very narrow resonances, and the necessity to
use high light intensities. For practical purposes, the use of
ambient temperatures, solid state nonlinear materials, and
common light sources has no real alternative. This is why
numerous attempts to employ room-temperature resonant
nonlinearities of solids have been undertaken; see �3,11–14�
and references therein. The achieved slowing-down charac-
teristics are still modest and related mostly to periodically
modulated signals, while high light intensities are still re-
quired.

Recently, photorefractive �PR� nonlinearity was employed
for deceleration of light pulses �15–18� and propagation ve-
locities lower than 0.025 cm/s were reported �15�. PR non-
linearity possesses numerous advantages for light slowing
down. No sharp frequency adjustment is needed, operation at
room temperature with continuous-wave lasers is ensured,
many PR materials are available, and achievement of a high-
level nonlinearity is not difficult �19,20�. Moreover, the PR
nonlinearity offers excellent possibilities for long-term trap-
ping and the subsequent release of light pulses: The refrac-
tive index changes are caused by the light-induced space-

charge fields and the decay time of these fields in the dark
can be huge.

In this paper, we investigate theoretically the capabilities
of the PR nonlinearity for manipulating light pulses. We deal
first with slowing-down characteristics. The time delay, the
output pulse width, and the peak amplification factor are in-
vestigated as functions of the coupling strength and the input
width for two distinct types of PR response, the local and
nonlocal, and two different interaction geometries. The ef-
fects of pump depletion are taken into account. We analyze
then the trapping of light pulses and their subsequent release
on demand, after long-term storage, for the simplest type of
PR nonlinearity—the nonlocal response. This includes calcu-
lations of the stored space-charge field profiles for different
values of the trapping time �the time of pump interruption�
and an analysis of the shape of the released pulses. Finally,
we discuss the main advantages and drawbacks of the pho-
torefractive technique in question.

II. THEORETICAL BACKGROUND

We restrict ourselves to the most common transmission
�T� and reflection �R� two-wave coupling geometries de-
picted in Figs. 1�a� and 1�b�. In both cases, we have a per-
manent pump wave and a pulse-shaped signal wave at the
input. The propagation coordinate z ranges from 0 to the
crystal thickness d. The carrier frequency of the waves is
expected to be the same; we are dealing thus with an almost
frequency-degenerate two-wave coupling. The light absorp-
tion is supposed to be negligible.

The slowly varying complex amplitudes of the signal and
pump waves, A=A�z , t� and Ap=Ap�z , t�, obey the known
coupled-wave equations that follow from the Maxwell equa-
tions �20,21�:

�A

�z
= − i�EKAp, �1�

�Ap

�z
= � i�EK

� A , �2�

where the upper and lower signs in Eq. �2� correspond to the
transmission and reflection cases, respectively, EK=EK�z , t�
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is the amplitude of the space-charge field �the grating ampli-
tude� at the difference spatial frequency of the light waves,
K, �=�n3r /�, n is the background refractive index, r is the
relevant electro-optic coefficient, � is the light wavelength,
and the asterisk indicates complex conjugation. The squared
absolute values I= �A�2 and Ip= �Ap�2 will be referred to as the
intensities of the signal and pump waves, respectively. As
follows from Eqs. �1� and �2�, we have ��I� Ip� /�z=0; this
relation expresses the energy conservation law for the light
waves.

The simplest and highly useful material equation for the
grating amplitude has the form �20,21�

�tr
�

�t
+ 1�EK =

EsAAp
�

�A�2 + �Ap�2
, �3�

where tr is the response time, and Es is the characteristic
electric field. The combination of light amplitudes in the
right-hand side is the half contrast of the light-interference
pattern. The response time can often be identified with the
dielectric relaxation time, tr	��0 /�, where ��0 is the static
dielectric constant and � is the spatially averaged conductiv-
ity. With the light on, the dark conductivity is typically neg-
ligible compared to the photoconductivity. In this case, we
have tr� ��A�2+ �Ap�2�−1; in continuous-wave experiments it
ranges roughly from 10−3 to 102 s. With the light off, the
time tr is determined by the dark conductivity; the relaxation
can last here for hours, days, or even years.

