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The response of a Nd3+-doped yttrium-aluminum-garnet laser is examined experimentally when the pump
polarization direction is abruptly changed from one to the other stress-induced principal axis of the cavity. As
a result, the laser output polarization changes direction but only after a significant delay. We numerically solve
rate equations that describe the evolution of the two polarization fields coupled to the population inversion. The
simulations indicate that the polarization switching �PS� delay depends on two successive processes that we
analyze using multi-time-scale techniques. The analysis predicts two qualitatively different PS responses de-
pending on how close the laser is from its threshold. Finally, we compare quantitatively the experimental and
theoretical estimates of the PS delay.
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I. INTRODUCTION

Large polarization selectivity is desired in most lasers be-
cause inhibiting polarization dynamics improves the stability
of the laser. The laser output can, e.g., be forced to be lin-
early polarized by introducing polarization selective ele-
ments �such as Brewster windows� inside the laser cavity.
However, many lasers nowadays have a monolithic device
structure and hence their cavity is quasi-isotropic. As a re-
sult, polarization selection is not easily achieved and the po-
larization state of the emitted light may change depending on
externally imposed conditions �stress, magnetic field� or in-
ternally related parameters �pumping, hyperfine structure, lo-
cal electric field�. The question of the origin and of the dy-
namics of the laser polarization in quasi-isotropic structures
has been investigated in different contexts. It started in the
early days of the laser when it was observed that Earth’s
magnetic field could alter the polarization of light emitted by
quasi-isotropic He-Ne lasers �1–3�. The question of which
polarization is emitted by a laser was revived when doped
fiber lasers were developed. These lasers use optical fibers
that are isotropic except for stress induced �residual or intro-
duced on purpose� birefringence �4–8�. Polarization selec-
tion was also an important issue in the development of
vertical-cavity surface-emitting lasers �VCSELs�. VCSELs
often switch from one polarization state to the orthogonal
one as their pump power is increased �9–14�. In all of these
situations, the polarization dynamics strongly depends on the
pumping mechanism, on the nature of the active medium,
and on the design of the laser cavity. Electrical pumping as
used in VCSELs, or in the discharge for a He-Ne laser, gen-
erates a population inversion that is evenly distributed

among spin sublevels. Optical pumping, as in fiber and in
most solid state lasers, is usually achieved using polarized
pump light. The polarized pump beam may introduce a pre-
ferred direction in the active medium. In atomic lasers �He-
Ne, He-Xe�, the nature of the atomic sublevels and their
interaction with magnetic fields plays a key role in the selec-
tion of the polarization state of the laser output, leading to
quite different behaviors, e.g., 3.39 �m and 0.6328 �m
He-Ne laser transitions. In semiconductor lasers, the San
Miguel–Feng–Moloney model shows that it is necessary to
take into account the hyperfine level substructure in order to
explain the laser’s polarization �15�, but many other effects
�stress, temperature, etc.� also play a role �16�. The situation
is by far more complicated in solid state lasers in which the
active medium is made of doping ions inserted in amorphous
�optical fiber� or crystalline �YAG, YVO4, etc.� materials
�6,17,18�. In such crystals, the site distribution of the active
ions results in polarization-dependent absorption and emis-
sion mechanisms �5�. Polarization properties of Nd3+:YAG
lasers have already been studied in the microchip and in the
bulk configurations but they all concentrated on steady
states. A yttrium-aluminum-garnet �YAG� laser’s polarization
depends on the pump beam’s polarization and the stress-
induced birefringence which determines the direction of the
cavity polarization eigenmodes and their frequency differ-
ence �5,19,20�. By controlling the pump polarization and
strength, the laser output can be linearly polarized or both
polarization modes can be active simultaneously �21�. Also
the possibility of a circularly polarized output beam has been
studied �22�.

In the present work, we investigate the polarization dy-
namics of a diode pumped Nd3+:YAG. More specifically, we
study the dynamics induced by a sudden change of the po-
larization direction of a linearly polarized pump. Because
Nd3+ ions are located in specific sites of the crystal, the ab-
sorption of linearly polarized light produces anisotropy in the*guy.verschaffelt@vub.ac.be; http://www.tona.vub.ac.be
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population inversion, i.e., it results in an inhomogeneous dis-
tribution of this population between the different Stark sub-
levels induced by the local electric field which is site depen-
dent. Similarly, the population in the upper levels of the
active medium is inhomogeneously distributed among the
relevant hyperfine sublevels, leading to gain anisotropy. This
gain medium anisotropy induced by linear pumping, together
with the optical cavity anisotropy due to stress-induced bire-
fringence may lead to complicated dynamics. In this paper
we focus on a relatively simple case where the pump polar-
ization initially coincides with one of the polarization eigen-
modes of the optical cavity. The YAG laser is pumped
slightly above threshold so that only one mode is active. We
then monitor the laser’s output as the pump polarization di-
rection is suddenly rotated by 90°, providing a change in the
gain anisotropy and inducing a transition to the orthogonal
polarization state of the YAG laser. We show that the result-
ing polarization switching �PS� is considerably delayed with
respect to the pump switching and exhibits relaxation oscil-
lations �RO�. Moreover, the switch-off of one linearly polar-
ized mode and the switch-on of the other polarization mode
may occur simultaneously or sequentially. Of particular
physical interest is the multitime evolution of the PS transi-
tion that results from the interaction between the population
inversion and the two polarization components of the YAG
laser field. Modeling of such experimental results requires
extended rate equations that account for the various sources
of anisotropy. Several models were proposed to describe the
steady states of quasi-isotropic Nd3+:YAG lasers in the pres-
ence of absorption and gain anisotropy �5,7,8,20,23�. Here,
an analytical theory of the observed dynamics is proposed on
the basis of a multiscale analysis of the simplest of these
models. We obtain quantitative agreement between the ex-
perimental observations and the predictions of this model.

