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The core structure of multiply quantized vortices is theoretically investigated in a fermionic superfluid near
Feshbach resonance. Under population imbalance in two hyperfine spin states, the vortex core is filled in by the
“paramagnetic moment.” Here, we find the spatial oscillation of the magnetization inside the core sensitively
due to the topological structure of the pairing field, in the range from the weak-coupling regime to the unitary
limit. This magnetization inside the giant core reveals the winding number of the vortex and directly results
from the low-lying quasiparticle states bound inside the core. It is therefore proposed that the density profile
experiment using phase contrast imaging can provide the spectroscopy of novel core level structures in giant
vortices. To help understand these outcomes, we also derive an analytic solution for the low-lying quasiparticle
states inside the core of a multiply quantized vortex.
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I. INTRODUCTION

Much attention has been focused on quantized vortices of
both bosonic and fermionic superfluids. In the bosonic sys-
tem, the order parameter is directly associated with the par-
ticle density, which is observable via the absorption image in
experiments. Hence, the vortex core, defined as the zeros of
the order parameter, can be visualized via the absorption im-
age in the Bose-Einstein condensate �BEC� of ultracold at-
oms, which has provided an opportunity to investigate both
the static and dynamic properties of vortices �1,2�.

In the fermionic case, however, the situation is drastically
changed, where the order parameter corresponds to the wave
function of the Cooper pair and thus the visualization of
vortices is not trivial. The particle density is sensitively af-
fected by the quasiparticle structure with an eigenenergy
close to the Fermi energy EF. A pioneering work in 1964 �3�
revealed the fact that for a singly quantized vortex state in
the s-wave case, a novel quasiparticle state exists tightly
bound in the core region �� called the Caroli–de Gennes–
Matricon �CdGM� state. The important points to note are as
follows. �i� The eigenenergy of the CdGM state of the vortex
core is embedded in the low-energy region E /EF=2 / �kF��2

with kF being the Fermi wave number �3�, and its lowest
energy level is slightly shifted from the Fermi level. Also, �ii�
the eigenenergy inside the core is well discretized. Hence,
the spectrum of the quasiparticle states yields the particle-
hole asymmetry inside the core �4�. It has been found that
due to the asymmetric and discretized spectrum of the
CdGM state, the particle density can be suppressed inside the
core �5�, called the “quantum depletion,” which makes a vor-
tex visible via the density profile even in the Fermi system.
The depletion can be gradually enhanced as the core radius �
approaches the mean interparticle distance kF

−1, i.e., the quan-
tum limit �5–12�. This fact is directly observed in ultracold
atomic systems under Feshbach resonance �13�.

The microscopic studies on multiply quantized or giant
vortices have been carried out in the type-II superconductors
�14–18�, which indicate that the number of the branch of the
CdGM state is closely associated with the topological struc-
ture of the order parameter �14�. Recently, a macroscopic
manifestation of giant vortices in neutral fermionic atoms
was theoretically studied by Hu and Liu �19�, who found the
oscillating pattern of the particle density profiles inside the
core in the population balanced system.

The giant vortex state in ultracold Fermi atoms has not
been experimentally accomplished so far. In BEC’s, in con-
trast, the giant vortices have been experimentally created by
using several techniques: The topological phase imprinting
method �20–22�, a fast rotating BEC confined in a quadratic
plus quartic trap �23�, and the transfer of the orbital angular
momentum from Laguerre-Gaussian photons to a BEC �24�.
In addition, the Feshbach resonance, which controls the
s-wave scattering length a, enables one to continuously con-
nect the BEC with the fermionic superfluid, i.e., the BEC to
Bardeen-Cooper-Schrieffer �BCS� crossover. By sweeping
the magnetic field, the BEC of long-lived molecules in
a�0 can be transferred into the Cooper pair of fermionic
atoms with the weak attractive interaction a�0, across the
unitary limit a→ ��.

In this paper, we propose a manifestation due to the topo-
logical structure of the order parameter with a multiply quan-
tized vortex. Under population imbalance in two hyperfine
spin states �↑ and ↓ spins�, the occupation difference of the
CdGM state makes the core of a singly quantized vortex with
the winding number w=1 be magnetized �25,26�. Here, in
the BCS regime a�0, by solving the Bogoliubov–de Gennes
�BdG� equation under population imbalance, we find that the
magnetization profile inside the core of the multiply quan-
tized vortex yields an oscillation pattern with several peaks
located on a concentric circle. This oscillation is well under-
standable from the novel quasiparticle embedded in the vi-
cinity of EF. To help this understanding, we also derive the
analytic solution for the CdGM states in multiply quantized
vortices, by following the procedure which was proposed by
Caroli et al. �3�. The analysis is extended to the vicinity of
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the unitary limit �a→�� of harmonically trapped Fermi
gases. Here, we discuss that in the BCS-BEC crossover, the
oscillation pattern in the magnetization profile inside the core
is changed from that in the BCS regime due to the strong-
coupling effect, which embodies the shift of the energy level
of the low-lying CdGM state.