The characteristic field Es entering Eq. �3� is generally a
complex quantity. The limiting cases of real and imaginary
Es are referred to as the cases of local and nonlocal PR
response, respectively �20,22�. For the local response, the
steady-state index grating is not shifted �or is � shifted� with
respect to the light intensity grating. This response can be
attributed to the dominating drift or photovoltaic charge
transport, and Es can be equalized to the applied field E0 or
to the photovoltaic field Epv. The latter can be as high as
�104–105� V /cm in LiNbO3 and LiTaO3 crystals �23,24�.
For the nonlocal response, the index grating is � /2 shifted
with respect to the light pattern. This case occurs when the

diffusion of the photoexcited electrons �or holes� is the main
charge-transport mechanism. Here we have Es= iED, where
ED=KkBT /e is the diffusion field, T is the absolute tempera-
ture, kB is Boltzmann’s constant, and e is the elementary
charge. Typically, ED	103 and 
104 V /cm for the trans-
mission and reflection geometries. The effects of spatial dis-
persion, including the Debye screening, can diminish Es and
affect tr for sufficiently large values of the spatial frequency
K, which is especially important for the reflection geometry
�20�.

When the signal wave is relatively weak, �A�2
 �Ap�2, the
undepleted pump approximation is applicable. In this case,
Ap	const and Eqs. �1�–�3� transform to the set of linear
differential equations for the normalized amplitudes a
=A /Ap and u=EK /Es:

�a

�z
= �0u , �4�

�tr
�

�t
+ 1�u = a , �5�

where �0=−i�Es�−i�n0
3rEs /� is the so-called coupling co-

efficient. It is generally a complex quantity which character-
izes the type and strength of the PR response. The unde-
pleted pump approximation plays an important role in our
theory. Within this approximation and for the same input
parameters there is no difference between the transmission
and reflection cases.

Employing the Fourier transformation in time, a�z , t�
→a��z�, we come from the set �4� and �5� to the following
explicit single expression for a��z�:

a��z� = a��0�exp�g�z� , �6�

where a��0� is the input value of a��z� and

g� =
�0

1 − i�tr
�7�

is the rate of spatial changes for the � component of the
input signal. Its real part g�� is apparently the rate of spatial
amplification, while the imaginary part g�� is the nonlinear
correction to the z component of the wave vector of the
signal wave. This part can be attributed to the effective group
velocity vg���= �dg�� /d��−1.

As is clear already from Eqs. �6� and �7�, the strength of
the nonlinear effects can generally be characterized by the
dimensionless parameter ��0�d; in what follows it is referred
to as the coupling strength. The most important effects occur
in the range ��0�d1 where the frequency-dependent spatial
amplification is indispensable and the group velocity vg��� is
insufficient for characterization of the pulse propagation.

It is worthy of mention that the simplest material equation
�3� admits important generalizations. First, the relaxation rate
tr
−1 can be a complex quantity with a relatively large imagi-

nary part �20,26�. This is, in particular, the case of cubic
crystals of the sillenite family, Bi12SiO20, Bi12TiO20, and
Bi12GeO20. Second, the PR response must sometimes be
characterized by a higher-order differential operator in the
left-hand side of Eq. �3�. Such a situation occurs, e.g., in

(a)

(b)

0 d z

FIG. 1. Two main geometries, transmission �a� and reflection
�b�, for the PR deceleration of light pulses. The parallel lines rep-
resent the grating fringes.
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ferroelectric Sn2P2S6 �27,28�. The mentioned generalizations
can be easily incorporated into our theory: Eq. �6� remains
unchanged while the particular form of the frequency depen-
dence g� is modified. In this paper, we restrict ourselves to
the simplest type of frequency dependence given by Eq. �7�.

Using Eq. �6�, we can analyze the shape of the output
pulse for different types of PR response and different input
signals. It is essential that the dependence g� is resonantlike;
for ���tr�1 the rate coefficient is very small. The width of
the resonance is given by the inverse response time tr

−1. Fur-
thermore, it is worthy of notice that the right-hand side of
Eq. �6� depends exponentially on the product �0z; for �0d
�1 one can expect a strong impact of the type and strength
of the PR response on the output pulse characteristics.

III. SLOWING-DOWN CHARACTERISTICS

A. Nonlocal response

In this simplest case, the coupling coefficient �0 is real.
The amplification coefficient g�� =�0 / �1+�2tr

2� is here an
even function of the frequency which peaks at �=0, whereas
the wave vector correction g�� =�0�tr / �1+�2tr

2� is an odd
function of �. Correspondingly, the introduced effective
group velocity vg is an even function of �. The maximum
value of g�� is twice larger than that of �g�� � so that the effects
of spatial amplification are expected to be stronger than the
dispersive effects.

