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We investigate the dynamics of an unstable vortex ring in a pancake-shaped Bose-Einsten condensate by
solving the Gross-Pitaevskii equation numerically. It is found that a quasisteady turbulent state with long
relaxation time can be achieved through the disruption of a perturbed vortex ring in the condensate owing to
the bending-wave instability. We verify that this quantum turbulent state is characterized by Kolmogorov
energy spcetrum.
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I. INTRODUCTION

Ever since the discovery of turbulent motion in the super-
fluid 4He with the thermal counterflow apparatus, the quan-
tum turbulence �QT� has become an important and active
subject in low-temperature physics �1�. In the past few de-
cades, QT based on thermal counterflow has been thoroughly
studied, and many fundamental properties of this type of
turbulence are now well understood. However, due to the
lack of classical analogs, the counterflow turbulence was be-
lieved to have no direct connections with the classical turbu-
lence �CT�. More specifically, the difference between QT and
CT should be exposed from the fundamental aspect of the
vortex structure: the vorticity is quantized in a superfluid, but
is continuously distributed in a classical fluid. On this basis,
QT is ascribed to the tangle of quantized vortex filaments
whose dynamics differ from that of the chaotic but continu-
ous vorticity of CT �2,3�.

More recently, QT in superfluid 4He without using ther-
mal counterflow has been achieved experimentally �4,5�.
Surprisingly, it has been found that QT produced in such
cases does possess properties very similar to those of CT,
despite the fundamental difference between these two types
of turbulence. In particular, the Kolmogorov’s −5 /3 power
law �6�, which is derived based on the assumption that the
fully developed turbulence is statistically self-similar at dif-
ferent scales, has been also observed in QT �4,5� and verified
numerically �7–9�. These findings have aroused considerable
interest in exploring the possible connection between QT and
CT. Since QT has been well studied, it is expected that via
the study of QT one may pave a way towards a better under-
standing for the less understood CT.

On the other hand, the low-temperature physics has en-
tered a new era in the past decade, owing to the astounding
experimental advances in exploring the ultracold atomic
physics in the laser cooled and trapped alkali gases. By vir-
tue of the close relationship between superfluid behavior and
quantized vorticity in liquid helium and atomic Bose-
Einstein condensate �BEC� �10�, the QT in the trapped BEC
has been addressed in the last few years. In these pioneering
theoretical studies, the QT is predicted to occur in the fol-
lowing cases: in the evolving stage prior to the nucleation of
vortex lattice in a rotating condensate �11,12�, in the collision

of two condensates �13�, and in the combined rotations
around two axes of a condensate �14�.

In this paper, we report another pathway to QT in a
trapped BEC via the disruption of an unstable vortex ring.
This work is motivated by our previous studies on the mo-
tion of a vortex ring in a trapped BEC �15�. Using the modi-
fied vortex-filament formalism derived from the time-
dependent Gross-Pitaevskii �GP� equation �16�, together with
the idea that the trapping potential causes vortex stretching,
we have concluded that the azimuthally wavy distortions �the
bending waves� on the filament of the vortex ring can be
amplified exponentially under certain circumstances, whence
leads to the disruption of the vortex ring. Specifically, for the
cylindrical trapping potential, V�r�=m��

2 �r2+�2z2� /2, we
have shown analytically that a slightly oblate geometry, 1
���2, is required to prevent the vortex ring from becom-
ing unstable due to the bending-wave instability.

It should be noted that although we have used the vortex-
filament model to determine the stability condition for the
motion of a vortex ring in the trapped BEC, this approach
does not provide complete information about the dynamics
of the condensate after the vortex ring is disrupted. One im-
portant reason is that, to acquire the integrability of the mo-
tion equations for the vortex filaments, we have assumed the
vortex lines to be infinitely slender filaments. This assump-
tion, however, excludes the interaction between vortices,
such as the vortex reconnection, as well as that between vor-
tices and sound field �density fluctuations�. In fact, the vortex
reconnection, which plays a central role in converting the
vortical energy into the sound energy, is of fundamental im-
portance that is indispensable in creating QT in superfluids.
In any case, being short of these dynamical ingredients, the
vortex-filament model can only serve to reveal some quali-
tative features of the motion of vortex ring. To probe into the
full dynamics of the system, we must resort to the numerical
integration of the GP equation

i
�

�t
��r,t� = �−

�2

2
+ V�r� + g���r,t��2���r,t� �1�

with a perturbed vortex ring placed initially inside the con-
densate. Here the condensate wave function ��r , t� is nor-
malized by ����r , t��2dr=1, and g=4�aN is the coupling
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strength, where N is the total number of atoms in the con-
densate and a is the s-wave scattering length. Note that the
GP equation is given in the dimensionless form, in which the
length, time, and energy are, respectively, scaled in units of
�� /m���1/2, ��

−1, and ���. The details of the numerical cal-
culations will be presented in the following sections.

II. DESCRIPTION OF THE MODEL

Before proceeding to the numerical simulation, we remark
briefly on the construction of an initial vortex ring configu-
ration in an inhomogeneous BEC. For simplicity, we shall
consider an axisymmetrically oriented planar vortex loop,
which is disposed on the xy plane at t=0 with its radius
sinusoidally disturbed. Let the radius of the unperturbed ring
be R0 and the amplitude of the bending wave be 	. In the
cylindrical coordinates �r ,
 ,z�, the core axis of the bent ring
is described by r=R�
�, z=0, where R�
�=R0+	 cos�n
�,
with n being an integer. Next we define a local core-centered
polar coordinate �� ,�� on the semi-infinite plane, 0�r
�
and −�
z
�, along the directional angle 
, where

��r� = 	�r − R�
��2 + z2, ��r� = tan−1 z

r − R�
�
. �2�

Following the method in Ref. �17�, we introduce the trial
form, ��r , t�=exp�−i�t�exp�i���r����r�, of the condensate
wave function, where � is an integer indicating the quantum
of circulation and � is a real number. Substituting ��r , t� into
Eq. �1�, we obtain the time-independent GP equation of ��r�,

�−
��− iA�r��2

2
+ V�r� + g���r��2���r� = ���r� , �3�

where A�r�=−����r�, which is explicitly expressed as

A�r� = − �
 z

�2 r̂ +
n	z sin�n
�

r�2 
̂ −
r − R�
�

�2 ẑ� . �4�

Finally, the desired initial vortex configuration is restored by
��r ,0�=exp�i���r���0�r�, where �0�r� is the lowest energy
state of Eq. �3� which can be numerically obtained by imagi-
nary time propagation of Eq. �3�.

To numerically integrate Eq. �1�, we use the method of
lines with spatial discretization by Fourier pseudospectral
method and time integration by adaptive Runge-Kutta
method of order 2 and 3 �RK23�. Inspired by our previous
results �15�, we assume that a bent, singly quantized ��
=−1� vortex ring filament parametrized by R0=4, 	=0.1, n

=5 is initialized in a pancake-shaped BEC characterized by
�=5, R�=8. Here R�=	2� is the transverse Thomas-Fermi
radius of the trapped BEC, and � denotes the chemical po-
tential for the vortex-free condensate. Accordingly, such a
ring configuration is predicted to be unstable by vortex-
filament method as shown by the hairpins formation in Fig.
1�c�. When the disturbance is further amplified into highly
nonlinear regime, the runaway stretching of the vortex fila-
ment occurs. Consequently, the disruption of the vortex ring
is indicated by the divergence of the total length of the fila-
ment and further exploration of dynamics is stopped by the
limitation of the vortex-filament method.

III. RESULTS AND DISCUSSIONS

Now, using the aforementioned method for initializing the
vortex ring wave function together with the same parameters
given in Fig. 1, the time evolution of the vortex ring is
shown in Figs. 2�a�–2�l� by the isosurfaces of ���r , t��2 at
different time. We see that, in Figs. 2�b�–2�d� the vortex ring
does evolve into the hairpin structure which is qualitatively
similar to that of Fig. 1�c�. Note that although the vortex ring
appears disconnected in Figs. 2�c� and 2�d�, it remains con-
nected in an isosurface of much smaller densities. Neverthe-
less, as the vortex ring continues to deform, it actually breaks
into multiple vortex filaments at a later moment. Afterwards,
these fractured vortex filaments are driven to tangle, recon-
nect, and deform successively, etc., initiating the scenario of
transition to turbulence. Moreover, as time progresses, the
vortex filaments disappear gradually, and in the meantime,
the density isosurface becomes more and more wrinkled. Af-
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FIG. 1. �Color online� Demonstration for the disrupiton of a vortex ring in a pancake-shaped BEC according to the results of Ref. �15�.
�a� The initially perturbed vortex ring. �b� Growth of the disturbance. �c� Formation of hairpins.