This paper is organized as follows. In Sec. II, we intro-
duce the experimental setup used to modulate the pump po-
larization and describe the PS phenomenon in a Nd3+:YAG
laser. We discuss the experimental results in terms of the
pump power. Section III is devoted to the numerical simula-
tions of the PS experiment using the four laser rate equa-
tions. We identify two qualitatively different PS transitions
depending on how close the laser is from its threshold. We
also investigate the important effect of the noise level on the
PS delay. In Sec. IV, we analyze the PS transition as a de-
layed change of stability. We determine analytical expres-
sions for the PS delay and compare it with the delay mea-
sured experimentally in Sec. V. Our main experimental and
theoretical results are summarized and discussed in Sec. VI.

II. EXPERIMENTS

A. Polarization properties of a Nd3+:YAG laser

The polarization properties of the radiation emitted by a
Nd3+:YAG laser with a quasi-isotropic cavity are best de-
scribed using the polarization eigenmodes of the cavity. In
the case of the laser used in our experiments, they are ruled
by the stress-induced birefringence in the crystal. The two
polarization eigenmodes are linearly polarized along or-
thogonal directions. Their associated frequencies are slightly

different due to the difference in the refractive indices along
these two directions. In our experimental conditions this fre-
quency difference is ��=5.52 MHz.

The laser is pumped by a linearly polarized pump beam
which is polarized at an angle �p relative to one of the axis
of the laser eigenmodes. The laser becomes active as the
pump power Ppump exceeds a threshold Pth ��92 mW in our
experiments� that does not significantly depend on the pump
polarization. The polarization state of the emitted field then
depends on the value of �p. In the following we concentrate
on the cases where the pump polarization coincides with one
of the laser eigenmodes’ axes �i.e., �p=0° or 90°�. We ob-
serve the following sequence of phenomena as we progres-
sively increase the pump power. At Ppump= Pth, laser emis-
sion starts in the linear polarization eigenmode parallel to the
pump polarization. As the pump power exceeds a second
threshold �at Ppump�185 mW in our experiments�, the sec-
ond polarization eigenmode becomes active and the two po-
larization modes lase simultaneously with an optical fre-
quency difference �� between the polarization modes. In our
experiments, the pump power is always kept below the sec-
ond threshold. The laser initially rests at a stable linearly
polarized state when the pump polarization direction �p is
quickly switched from 0° to 90°. We monitor the total inten-
sity and the laser emission in both polarization eigenmodes
simultaneously.

B. Setup and device description

We use a Nd3+:YAG laser emitting at 1064 nm in a single
longitudinal and transverse mode. The active medium is a
5-mm-thick YAG crystal doped with Nd3+ ions. The laser
cavity of length Lopt�30 mm is bounded at one side by a
dielectric mirror deposited on the YAG crystal and an exter-
nal spherical mirror at the other side �with 80 mm radius of
curvature�. The mirror reflectivity is larger than 99% for the
mirror deposited on the laser crystal and is 94% for the
spherical coupling mirror. The laser is longitudinally pumped
by a fiber coupled semiconductor laser operating at 808 nm.
The pump light from the 100 �m core multimode fiber is
first collimated and next sent through a polarizer, an electro-
optic modulator �LINOS LM 0202�, and a half-wave plate to
obtain a linearly polarized pump beam of controlled polar-
ization direction and intensity. This pump beam is focused
inside the active crystal by a converging lens. The orientation
of the half-wave plate is such that the pump azimuth coin-
cides with one of the stress-induced birefringence axis of the
active region. By changing the voltage across the electro-
optic modulator, we can switch the direction of the pump
polarization from 0° to 90° and vice versa. For that purpose,
we apply a low-frequency ��0.5 kHz� square-wave modu-
lation to the electro-optic modulator. We measured the time
constant of the electro-optic modulator to be 3 �s, which is
mainly determined by the high-power amplifier that we use
to convert our low-level modulation signal into a suitable
driving amplitude for the modulator. Throughout the rest of
this paper, we denote by a �Ea� the polarization eigenmode
�field� that is emitted for a voltage Va of 0 V across the
electro-optic modulator. The corresponding azimuth of the

VERSCHAFFELT et al. PHYSICAL REVIEW A 77, 063801 �2008�

063801-2



linearly polarized pump beam is taken to be �P=0°. Simi-
larly, we denote by b �Eb� the polarization mode �field� that
is emitted when the electro-optic modulator is biased at Vb
such that it rotates the linearly polarized pump beam to �P
=90°.