Many important features of the pulse deceleration can be
described within the undepleted pump approximation. To de-
termine the output shape of the pulse, we need to specify the
input amplitude A�0, t�. The Gaussian input shape A�0, t�
=A0 exp�−t2 / t0

2� with t0 being the width parameter is useful
for analytical and numerical treatments. The input half-
width, taken at the half-height of I�0, t�, is here w0
=�ln 2 /2t0. The normalized output amplitude A�d , t� /A0 is
given by

A�d,t�
A0

=
t0

��tr


0

�

exp� �0d

1 + s2 −
s2t0

2

4tr
2 �cos�s� t

tr
−

�0d

1 + s2��ds ,

�8�

which is a real quantity. Both amplification and dispersive
effects contribute to the right-hand side. The dependence of
A�d� /A0 on the normalized time t / tr is controlled by two
dimensionless parameters, the so-called coupling strength
�0d and the ratio t0 / tr. Similarly, one can characterize A�d , t�
for any other particular input shape, e.g., for the Lorentz one,
A�0, t�=A0 / �1+ t2 / t0

2�. Except for quantitative details, the
output characteristics are the same for the Gaussian and
Lorentzian input pulses.

The left column in Fig. 2, curves �a� to �d�, shows the
output intensity profile for t0 / tr=3 and four incrementally
increasing values of the coupling strength. Curve �a� corre-
sponds to �0d=0 �the input intensity profile�, whereas curves
�b�, �c�, and �d� are plotted for �0d=3, 6, and 9, respectively,
using Eq. �8�. Clearly, we have a single output pulse which is
significantly delayed. The delay time �t, defined as the time
of maximum of I�d , t�, increases almost linearly with �0d.
Furthermore, the output pulse experiences a noticeable non-

linear broadening; the output temporal width grows with �0d.
For the largest value of �0d, the effect of time delay clearly
dominates over the broadening. Last, the output pulses are
amplified. The peak amplification factor Imax / I0, where I0
= �A0�2 and Imax= �I�d , t��max, is approximately 2.43�102,
6.7�104, and 2.1�107 for the cases �b�, �c�, and �d�, respec-
tively.

For sufficiently short input pulses, the shape transforma-
tions are essentially different �see also �15��. The right col-
umn in Fig. 2, curves �e� to �h�, shows what happens with
increasing coupling strength for t0 / tr=0.1. For �0d=3, the
output intensity profile I�d , t� possesses two maxima, the
main practically unshifted narrow peak and a broad shifted
maximum at �t / tr�1.5. For �0d=6 the two-maxima struc-
ture survives, but the broad maximum at �t / tr�4.5 becomes
dominant. For �0d=9 we have a single peak whose position
and width are not much different from those for t0 / tr=3;
compare curves �d� and �h�. The peak amplification factors
for the cases �f�, �g�, and �h� are approximately 1.7, 0.8
�102, and 2�104. They are much smaller than the amplifi-
cation factors for the cases �b�, �c�, and �d�, respectively.

Generally, there are two regions �1 and 2� on the plane of
the input parameters �0d and t0 / tr where the output pulse

FIG. 2. The normalized output intensity profile I�d , t� / Imax ver-
sus the normalized time t / tr. The left and right columns correspond
to t0 / tr=3 and 0.1, respectively. The curves of the first, second,
third, and fourth rows are plotted for �0d=0 �the input profiles�, 3,
6, and 9, respectively.
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possesses one maximum and two maxima. The curve sepa-
rating these regions is shown in Fig. 3�a�. For t0 / tr�0.533
the output intensity profile always possesses a single maxi-
mum. The narrow unshifted peak is dominating only in the
vicinity of the left border of the region 2.

The physics of the pulse delay and amplification can be
explained in terms of photorefractive two-wave coupling
�20�. The energy transfer from the pump to the signal wave is
due to the inertial processes of recording and erasure of the
index grating and instantaneous Bragg diffraction from this
grating. In the case of nonlocal response, the index grating is
� /2 shifted with respect to the light interference fringes.
This circumstance facilitates diffraction from the pump to the
signal wave, which increases the light contrast and acceler-
ates the recording process in the depth of the crystal. For
�0d�1, this process of self-enhancement �29� �diffraction
→ rerecording→diffraction. . .� persists for t� tr even in the
absence of the input signal wave, and the index grating be-
comes more and more localized near the output face of the
crystal, disappearing finally near this face. In accordance
with this interpretation, short input pulses produce merely a
weak seed grating which develops then in the presence of the
pump. In any case, the pulse delay ��t�0� is rooted in the
inertial nature of the PR nonlinearity.