FIG. 2. �Color online� Perspective view of the isosurface for
���2=9�10−4 at �a� t=0, �b� t=3, �c� t=4, �d� t=5, �e� t=6.25, �f�
t=8.25, �g� t=9.75, �h� t=10.5, �i� t=12, �j� t=16.75, �k� t=20, and
�l� t=50. The initial central density is ���r=0��2=5.9�10−3.
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ter a sufficiently long period, the condensate is expected to
enter the turbulent regime as shown by Fig. 2�l�.

To identify whether the state in Fig. 2�l� is turbulent, we
check if its incompressible kinetic energy spectrum obeys
Kolmogorov’s −5 /3 law. To this end, it is more convenient
to write the condensate wave function in the form ��r , t�
=	��r , t� exp�i��r , t��. As a result, the total energy is ex-
pressed as the sum of four terms, namely, Etot=Ek+Eq

+Etrap+Eint, where Ek= 1
2��	����2dr denotes the superfluid

kinetic energy, Eq= 1
2���	��2dr the quantum pressure energy,

Etrap=��Vdr the trap energy, and Eint=
1
2�g�2dr is the inter-

action energy. Following Ref. �8�, we split the vector field
	��� into the solenoidal and irrotational parts, or corre-
spondingly, the incompressible and compressible parts, i.e.,
	���= �	����i+ �	����c, where � · �	����i=0 and �
� �	����c=0. Thus, the compressible and incompressible
kinetic energies are defined by Ek

i,c= 1
2�dr��	����i,c�2. Physi-

cally, Ek
i and Ek

c correspond to the kinetic energies in the
vortices and sound waves, respectively. Since the compress-
ible and incompressible fields are mutually orthogonal, it fol-
lows that Ek=Ek

i +Ek
c. The kinetic energy spectrum as a func-

tion of wave number k is defined by �8�

Ek
i,c�k� =

1

2
� k2 sin �d�d

� eik·r�	� � ��i,c dr

�2��3
2

�5�

such that Ek
i,c=�0

�Ek
i,c�k�dk. In Eq. �5�, the integral over the k

shell in the momentum space is accomplished by numeri-
cally summing over the grid points with �k�=k. From the
outcome of numerical computations, we find that the incom-
pressible spectrum always obeys a power law, Ek

i �k��k�, over
a certain range of k in the development of turbulence. In Fig.
3, the time-varying exponent � approaches to the limiting
value −5 /3 asymptotically. Also shown in the same figure,
the details of Ek

i �k� at t=20 and 50 are displayed for com-
parison. We find that Ek

i �k��k−1.71 at t=50 over the inertial
range 4�k�25, or equivalently, 0.25��=2� /k�1.57,

which closely follows Kolmogorov’s spectrum, Ek
i �k��k−5/3.

This characterizes that, in the theory of CT, the inertial range
is sustained by the Richardson cascade in which the energy is
transferred from large to small scales without being dissi-
pated. Our result implies that the Richardson cascade for
quantized vortices occurs in the present system. Additionally,
we note that lower and upper bounds of � correspond to the
length scales characterizing the healing length and the size of
the condensate, respectively, according to the previous inves-
tigations �9,14�. Our results are consistent with such a con-
clusion. However, the “size” of the condensate here should
be addressed with care, since the pancake-shaped condensate
possesses two characteristic sizes, namely, the radial and
axial Thomas-Fermi radii, which are specified by R�=8 and
Rz=R� /�=1.6 in our model. Consequently, the numerical
results reveal that the upper bound of � corresponds to Rz
rather than R�.