At the output side of the Nd3+:YAG laser, we use a series
of beam splitters, half-wave plates, and polarizing beam
splitters to measure the total and the polarization resolved
intensity emitted by the Nd3+:YAG laser. These intensities
are monitored using 150 MHz detectors �Thorlabs DET410�,
which are coupled either to a 10 kHz–3.5 GHz electrical
spectrum analyzer to measure the RO frequency and the beat
frequency between the polarization modes, or to a 500 MHz
oscilloscope �Lecroy 334A� to record time traces.

C. Polarization switching experiments

We examine the response of the laser when the pump
azimuth �P is suddenly changed from 0° to 90°. In Fig. 1
�top� we plot the time trace of the polarization resolved in-
tensity at a relative pump strength,

J �
Ppump

Pth
= 1.27, �1�

before and after the pump change. We note that the switching
of the Nd3+:YAG laser’s output polarization does not in-
stantly follow the change in pump azimuth. Instead, the ini-
tially lasing mode Ea decreases sharply after changing the
pump �see gray curve in Fig. 1�. Eb only switches on after a
delay of �61 �s. We define the PS delay as the time lag
between the change of the pump azimuth and the switch-on

of Eb. During the interval between the initial change of the
pump azimuth and the switch-on of Eb, the laser stays in the
Ea mode but the average intensity drops by approximately
25%. This drop in average intensity is accompanied by ROs
of the intensity of the Ea mode. After the PS delay, the Ea
mode switches off rapidly �within a few �s� while the Eb
mode switches on. For a time duration of 150–200 �s the
switch-on of Eb shows large intensity ROs similar to what
can be observed during a turn-on experiment.

To demonstrate the effect of the pump strength on the
polarization switching, we show in Fig. 1 �bottom� the laser
response for J=1.77. Again, the average intensity of the Ea
mode drops when the pump azimuth is changed but the out-
put polarization only follows the pump azimuth after a delay
of 16.5 �s. This delay is much shorter than the one observed
at J=1.27 indicating that the pump strength has a major ef-
fect on the PS delay. Note that the pump strength J always
remains below the second threshold which occurs at J�2.0.

The effect of the pump strength J on the switching delay
is further investigated in Fig. 2. The delay decreases mono-
tonically when increasing the pump strength and it diverges
near the laser threshold. So far, we have only considered the
change of the pump azimuth from 0° to 90°. The polarization
behavior in the reverse switching scenario, i.e., when chang-
ing the pump azimuth from 90° to 0°, is completely similar.
In that case, the average intensity of the Eb mode drops after
the change in pump azimuth and this is accompanied by ROs
in Eb. The Ea mode then turns on after a delay of several �s.
In Fig. 2 we also plot the measured delay for this switching
scenario. Again the measurements do not explore the vicinity
of the second threshold.

In summary, we have found experimentally that our
Nd3+:YAG laser immediately responds to a change in the
pump polarization direction as the average intensity of the
initial state changes. But the effective PS appears only after a
considerable delay. This delay is independent of the direction
in which we change the pump azimuth �i.e., from 0° to 90°
or from 90° to 0°� but decreases if we increase the pump
strength. In order to understand the basic physical mecha-
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nisms responsible for this delayed transition, we shall inves-
tigate the laser rate equations in detail.

III. NUMERICAL SIMULATIONS

We have observed that the expected PS occurs after a
delay. The main objective of this section is to obtain a nu-
merical understanding of the PS phenomenon. For this pur-
pose, we use a rate-equation model that has previously been
successfully used to describe the steady-state properties of
quasi-isotropic Nd3+:YAG laser �20,24�. We will show that
this model can also reproduce our PS experiments.

A. Rate equations

The rate-equation model has been developed from earlier
model equations �6–8� in order to describe the polarization
of single longitudinal mode lasers pumped by a linearly po-
larized beam with a minimum set of equations. A more so-
phisticated model has been proposed in �23� but that model
involves more equations and is not suited for the analytical
treatment presented in Sec. IV. As the pump polarization is
either 0° or 90°, the equations by Bouwmans et al. �20,24�
simplify as

dEa

dt
= �N0�1 + �L� + Nc�1 − �L� − 1�Ea + � , �2�

dEb

dt
= �N0�1 + �L� − Nc�1 − �L� − 1�Eb + � , �3�

dN0

dt
= �	A0 − N0
1 +

1 + �L

2
�Ea

2 + Eb
2��

− Nc
1 − �L

2
�Ea

2 − Eb
2�� , �4�

dNc

dt
= �	Ac − N0

1 − �L

4
�Ea

2 − Eb
2�

− Nc
1 +
1 + �L

2
�Ea

2 + Eb
2��� . �5�

In these equations, Ea and Eb are the amplitudes of the elec-
tric field along the cavity polarization eigenmodes, N0 and Nc
are the first two Fourier components which take into account
the dependence of the population inversion on the azimuth
�N0 is the continuous component�. Time t is measured in
units of �−1 where � is the field decay rate in the laser cavity.
��� /� is defined as the ratio of the population and cavity
decay rates. The Fourier components of the pumping rate are
given by