Consider now the main intensity-related output
parameters—the normalized delay time �t / tr, the normalized
output half-width w / tr, and the peak amplification factor
Imax / I0—as functions of the input width parameter t0 / tr for
several representative values of the coupling strength �0d.
The corresponding numerical results are presented in Fig. 4
for t0 / tr�0.1. The normalized time delay �t / tr grows rather

slowly with t0 / tr and almost linearly with �0d. For �0d�1 it
can be estimated from the relation �t / tr��0d. The behavior
of the output half-width parameter w / tr is different. It grows
significantly with both t0 / tr and �0d. For t0 / tr� ��0d�1/2 the
nonlinear broadening is relatively weak and w�w0
��ln 2 /2t0. In the opposite limit it is dominant; we have
here w�w0 and w / tr���0d�1/2. The peak amplification fac-
tor Imax / I0 first grows sharply with t0 / tr and then saturates on
the steady-state level given by exp�2�0d�. For t0 / tr
1 and
�0d�1 the amplification factor is given by Imax / I0
��t0 / tr�2�2�0d�−1 exp�2�0d�. The above approximate ana-
lytical expressions are obtained by the saddle-point method
�25�.

Two different requirements to the output pulse parameters
have to be distinguished. The strongest requirement is for a
large pulse delay combined with minor shape changes, which
is expressed by �t�w0, w�w0. In accordance with our
analysis, it is satisfied for t0 / tr
�0d
 t0

2 / tr
2, i.e., broad input

pulses and very large values of the coupling strength.
Achievement of such values of �0d does not present funda-
mental difficulties, but it can lead to unwanted nonlinear
noise or losses in the form of light-induced scattering �20�.
The second �softer� requirement is merely the inequality �t
�w; it is satisfied for t0 / tr
1 and �0d�1 when the shape
changes are strong but the spatial amplification is not yet
strong enough to provoke the light-induced noise.

FIG. 3. Line separating the regions 1 and 2 where the output
intensity profile I�t� possesses a single maximum and two maxima,
respectively, for the nonlocal �a� and local �b� nonlinear responses.
The critical �kink� point ��0d�c, �t0 / tr�c, marked by a dot, is 2.87,
0.55 and 2.5, 0.6656 for these cases.

FIG. 4. The output parameters �t / tr �a�, w / tr �b�, and
Imax�d , t� / I0 �c� versus the normalized input width parameter t0 / tr.
Curves 1, 2, 3, 4, and 5 correspond to �0d=4, 6, 8, 10, and 12,
respectively.
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Figure 5 shows the ratio ��t /w�max, maximized in t0 / tr, as
a function of the coupling strength. It expresses the capabil-
ity of the nonlocal response for strong deceleration of light
pulses. The values of �t /w which are very close to
��t /w�max can be achieved under a soft restriction on the
input width parameter, t0 / tr
1. At the same time, the am-
plification factor Imax / I0 can be made not too large by de-
creasing t0 / tr; see Figs. 3 and 4 for more details.

B. Effect of pump depletion

Beyond the undepleted pump approximation, the output
pulse characteristics are different for the transmission and
reflection configurations of Fig. 1. The main question is
whether the pump depletion can improve the output charac-
teristics. It is unlikely for the transmission case because the
pump amplitude Ap decreases with increasing propagation
coordinate z deteriorating thus the basic self-enhancement
process. In the reflection case, the situation is more compli-
cated. Pump depletion results here in increasing the ampli-
tude Ap�z�. This facilitates the long-term nonlinear dynamics
and leads to increase in both the time delay and the output
width. Which of these effects is dominating is far from evi-
dent.

To analyze the effect of pump depletion, we employed
Eqs. �1�–�3� with Es= i�Es�. The boundary condition for the
signal wave, A�0, t�=A0 exp�−t2 / t0

2�, corresponds again to a
Gaussian input pulse; the boundary condition for the pump
wave is Ap�0, t�=Ap

0 =const for the transmission case and
Ap�d , t�=Ap

0 =const for the reflection case; see Fig. 1. The
intensity ratio I0 / Ip

in= �A0 /Ap
0�2 is a variable parameter.

The numerical procedure was strongly simplified by the
introduction of the dimensionless variable �=��z , t�, such
that

��z,t� = �0
0

z

u�z�,t�dz�, �9�

where, as earlier, u=EK /Es is the normalized grating ampli-
tude. The light amplitudes can be expressed then by � using
Eqs. �1� and �2�. The corresponding explicit relations are

A

Ap
0 = a0 cosh � + sinh �,

Ap

Ap
0 = cosh � + a0sinh � �10�

for the transmission case and

A

Ap
0 = a0 cos � + � sin �,

Ap

Ap
0 = � cos � − a0 sin � �11�

for the reflection case, where a0�t�=A�0, t� /Ap
0 is the normal-

ized amplitude of the input signal and ��t�= �1
+a0 sin ��d , t�� /cos ��d , t�. The boundary conditions for the
light amplitudes are satisfied automatically. Substituting Eqs.
�10� and �11� into Eq. �3�, we come to a single nonlinear
equation for u�z , t�.