That Ek
i �k� consists with Kolmogorov’s spectrum when

time becomes large is of fundamental significance. This im-
plies that a stable turbulent state can be achieved via the
collapse of a single-vortex ring in a trapped BEC despite that
no vorticity is injected into the system. It should be noted
that this QT will decay eventually, but the relaxation time
would be quite long due to the vortex-sound separation as
shown below. To gain more insight into the essence of the
QT in our model, we examine the spatial distribution of the
incompressible and compressible kinetic energy densities,
1
2 ��	����i,c�2, on the xy plane at t=50. In Fig. 4�a�, the in-
compressible field is almost distributed over the rim of the
atomic cloud. On the contrary, in Fig. 4�b� the compressible
field spreads widely through the condensate. Apparently, the
vortices characterized by the incompressible field tend to lo-
calize in the outer region of the condensate in the develop-
ment of QT, which is a consequence of the mutual interac-
tion between the vortex filaments emerging from the
breakdown of the vortex ring. Unfortunately, the vortices lo-
calized in the outer region of the condensate are invisible in
the isosurface, though hinted by wrinkled isosurface as
shown in Fig. 2�l�. To visualize the full spatial distribution of
the vortices, we employ the so-called �2 method which en-
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FIG. 3. �Color online� Incompressible kinetic energy spectra
Ek

i �k� at t=20 and 50. For comparison, Ek
i �k� at t=20 is deliberately

multiplied by 10 to visually separate from that for t=50. The con-
sistency between Ek

i �k� and Kolmogorov spectrum is indicated. In-
set: time evolution of the exponent �.

FIG. 4. �Color online� Contour plot for the kinetic energy den-
sities �a� incompressible field and �b� compressible field, on the xy
plane at t=50, and the perspective view of three-dimensional spatial
distribution of vortices at �c� t=20 and �d� t=50.
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ables one to identify the configuration of the vortices by
locating the local pressure minima due to vortical motion
�18�. In Figs. 4�c� and 4�d�, the three-dimensional distribu-
tion of the vortices for t=20 and 50 are shown, respectively.
Comparing with Fig. 2�k�, where only a few vortices are
present, we see that there are more vortices emerging in the
outer region of the condensate as shown in Fig. 4�c�. This
means that those “disappeared” vortices in Fig. 2�k� are ac-
tually expelled to the periphery of the pancake-shaped
atomic cloud where the density is much smaller compared
with that of the central region. As time goes on, more vortex
filaments of smaller sizes are gathered in the outer edge of
condensate that can be visualized by comparing Fig. 4�c� and
Fig. 4�d�. In the meantime, these vortex filaments stir the
condensate, cause the volume fluctuating, and wrinkle the
density isosurface.

The time evolutions of different components of kinetic
energies are shown for 0� t�60 in Fig. 5. We see that Ek

c is
overwhelmed by Ek

i initially, but as time goes on, Ek
i de-

creases as a portion of it continuously converts into Ek
c via

vortex breakdown and vortex-sound interaction. Around 17
� t�21, the incompressible kinetic energy has an abrupt
drop which is just about the period when broken vortex fila-
ments are expelled to the periphery and the density isosur-
face begins to crinkle. Note that the total energy is conserved
in our system. From the energy budget, the other part of the
decrement of Ek

i mostly goes to Etrap and Eint as Eq changes
little. This is especially so for t�21, because Ek

c is almost
unchanged. The drop of Ek

i evidently corresponds to the con-
tinuous migration of broken vortex filaments to the outer
low-density area of BEC. After that, the vortices and sound
waves are spatially separated and the vortex-sound interac-
tion is largely diminished as featured by the constancy of Ek

c

after the drop. The energy of the vortex filaments at the cir-
cumference of the BEC continue to cascade, easily told by
comparing Figs. 4�c� and 4�d�, with its loss simply convert-
ing into the potential energy since cascade process obviously
involves volume fluctuation of BEC. Consequently, we are
able to obtain a state consistent with Kolmogorov spectrum
without assuming any dissipative mechanism in our model.
This is quite contrary to the conclusions of Refs. �9,14�, in
which a dissipation term must be introduced to suppress the
short wave excitations in order to obtain the steady QT.

IV. CONCLUSIONS

In summary, we have investigated the quantum turbulence
stemmed from the disruption of an unstable vortex ring in a
pancaked-shaped BEC by the numerically solving the time-
dependent GP equation. We verify that the incompressible
kinetic energy spectrum of the turbulent state obeys Kolmog-
orov’s −5 /3 power law.
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