A0 = A�1 + �P� and Ac =
A

2
�1 − �P�cos�2�P� , �6�

where �P is the angle between the directions of the pump
polarization and the Ea polarization mode. A is the normal-
ized pump strength. The parameters �P and �L were previ-
ously introduced in �5,8,17� and account for the anisotropy

of the pump absorption and the gain, respectively. Both re-
sult from the mechanisms that generate pump-induced aniso-
tropy as explained in the introduction. The value of these
parameters is between 0 �maximum anisotropy� and 1 �no
anisotropy�. Because Ea and Eb may approach exponentially
small values �exp�−1 /���, a small constant term ��� is added
to the right-hand sides of Eqs. �2� and �3�. This term mini-
mally describes the effect of noise which is important in our
experiments. It corresponds to spontaneous emission which
is significant for our laser, but also to diverse perturbations,
in particular those introduced by the mechanical alignment
accuracy in the pump azimuth switching device. A value of
�=10−5 best fits our PS experiments but the effect of de-
creasing � will be analyzed in detail in Sec. III C.

Before we analyze the PS phenomenon, it is worthwhile
to emphasize some particular features of these rate equations.
From �2� and �3�, we note that the growth rates of Ea and Eb
differ by the sign of the coefficient multiplying Nc. This
means that the growth rates of Ea and Eb are different and a
change of stability of the Ea�0 steady state resulting from
changing �P does not necessarily imply the growth of Eb
from zero. If �L=1, there is no gain difference between the
cavity polarization eigenmodes. In that case both modes
would be active above lasing threshold and the total intensity
of the emitted field would be randomly distributed among
them for all values of the pump strength and azimuth. Such a
situation has not been observed in our devices. Furthermore,
we note that if �P=1, Ac=0 from �6�, and the PS experiment
is no longer possible since �P no longer appears in Eq. �5�.
Small anisotropies are thus essential for the success of a PS
transition.

The steady-state solutions have been determined in
�20,24� and we summarize the main results. Equations
�2�–�5� admit three nonzero steady-state solutions, namely �i�
the Ea single-mode solution, �ii� the Eb single-mode solution,
and �iii� the Ea and Eb mixed-mode solution. The first �sec-
ond� single-mode steady state is stable if the pump azimuth
�P is equal to 0° �equal to 90°� and if A is larger than A1
defined by

A1 �
2

3 + �L + �P + 3�L�P
. �7�

The third mixed-mode steady state where both Ea and Eb are
lasing is stable if A is larger than A2 defined by

A2 �
�− 1 + �L�

2�1 + �L���L − �P�
. �8�

For A2 to be positive, it is required that 0	�L
�P	1. In
this paper, we consider the range A1
A
A2 and concen-
trate on the PS transition between the Ea and Eb states as �P
is quickly changed from 0° to 90°. Finally, we need to
specify how A is related to the experimental pump strength P
and pump threshold Pth. This relation is given by
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A =
P

Pth
A1 = JA1, �9�

where J represents the relative pump strength �J=J1=1 cor-
responds to the laser threshold A=A1 and J=J2 corresponds
to the second threshold A=A2�.

B. Laser parameters

From the values of the mirror reflectivity and the optical
length of the cavity, we estimate the field decay rate as �
=1.55�108 s−1. The population decay rate � is determined
from measuring the relaxation oscillation frequency f of the
total intensity for different values of the pump. Since f2

����P− Pth�, the slope of the best linear fit of the experi-
mental data yields �� =7.2�1011 s−2. Using then the calcu-
lated value of �, we obtain � =4.65�103 s−1. This value
corresponds to an excited-state lifetime of 215 �s which is
very close to the standard values �230–250 �s� documented
in the literature for similar crystals �25,26�. Knowing � and
�, we note that the ratio �=� /�=3.0�10−5 is small, which

means that N0 and Nc decay on a much slower rate than the
fields in the cavity. In Sec. IV, we shall take advantage of this
small value of � and propose a multiple-time-scale analysis
of Eqs. �2�–�5�.

The anisotropy parameters �L and �P can be deduced
from the steady-state properties of the laser emission. See
�20,24� for details. Under our experimental conditions, we
determine �L=0.59 and �P=0.77.

C. Numerical simulations

In order to understand what are the physical mechanisms
responsible for the delayed PS, we have integrated Eqs.
�2�–�5� numerically with the values of the parameters docu-
mented in the preceding section. We fixed � to the value �
=10−5 for which computed and experimental delays are in
good quantitative agreement. The evolution of the two polar-
ization fields and the population Nc is shown in Fig. 3. N0
remains almost constant during the PS transition and is not
shown.

After the instantaneous change of the pump azimuth �P
from 0° to 90° �arrow in Fig. 3 top�, Ea exhibits ROs while
Eb remains close to zero until it jumps to large amplitude
ROs. We note from Fig. 3 bottom that Nc monotonically
decays to its new state but exhibits almost no oscillations.
The behavior shown in Fig. 3 suggests that the PS transition
depends on two distinct time scales, namely t1=��t, the time
scale of the ROs and t2=�t, the decay rate of Nc. Recall that
time t is dimensionless �t��t� where �=1.55�108 s−1 and
t� is the original time�. We determine �t as the time interval
between the sudden change of the pump azimuth and the
time at which Eb�10−2. The PS shown in Fig. 3 occurs with
a delay �t�11 500 implying �t�=74 �s �experimentally
�t�=61 �s�.