Figure 6�a� shows representative numerical data for the
transmission geometry, �0d=6, and t0 / tr=1. Curve 1 is plot-
ted within the undepleted pump approximation, while curves
2 and 3 are calculated from Eqs. �1�–�3� for I0 / Ip

in=10−6 and
4�10−3, respectively. The pump depletion is noticeable for
curve 2 and strong for curve 3. It leads, as expected, to
decreasing time delay �t. To avoid strong pump depletion,
the input intensity ratio Ip

in / I0 must be larger than the inten-
sity amplification factor within the undepleted pump ap-
proximation; see above.

Curves 1–3 in Fig. 6�b� are plotted for the reflection ge-
ometry and the same input parameters. The influence of the
pump depletion is essentially different. It results in increas-
ing both the time delay �t and the output half-width w. Fur-

FIG. 5. The maximum �in t0 / tr� value of the ratio �t /w versus
the coupling strength for the nonlocal response.

FIG. 6. The impact of pump depletion on the shape of the output
pulse for the transmission �a� and reflection �b� geometries. Curves
1 correspond to the undepleted pump regime, while curves 2 and 3
are plotted for the input intensity ratio I0 / Ip

in=4·10−4 and 10−6,
respectively. The coupling strength is �0d=6. Note the difference in
the time scales in a� and b�.
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thermore, pump depletion leads to strong flattening of the
pulse top. The ratio �t /w, which is an important figure of
merit for pulse deceleration, is decreasing because of the
pump depletion.

C. Local response

The coupling constant �0 is purely imaginary here; with-
out loss of generality it can be represented as �0=−i��0�. In
contrast to the case of nonlocal response, the amplification
coefficient g�� = ��0��tr / �1+�2tr

2� and the wave vector correc-
tion g�� =−��0� / �1+�2tr

2� are odd and even functions of �,
respectively. The steady-state ��=0� amplification is absent
and the maximum value of the amplification coefficient g�� is
twice smaller than that of �g�� �. In other words, the dispersive
effects are expected to be more pronounced in this case.

Within the undepleted pump approximation and for the
accepted Gaussian shape of the input pulse, we have for the
normalized output amplitude A�d , t� /A0

A�d,t�
A0

=
t0

��tr


0

�

exp�− s2t0
2/4tr

2��Fs� − iFs��ds , �12�

where the functions of the integration variable Fs� and Fs� are
given by

Fs� = cos� ��0�d
1 + s2�cosh� s��0�d

1 + s2�cos�st�

− sin� ��0�d
1 + s2�sinh� s��0�d

1 + s2�sin�st� ,

Fs� = cos� ��0�d
1 + s2�sinh� s��0�d

1 + s2�sin�st�

+ sin� ��0�d
1 + s2�cosh� s��0�d

1 + s2�cos�st� . �13�

As earlier, both g�� and g�� influence the shape of the output
pulse, and again this shape is controlled by two dimension-
less parameters, the input width parameter t0 / tr and the cou-
pling strength ��0�d. However, the ratio A�d , t� /A0 is a com-
plex quantity.

In many respects, the behavior of the output pulses versus
the control parameters is similar to that for the nonlocal re-
sponse. The pulses experience time delay, broadening, and
spatial amplification. The delay time �t, the output half-
width w, and the peak amplification factor Imax / I0 grow again
with increasing coupling strength. Furthermore, we have
again the two-maxima regime for sufficiently narrow input
pulses. Qualitatively, these features are not much different
from those illustrated by Fig. 2. However, there are impor-
tant differences—qualitative and quantitative. Consider now
the output characteristics in more detail.

Figure 3�b� shows the line separating the single-maximum
and two-maxima regions on the plane of the input parameters
��0�d and t0 / tr. It differs essentially from the separatrix of
Fig. 3�a�. The critical value of the input width parameter is
�t0 / tr�c	0.6656; for t0 / tr� �t0 / tr�c the output pulse always
has a single maximum. The critical value of the coupling

strength is ���0�d�c	2.5. For ��0�d� ���0�d�c, the output
pulse always has a single maximum and the peak amplifica-
tion factor Imax / I0 is modest. For ��0�d� ���0�d�c, the narrow
unshifted peak of I�d , t� becomes important only for very
small values of t0 / tr near the lowest branch of the separatrix;
otherwise, the broad shifted maximum is dominant.

Figure 7 shows the main output parameters versus t0 / tr
for several representative values of ��0�d. Both the time delay
and the amplification factor grow initially with this variable
and then decrease. This feature is new �compare to Fig. 4�,
but it is not surprising because the steady-state �t0 / tr→��
spatial amplification is not possible for the local response. At
the same time, the positions of the maxima of �t / tr and
Imax / I0 are essentially different for the same ��0�d. This evi-
dences that the dispersive effects �caused by g�� � play an
important role in the nonlinear pulse propagation. As is clear
from Fig. 7�b�, the ratio w / tr is a growing function of t0 / tr
except for the initial section t0 / tr	1 for intermediate values
of ��0�d where curves 2 and 3 possess shallow minima.