The delay �t of the PS transition strongly depends on the
value of �. In Fig. 4, we determine �t as a function of � and
verify that �t increases like �−log10��� as �→0. This effect
is typical to slow passage problems through a bifurcation
point and is explained in Sec. IV.

The time evolution of the simulated signals may be inter-
preted in terms of the quasisteady state that rules the dynam-
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ics of the delay �see Fig. 5�. The steady-state solution for the
single polarization state Ea�0 and Eb=0 admits a bifurca-
tion point that satisfies the following equation:

Ac�1 − �L� + �1 + �L�A0 − 1 = 0. �10�

Using �6� with �P=0, we obtain A=A1 previously defined by
�7�, or equivalently, using �9�, J=J1=1. As the pump azimuth
changes ��p=90°�, Ac changes sign and Ea approaches a
quasisteady state during the time interval where Eb still re-
mains close to zero. See Fig. 5. This quasisteady state admits
a new bifurcation point located at A=A1qss satisfying Eq.
�10� now with Ac
0. It is given by

A1qss =
2

1 + 3�L + 3�P + �L�P
�11�

or equivalently, using �9�, J=J1qss where

J1qss =
3 + �L + �P + 3�L�P

1 + 3�L + 3�P + �L�P
. �12�

Note that the branch of quasisteady state for Ea after the
change of the pump azimuth has a lower amplitude than the
original branch. This explains why the Ea relaxation oscilla-
tions observed experimentally and numerically exhibit a
lower average value compared to the initial state. For the
same values of the fixed parameters used in Fig. 3, we find
A1�0.35, A1qss�0.36, and A2�0.72 implying J1=1, J1qss
�1.034, and J2�2.05.

Figure 6 illustrates the case J1
J
J1qss where Ea exhib-
its its PS transition before Eb and without ROs. The same
values of the parameters as in Fig. 3 are used, except that
A=0.36 instead of A=0.44. This regime has been observed
experimentally close to the laser threshold and its evolution
as we increase J will be described elsewhere.

In summary, our simulations of the laser rate equations
reveal two qualitatively different PS transitions depending on
how close we are from the laser threshold. The possible re-
gimes are separated by a new steady-state bifurcation point

�namely, J=J1qss�J1=1� that emerges as we change the
pump azimuth.

IV. ANALYSIS

In this section, we analyze the solution of the laser equa-
tions before the PS appears. We need to consider the cases
J�J1qss and J	J1qss separately because the stability condi-
tions are different.

A. J�J1qss

The numerical simulation shown in Fig. 3 indicates that
Eb�t� remains close to zero before it jumps while Ea�t� ex-
hibits ROs with a period proportional to �−1/2 and Nc slowly
decreases on a �−1 time scale. Furthermore, we note that the
magnitude of Nc remains relatively small compared to Ea
��Nc��10−2� which we attribute to the moderate value of 1
−�L=0.41 and 1−�P=0.23. This is confirmed by the analyti-
cal expressions of the single polarization steady states indi-
cating that Nc is proportional to 1−�L �assuming 1−�P and
1−�L on the same scale�. A multiple-time-scale perturbation
analysis that takes into account the small values of 1−�L and
1−�P is detailed in the Appendix so that we only summarize
the main results.

After averaging the solution on the fast time scale s
��2�t, we find that Nc=Nc�� is a slowly varying function
of ���

2 s, in the first approximation, and that the leading
approximations for the averages �N0� and �Ea

2� are given by

�N0� �
1

1 + �L
and �Ea

2� � 2
A0�1 + �L� − 1

1 + �L
. �13�

Substituting these expressions into the right-hand side of Eq.
�5�, we obtain

J
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FIG. 5. Quasisteady state for Ea. As soon as the pump azimuth
is changed, the stable steady state Ea�0, Eb=0 �full line� becomes
unstable. But since Eb remains close to zero during a time interval
�t, Ea approaches a stable quasisteady state �broken line� provided
J�J1qss. If J
J1qss, Ea jumps to zero.
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FIG. 6. The PS transition for J1
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J1qss. The exponential in-
crease of Eb appears with a delay after Ea has jumped to zero.
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dNc

dt
� − �A0�1 + �L��Nc − Nc+� , �14�

where

Nc+ =
1

A0�1 + �L�
− �Ac� −
�1 − �L�

2�1 + �L�2 �A0�1 + �L� − 1��
�15�

is the approximation of the steady-state value of Nc after the
switch. Equation �14� must be solved using the initial condi-
tion Nc�0�=Nc−, where

Nc− =
1

A0�1 + �L�
�Ac� −
�1 − �L�

2�1 + �L�2 �A0�1 + �L� − 1��
�16�

is the approximation of the steady-state value of Nc before
the switch. The solution of Eq. �14� is exponential and is
given by

Nc = �Nc− − Nc+�exp�− �A0�1 + �L�t� + Nc+. �17�

In order to determine when the PS transition appears, we
examine Eq. �3� for Eb. If �=0, the change of stability of
Eb=0 appears after a delay �t defined as the root of