Comparing Fig. 7�a� with Fig. 4�a�, we see that the nor-
malized time delay �t / tr �as well as w / tr and Imax / I0�, taken
at the same combination of input parameters, is generally
smaller for the local response. This is indeed due to the fact
that the effects of spatial amplification are relatively weak
here. One might suggest on these grounds that the local re-
sponse is less efficient for the purposes of pulse deceleration.
However, this is not quite true. The point is that the attain-

FIG. 7. Dependences of �t / tr �a�, w / tr �b�, and Imax / I0 �c� on
t0 / tr for the local response. Lines 1, 2, 3, 4, and 5 are plotted for
��0�d=4, 8, 12, 16, and 20, respectively.
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able values of the coupling strength ��0�d are typically larger
than the values of �0d for the nonlocal response. For the
pulse deceleration, it is important to achieve large values of
the ratio �t /w with modest peak amplification factors to
avoid nonlinear noise in the form of light-induced scattering.

The behavior of the curves in Figs. 7�a� and 7�b� suggests
a simple optimization scheme: The ratio �t /w possesses, as a
function of t0 / tr, a well-pronounced maximum. Its position
�t0 / tr�opt and the corresponding values ��t /w�opt and
�Imax / I0�opt depend only on the coupling strength. These de-
pendences give important predictions and allow a judgment
about the capabilities of the local response for pulse decel-
eration. They are presented in Fig. 8. One sees that values
�t /w�2 can be achieved here for ��0�d�12 and Imax / I0
�104; the nonlinear broadening remains not very strong
here, w /w0�2. For the nonlocal response, the above combi-
nation of output parameters would not be possible at the
same level of spatial amplification.

Apart from the above optimization scheme, which maxi-
mizes �t /w in t0 / tr, leads to quite large values of Imax / I0,
and is specific for the local response, we can consider also
the case of narrow input pulses, t0 / tr
1, and large values of
the coupling strength, ��0�d�1, when we are not far from the
upper branch of the separatrix of Fig. 3�b�.

As one can see from Fig. 7, the ratio �t /w is not much
smaller here than ��t /w�opt, but the peak amplification factor

Imax / I0 is much smaller than �Imax / I0�opt. As in the case of
nonlocal response, modest amplification factors are obtained
here at the expense of strong nonlinear distortions, w /w0
�1.

The influence of pump depletion on the output character-
istics is similar to that for the case of nonlocal response; it is
always negative and should be avoided.

IV. TRAPPING, STORAGE, AND RELEASE OF LIGHT
PULSES

The problem to be considered can be formulated as fol-
lows: Let us interrupt the pump and signal �or the pump
alone� at an arbitrary moment of time ti �see Fig. 9�a��. Then
the photoconductivity drops by several orders of magnitude,
the space-charge grating recorded up to this moment be-
comes frozen, and the pulse can be viewed as trapped
�stopped�. The storage time of the frozen space-charge field
�of the trapped pulse� is limited from above by the dielectric
relaxation time td caused by the dark conductivity. This time
can be as long as hours, days, and even years in photorefrac-
tive materials such as BaTiO3 and LiNbO3 crystals �20�.

Imagine now that the pump is switched on again after a
long storage time �see Fig. 9�b��. The pump beam experi-
ences Bragg diffraction from the grating into the signal beam
and eventually erases this grating. The problems to consider
are as follows: What is the shape of the outcoming pulse?
How does this shape depend on the interruption time ti and
other parameters? Is it possible to restore the initial pulse
shape during such a release? Below we analyze these prob-
lems for the simplest case of nonlocal response within the
undepleted pump approximation. While we refer for definite-
ness to the transmission geometry, the subsequent results are
equally applicable to the reflection case.

Turning to the description of the above manipulation
steps, we adopt normalized or dimensionless variables. In
addition to the above introduced normalized grating and light
amplitudes, u=EK /Es and a=A /Ap, we define also the nor-
malized time t̃= t / tr, the normalized input width t̃0= t0 / tr, the
normalized interruption time t̃i= ti / tr, the dimensionless
propagation coordinate z̃=�0z, and the dimensionless crystal

thickness d̃=�0d.
As the first step of our description, we calculate the re-

corded or frozen field profile ui=u�z̃ , t̃i�. Using the Fourier
transformation, it is easy to find from Eqs. �4� and �5� for the
Gaussian input signal that

FIG. 8. Dependences of the optimum values of �t /w �a�, t0 / tr

�b�, and Imax / I0 �c� on the coupling strength for the local response.

a) b)

FIG. 9. Sequence of operations for trapping �a� and release �b�
of light pulses for the T geometry.
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ui

a0
=

t̃0

��


0

�

exp� z̃

1 + s2 −
s2t̃0

2

4
��cos�s� t̃i −

z̃

1 + s2��
+ s sin�s� t̃i −

z̃

1 + s2��� ds

1 + s2 , �14�

where a0=A0 /Ap. The right-hand side of this relation is real.
Since the characteristic field Es is imaginary for the nonlocal
response, this means that the grating amplitude EK remains
purely imaginary �a � /2-shifted grating� and the light and
grating fringes remain straight during two-wave coupling.
The strength of the recorded grating is proportional to the
small parameter a0.

The spatial profile ui�z̃� is strongly affected by the value
of the normalized interruption time ti / tr, which can be both
positive and negative; this profile depends also on the input
ratio parameter t0 / tr. Figure 10 shows the impact of the in-
terruption time for t0 / tr=4. At ti / tr=−10 �curve 1�, when the
center of the Gaussian pulse is yet far from the input face,
the grating is very weak and its profile is most uniform. For
ti / tr=5 �curve 2�, when we are already at the trailing edge of
the recording pulse, the grating amplitude is close to its
maximum. The spatial profile is much less uniform here; the
field concentrates near the output face owing to beam cou-
pling. Further increase of ti / tr results in erasure of the grat-
ing. This erasure occurs much faster near the input face;
correspondingly, the field becomes more and more concen-

trated near the output face. Note that the output value ui�d̃�
for ti / tr=25 �when the pulse has almost passed the crystal by
the interruption moment� is much larger than it is for ti / tr
=−10. The indicated features underline the role on the non-
linear effects during the pulse recording.

As the second step, we have to solve Eqs. �4� and �5� with
the boundary condition for the signal amplitude a�0, t̃�=0
and the initial condition for the normalized grating amplitude
ui=ui�z̃ , t̃i�; the time t̃ is measured here from the moment of
switching the pump on. From Eq. �5� we express u via the
amplitude of the signal wave,

u = uie
−t̃ + 

0

t̃

a�z̃,t�̃�et�˜ −t̃dt�̃. �15�

Substituting this into Eq. �4� we come to the following single
integro-differential equation for the auxiliary variable b
=a exp�t̃�:

�b

� z̃
= ui + 

0

t̃

b�z̃,t�̃�dt�̃. �16�

This equation can be solved by the Laplace transformation.
The final result for the normalized amplitude a=a�z̃ , t̃� is

a = e−t̃
0

z̃

u�z�̃, t̃i�I0„2��z̃ − z�̃�t̃…dz�̃, �17�

where I0�x� in the zero-order modified Bessel function. The
structure of the right-hand side resembles that of the expres-
sions describing transient photorefractive processes �31�. It
incorporates both the self-enhancement and erasure pro-
cesses during two-wave coupling. Since ui�a0, the applica-
bility of the undepleted pump approximation during the re-
lease stage can be ensured by the use of sufficiently weak
signals during recording. The value of a0 does not influence
in this case the shape of the released pulse. With the known
explicit expression for ui=u�z̃ , t̃i�, given by Eq. �14�, we can
calculate numerically the output shape of the released pulse.

The impact of the interruption time on the profile of the
released pulse is illustrated by Fig. 11. The output profiles
are calculated for t0 / tr=4 and �0d=10. For t�0, i.e., prior to
the release process, the signal intensity I is zero. One sees
that the shape of the trapped pulse is well reproduced for
ti / tr=−8, when the pulse recording was interrupted at the
early stage, curve 1. The half-width of the released pulse,
w / tr	3.55, is not much larger than the input width w0 / tr
	2.35. Increasing ti / tr results in deterioration of the shape of
the released pulse, curves 2 and 3. These features are indeed
in close connection with the above described impact of the
interruption time on the shape of the recorded grating �see
Fig. 10�.

FIG. 10. The normalized grating amplitude ui versus the dimen-
sionless propagation coordinate �0z for t0 / tr=4 and different values
of the interruption time ti. Curves 1, 2, 3, and 4 correspond to
ti / tr=−10, 5, 15, and 25, respectively.

FIG. 11. The normalized output intensity profile I / Imax during
the release stage for t0 / tr=4 and �0d=10. Curves 1, 2, and 3 cor-
respond to ti / tr=−8, 4, and 10, respectively.