�
0

�t

Nc�t�dt = 0. �18�

On the other hand, if ��exp�−�−1�, the PS transition appears
when

Nc��t� � 0. �19�

Using �17�, we obtain from the condition �19� the following
expression for the PS delay:

�t = −
1

�A0�1 + �L�
ln
 − Nc+

Nc− − Nc+
� . �20�

The critical time �t determined from the integral condition
�18� is marked by the vertical dashed line in Fig. 7. It com-
pares well with the exponential increase of Eb obtained nu-
merically from Eqs. �2�–�5� with �=10−20 �point where Nc vs
t changes slope�. As � is increased up to 10−5, the actual
increase of Eb occurs sooner and comes closer to the time
where Nc=0 given by �20�. This effect is typical to slow
passage problems through bifurcation points �27�. Here the
bifurcation point corresponds to a change of stability of Eb
=0 assuming Nc as the bifurcation parameter. The bifurcation
point occurs at Nc=0. The increase of the delay as �→0 is
proportional to �−log10��� as verified in Fig. 4. The analyti-
cal prediction �20� is compared with the numerical and ex-
perimental estimates of the delay �t in Sec. V.

B. J	J1qss

The analysis leading to the expression �20� is only valid
for J�J1qss implying Ea

2�0. If J1	J1qss, Ea=0, and we
need to take into account that both Ea and Eb are zero during
the silent phase prior to the jump of Eb. The exact solution of

Eqs. �4� and �5� with �=0 and Ea
2=Eb

2=0 are

N0 = �N0− − A0�exp�− �t� + A0, �21�

Nc = �Nc− + �Ac��exp�− �t� − �Ac� , �22�

where N0− and Nc− denote the steady-state values of N0 and
Nc before the switch. From Eq. �3�, the change of stability of
Eb=0 �with ��0 sufficiently large� is

N0�1 + �L� − Nc�1 − �L� − 1 = 0. �23�

We substitute �21� and �22� into Eq. �23� and note that the
expression A0�1+�L�+ �Ac��1−�L�−1 simplifies as

A0�1 + �L� + �Ac��1 − �L� − 1 =
A

A1
− 1. �24�

We analyze the condition �23� in the limit A−A1→0. We
note that N0−−A0 is O�A−A1� small and that Nc−+ �Ac�
→2�Ac�=A1�1−�P�. In the limit A−A1 small, �23� simplifies
as

− A1�1 − �P��1 − �L�exp�− �t� + 
 A

A1
− 1� � 0 �25�

and leads to the delay

�t = −
1

�
ln
 �A/A1 − 1�

A1�1 − �L��1 − �P�� �26�

which is proportional to �ln�A−A1��.

V. QUANTITATIVE COMPARISONS

In Fig. 8, we compare the analytical approximations �20�
and �26� with the experimental data. Best quantitative agree-
ment is obtained by slightly changing the values of the pa-
rameters �� ,�P ,�L� from �3�10−5 ,0.77,0.59� to �3.3
�10−5 ,0.75,0.62�. We note the sudden increase of �t as J is

t

0 20000 40000 60000 80000 100000

N
c
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0.00
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0.04

FIG. 7. The dashed line marks the critical time above which Ib

increases exponentially. It is defined as the nonzero root of the
integral condition. The actual numerical jump corresponds to the
change of slope of Nc. A very small value of �=10−20 was used in
the numerical simulations. If � is progressively increased from
10−20 to 10−5, the jump occurs sooner and approaches the time
when Nc=0.
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decreased and passes J1qss. To further investigate the transi-
tion between the far- and close-to-threshold regimes, we
compare in Fig. 9 the analytical approximations �20� and
�26� with the numerically computed delays using the original
laser equations �2�–�5�. We clearly note that the transition
near J=J1qss is not discontinuous but is smooth. However, a
detailed description of the transition layer near J=J1qss is
beyond the scope of this paper. Finally, the good correspon-
dence close to the second threshold �not shown� between the
analytical delay �that does not take the proximity to the sec-
ond threshold into account� and the simulations of the full
model �which do contain any possible effects of the second
threshold� shows that the proximity to the second threshold
does not play a role in the polarization switching delay.

In summary, an asymptotic analysis of the rate equations
based on the natural values of the laser parameters led to
analytical expressions of the delay as a function of the pump
strength J. In the first case �J�J1qss�, the delay depends on
the relative change of the population inversion. It is equiva-
lent to the expression of the turn-on time in single-mode gain
switching experiments. In the second case �J1
J
J1qss�,
the delay approaches infinity as we approach the laser thresh-
old J=J1=1. The analytical expressions compare quantita-
tively to the experimental and numerical observations.

VI. CONCLUSIONS

We have studied both experimentally and analytically the
polarization dynamics of a Nd3+:YAG laser emitting in a
single longitudinal and transverse mode. The laser is pumped
with a linearly polarized beam and the polarization angle is
modulated using an electro-optic modulator. When we sud-
denly change the polarization angle of the pump beam by
90°, while keeping the pump amplitude constant, we observe
that a new polarization mode appears after a delay of several
tens of �s. After PS, the initial polarization intensity goes to
zero while large amplitude relaxation oscillations of the or-
thogonal polarization intensity appear. Numerical simula-
tions of rate equations reveal that the delay is the result of the
slow recovery of the population inversion and that it depends
on the noise level always present in experiments. An
asymptotic analysis of the rate equations then emphasizes the
effects of the anisotropies and the power strength.