STURMAN, PODIVILOV, AND GORKUNOV PHYSICAL REVIEW A 77, 063808 �2008�

063808-8



Note that the number of variable parameters affecting the
form of the released pulse is larger compared to the number
of input parameters for the pulse deceleration. In addition to
the new parameter ti / tr, we can consider also the effect of
changing pump intensity. Increasing the pump intensity dur-
ing the release stage leads merely to decrease of tr and, con-
sequently, to compression of the released pulse.

V. DISCUSSION

The general feature of our theory is the prime role of the
photorefractive nonlinearity in achievement of acceptable
output characteristics. At small values of the coupling
strength, one can speak merely about some signs of pulse
deceleration, trapping, and release. At high values of the cou-
pling strength, the spectral properties of the local or nonlocal
nonlinear response, although important, are insufficient for
judgments about the output characteristics. A thorough
analysis of the nonlinear output behavior is indispensable in
this range.

Achievement of large values of the coupling strength does
not present fundamental difficulties for the PR materials
�19,20,22�. At the same time, the range of high nonlinearity
is potentially dangerous in view of unwanted parasitic non-
linear effects. The best known of them is the light-induced
scattering caused by the spatial amplification of weak seed
scattering �20,30�. Generally, the useful and harmful nonlin-
ear effects are controlled by different parameters. Moreover,
there are different schemes for optimization of the key output
parameters which depend on the type of PR response. This is
why an analysis of the capabilities of the main types of PR
nonlinearity—local and nonlocal—is important.

While the slowing-down characteristics have common
features for the nonlocal and local responses �an almost lin-
ear growth of the pulse delay with the coupling strength and
significant nonlinear broadening�, there are important differ-
ences. For the nonlocal response, it is possible to achieve a
strong deceleration of light pulses combined with minor
shape distortions by using sufficiently broad input pulses and
very large values of the coupling strength. The danger of
parasitic nonlinear effects is ultimately high in this case. For
the local response this scheme is not possible. Instead, it is
profitable to optimize the input pulse width, depending on
the coupling strength. This scheme leads to a pretty strong
deceleration combined with modest shape distortions; the
parasitic light-induced scattering is less dangerous in this
case. For both types of PR response, it is possible to achieve
a substantial pulse deceleration combined with strong shape
distortions and a weak danger of the parasitic nonlinear ef-
fects.

The impact of pump depletion on the output characteris-
tics is shown to be different for the transmission and reflec-
tion coupling geometries. The pump depletion decreases �in-
creases� the delay time for the transmission �reflection�

configuration. This difference is rooted in different forms of
the energy conservation law in these cases. In both cases,
pump depletion leads to an essential additional broadening of
the output pulses and must be considered as a phenomenon
to be avoided.

The PR nonlinearity offers ideal possibilities for trapping
of light pulses, their long-term storage, and release on de-
mand. They are closely related to the nature of this
nonlinearity—the refractive index change is here due to the
light-induced space-charge field, which can be frozen for a
long time once the light is switched off. The pulse trapping
and release represent strongly nonlinear effects, which are
affected generally by the characteristics of the recording,
storage, and readout stages. The shape of the released pulse
sharply depends on the choice of the trapping moment.

Among the advantages of the PR nonlinearity is the pos-
sibility to use ambient temperatures, low-power common
light sources, and a broad spectral band of extrinsic absorp-
tion. Numerous materials with different optical and PR prop-
erties are also available. A serious drawback of the PR non-
linearity is its slowness; the response time tr can be as long
as seconds or even minutes in such materials as BaTiO3 and
LiNbO3 for low-power laser sources. To decrease the re-
sponse time significantly, it is necessary to switch to the
range of high intensity and/or to fast PR crystals, such as
Bi12SiO20 or Sn2P2S6 �20,27�.

The first experimental data for PR pulse deceleration,
which are available in the literature �15,16�, are in good
agreement with our theory. More efforts, however, are nec-
essary to improve and optimize the output characteristics for
particular materials.

VI. CONCLUSIONS

We have developed a theory of photorefractive manipula-
tion of light pulses, including the pulse deceleration, trap-
ping, and release on demand. The key element of this theory
is the nonlinear character of the effects in question. The main
characteristics of pulse deceleration, including the pulse de-
lay, the output width, and the peak amplification factor, are
analyzed in detail for the cases of local and nonlocal photo-
refractive response. Different schemes of optimization of the
output parameters are considered. The impact of the pump
depletion on the pulse deceleration is found to be essentially
different for the transmission and reflection interaction ge-
ometries but harmful in any case. It is shown that the light
pulses can be effectively trapped, stored for a long time, and
released on demand. The strong impact of the trapping time
on the shape of the released pulses is predicted.
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