Both the numerical and analytical studies reveal that there
exist two qualitatively different PS experiments. The first and
most general case is characterized by decaying ROs for both
the initial and final states. It occurs for sufficiently large
power strength and is studied in detail in this paper. The
second case occurs near the laser threshold and is character-
ized by decaying ROs for only the final state. The detailed
comparison between numerical and analytical approxima-
tions then suggests a transition layer regime where a smooth
change of the two described PS behaviors is possible. This
transition layer regime needs a new analysis of the laser rate
equations and will be described elsewhere.
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APPENDIX: DELAYED PS

The purpose of this appendix is to show that �Ia ,N0� ex-
hibits relaxation oscillations while Nc is slowly varying and
determines the critical point where Ib=0 changes stability.
For the algebraic clarity, we shall take advantage of the small
values of 1−�P and 1−�L.

1. Slow evolution of Nc

The laser rate Eqs. �2�–�5� with Eb=0 and �P=90° de-
scribe the laser output after the pump switch. They are given
by

dEa

dt
= �N0�1 + �L� + Nc�1 − �L� − 1�Ea, �A1�
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FIG. 8. Comparison between experimental �dots� and analytical
�lines� delays. The values of the parameters are �=1.55�108 s−1,
�=3.3�10−5, �L=0.62, and �P=0.75.
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FIG. 9. Comparison between numerically computed �dots� and
analytical �line� delays. The values of the parameters are �=1.55
�108 s−1, �=3.3�10−5, �L=0.62, and �P=0.75.
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dN0

dt
= �	A0 − N0
1 +

1 + �L

2
Ea

2� − Nc
�1 − �L�

2
Ea

2� ,

�A2�

dNc

dt
= �	−

A

2
�1 − �P� − N0

�1 − �L�
4

Ea
2 − Nc
1 +

1 + �L

2
Ea

2�� .

�A3�

We consider the time scale of the relaxation oscillations as
our basic time scale and introduce

s = �2�t �A4�

into the rate equations �A1�–�A3�. Comparing left- and right-
hand sides of Eq. �A1� then requires that N0 deviates from its
steady state by a quantity ��. Therefore, we introduce the
deviation n0 defined by

N0 =
1

1 + �L

1 +��

2
n0� . �A5�

The factor 2 in both �A4� and �A5� has been introduced for
the mathematical clarity of the final equations. Note that 1
−�L and 1−�P with �L=0.59 and �P=0.77 are relatively
small and are of the same order of magnitude. Equation �A3�
then suggests to rescale Nc as

Nc = �1 − �L�nc. �A6�

After inserting �A4�–�A6� into Eqs. �A1�–�A3�, we obtain
the following three equations for the intensity Ia=Ea

2, and the
populations n0 and nc:

dIa

ds
= 
n0 +�2

�
�1 − �L�2nc�Ia, �A7�

dn0

ds
= A0�1 + �L� − 
1 +

1 + �L

2
Ia� −��

2
n0
1 +

1 + �L

2
Ia�

− nc
�1 − �L�2�1 + �L�

2
Ia, �A8�

dnc

ds
= ��	−

A

2

1 − �P

1 − �L
−

1

1 + �L

1

4

1 +��

2
n0�Ia

− nc
1 +
1 + �L

2
Ia�� . �A9�

Equations �A7�–�A9� are equivalent to the original Eqs.
�A1�–�A3�. But, by introducing �A4� and �A5�, we have re-
moved the small parameter � multiplying the right-hand side
of Eq. �A2�. The resulting Eqs. �A7� and �A8� for Ia and n0
exhibit the laser relaxation oscillations as we shall now dem-
onstrate. Before we do this, we take advantage of the small
values of 1−�L and 1−�P by assuming

�L = 1 + �1/4bL and �P = 1 + �1/4bP. �A10�

The �1/4 power is motivated by the fact that we wish the
second term on the right-hand side of Eq. �A7� to be O�1�.
With the values of the parameters �=3�10−5, �L=0.59, and

�P=0.77, we determine bL�−5.5 and bP�−3.1 which are
O�1� quantities compared to ��. Equations �A7�–�A9� then
simplify as

dIa

ds
= �n0 + �2bL

2nc�Ia, �A11�

dn0

ds
= A0�1 + �L� − 1 −

1 + �L

2
Ia + O���� , �A12�

dnc

ds
= ��	−

AbP

2bL
−

1

1 + �L

1

4
Ia − nc
1 +

1 + �L

2
Ia� + O����� .

�A13�

Equation �A13� implies that nc is a constant in first approxi-
mation. On the other hand, Eqs. �A11� and �A12� form a
conservative system of equations that admits a one-
parameter family of periodic solutions. This can be demon-
strated in the phase plane by determining a first integral from
the equation dn0 /dIa which is separable. From now on, we
denote by �Ia ,n0�, the P-periodic solution of Eqs. �A11� and
�A12�. In order to find how nc slowly changes in time, we
apply the method of multiple time scales and construct a
solution that depends on both the relaxation oscillations time
s and the slow time =��s. These two times are assumed
independent which imply the chain rule

dnc

ds
= �nc�s + ���nc�, �A14�

as well as similar expressions for dIa /ds and dn0 /ds. The
subscripts s and  mean partial derivatives. We only analyze
Eq. �A13�. Specifically, we seek a solution of Eq. �A13� of
the form

nc = nc0�s,� + ��nc1�s,� + ¯ . �A15�

Substituting �A15� into Eq. �A13�, we find that the two first
problems are �nc0�s=0 and

�nc1�s = − �nc0� −
AbP

2bL
−

1

1 + �L

1

4
Ia0 − nc0
1 +

1 + �L

2
Ia0� .

�A16�

The equation for nc0 implies that nc0=nc0�� is only a func-
tion of the slow time . Equation �A16� is an equation for nc1
that only appears on the left-hand side. The right-hand side is
a P-periodic function of s because of Ia0 is P periodic. In
order to have a bounded solution for nc1 with respect to s, the
average of the right-hand side needs to be zero. This condi-
tion leads to a differential equation for nc0 given by

dnc0

d
= −

AbP

2bL
−

1

1 + �L

1

4
�Ia0� − nc0
1 +

1 + �L

2
�Ia0�� ,

�A17�

where
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�Ia0� �
1

P
�

0

P

Ia�s,�ds . �A18�

We next wish to evaluate �Ia0�. To this end, we integrate Eq.
�A12� for 0 to P and obtain

� dn0

ds
� = A0�1 + �L� − 1 −

1 + �L

2
�Ia� , �A19�

where

� dn0

ds
� �

1

P
�

0

P dn0

ds
ds =

1

P
�

0

P

dn0 = 0, �A20�

because n0 is P periodic.. Consequently, Eq. �A19� leads to
the following expression of �Ia�:

�Ia� =
2

1 + �L
�A0�1 + �L� − 1� . �A21�

Introducing �A21� into Eq. �A17�, we obtain

dnc0

d
= −

AbP

2bL
−

1

2

1

�1 + �L�2 �A0�1 + �L� − 1� − nc0A0�1 + �L� .

�A22�

In terms of the original variables and parameters, the equa-
tion that describes the slow evolution of Nc is given by

dNc

ds
= ��
−

A��P − 1�
2

−
1

2

1 − �L

�1 + �L�2 �A0�1 + �L� − 1�

− NcA0�1 + �L�� . �A23�

In summary, Nc has an exponential evolution according to
Eq. �A23� while Ea and N0 exhibit relaxation oscillations on
the fast time scale s. This is in agreement with the simulation
results presented in Sec. III C. How long is the silent phase
during which Ib remains close to zero depends on the stabil-
ity of Ib=0. We examine this question in the next section.

2. Stability of Ib=0

In order to determine when Ib will jump from zero, we
need to integrate its equation. From Eq. �3� and using
�A4�–�A6�, this equation is given by

dIb

ds
= �n0 − �2bL

2nc�Ib. �A24�

Equation �A24� is separable and admits the solution

Ib = Ib�0�exp��
0

s

�n0 − �2bL
2nc�ds� . �A25�

Using Eq. �A11�, We may determine the integral of n0 as

�
0

s

n0ds = − �2bL
2�

0

s

ncds + �
0

s d ln�Ia�
ds

ds . �A26�

We next recall that nc=nc0�� in the first approximation,
where ���s. This implies that

�
0

s

n0ds = −�2

�
bL

2�
0



nc0���d� + ln
 Ia�s�
Ia�0�� .

�A27�

The first term on the right-hand side of Eq. �A26� dominates
as �→0 which implies that �A25� reduces to

Ib = Ib�0�exp
− 2�2

�
bL

2�
0



nc0���d�� . �A28�

We next rewrite the integral on the right-hand side of Eq.
�A28� as

�
0



nc0���d� = �
0

0

nc0���d� + �
0



nc0���d�,

�A29�

where 0 corresponds to nc0�0�=0. The expression �A28�
may then be rewritten as

Ib = Ib�0�exp
− 2�2

�
bL

2�F�� − F�0��� . �A30�

where

F�� � �
0



nc0���d�. �A31�

The critical time =c where Ib changes from an exponen-
tially small �exp�−�−1/2�� to an exponentially large
�exp��−1/2�� quantity occurs when the growth rate changes
sign. From �A30�, we find that =c is the nonzero root of

F�� − F�0� = 0. �A32�

In summary, the change of stability does not occur at 
=0 where Nc changes sign but is delayed to =c. The
latter satisfies the integral condition �A32� or equivalently

�
0

c

Nc��d = �
0

0

Nc��d . �A33�

The integral condition �A33� physically means that Ib is ex-
ponentially close to zero and needs the same amount of time
to leave the unstable zero solution as it took to approach the
stable zero solution. This condition defined the delay of the
bifurcation transition located at Nc=0. If noise of amplitude
� is added to the equation for Eb, this delay is reduced but
occurs only if ��exp�−1 /��.
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