This paper is organized as follows. In Sec. II, after intro-
ducing the theoretical framework based on the BdG equa-
tion, we present the numerical results on multiply quantized
vortex states under population imbalance. This is carried out
in the weak-coupling regime in Sec. II. The analysis is ex-
tended to trapped Fermi gases with population imbalance in
the vicinity of Feshbach resonance in Sec. III. Here, we dis-
cuss the crossover from the weak-coupling regime to the
Feshbach resonance region. Following the previous work
�27�, we introduce the regularization of the gap equation and
the particle number equation, which allows one to describe
the microscopic structure in the BCS-BEC crossover. Then,
we shall show the numerical results on the macroscopic and
quasiparticle structures in resonant Fermi systems with giant
vortices. The final section is devoted to conclusions and dis-
cussions. In the Appendix, the details on the analytical solu-
tion of the BdG equation in giant vortices shall be described.
Throughout this paper, we put �=kB=1.

II. GIANT VORTICES WITH POPULATION IMBALANCE:
WEAK COUPLING LIMIT

A. Theoretical framework

Let us consider a single vortex state with arbitrary wind-
ing number w�1, where the pair potential can be expressed
in the cylindrical coordinate r= �r ,	 ,z� as


�r� = 
�r�eiw	. �1�

Without the loss of generality, 
�r� is a real function. We
start with the BdG equation for the quasiparticle wave func-
tion uq�r� and vq�r� labeled by the quantum number q
�26–30�

�K↑�r� 
�r�


��r� − K↓�r� ��uq�r�
vq�r� � = Eq�uq�r�

vq�r� � . �2�

The single particle Hamiltonian is given by K��r�=− �2

2M
−��+V�r�, where M is the mass of fermions and �↑,↓
=��� is the chemical potential of the spin � state. V�r�
denotes a background potential. Here, we impose the peri-
odic boundary condition along the z axis with the period L.
Since the resulting system yields the axisymmetry, the qua-
siparticle wave function may be expressed by

�uq�r�
vq�r� � = eiqzz� uq�r�eiq		

vq�r�ei�q	−w�	� , �3�

where the eigenstate is labeled by the quantum number q
= �qr ,q	 ,qz� with q	=0, �1, �2, . . . and qz
=0,2� /L ,4� /L , . . ..

The BdG Eq. �2� is self-consistently coupled with the gap
equation given by


�r� = g �
	Eq	�Ec

uq�r�vq
��r�f�Eq� , �4�

where f�Eq�=1 / �eEq/T+1� is the Fermi distribution function,
Ec is the energy cutoff, and g is the coupling constant. Be-
cause of the breaking of the particle-hole symmetry due to
the chemical potential shift � /2
�↑−�↓, the sum in Eq.
�4� is carried out for all eigenstates with both the positive and
negative eigenenergies. Throughout this paper, we set �
�0, which means the spin-up component becomes the ma-
jority.

In this section, in order to focus on the vortex core, we
restrict our attention to the vortex state with the weak pair
potential 
0=0.1EF in the absence of a background potential,
i.e., V�r�=0. Here 
0 is the pair potential in the bulk at T
=0, and EF is the Fermi energy in an ideal Fermi gas. Then,
the BdG Eq. �2� can be numerically solved by using the
Bessel function expansion �31�

�uq�r�
vq�r� � = eiqzzeiq		�

i=1

NB � Ci
�q	,qz��i

�q	��r�

e−iw	Di
�q	,qz��i

�q	−w��r�
� , �5�

where the basis function

�i
����r� 


�2

RJ�+1��i
����

J���i
���

R
r �6�

satisfies the orthonormal condition �0
R�i

����r�� j
����r�rdr=i,j.

Here J� is the �th Bessel function and �i
��� is the ith zero of

J�. Throughout this section, all physical quantities are scaled
by the length unit kF

−1
�2MEF and the energy unit EF, and
we fix the radius of the cylinder R=200kF

−1, the height L
=50kF

−1, the number of the basis function NB=100, and the
chemical potential �=EF. Note that the situation described in
this section is applicable not only to ultracold Fermi atoms
but also superconductors under a magnetic field, acting on
electron spins.

B. Quasiparticle structure and local magnetization inside giant
cores

In an isolated vortex with arbitrary winding number w
�1, the eigenenergy of the CdGM state, whose wave func-
tion is localized around the core, is analytically given from
the BdG Eq. �2� as

Eq = − �q	 −
w

2
 �0

sin���
+ �n +

w − 1

2
sin����1, �7�

with n=0, �1, �2, . . . , and q	=0, �1, . . .. We also intro-
duce sin2���
1−qz

2 / �2M��. For simplicity, from now on,
we consider the eigenstates with qz=0, i.e., �=� /2. The two
coefficients �0,1 are shown in Eq. �A19� and the details on
the derivation of Eq. �7� are also described in the Appendix.

The expression of Eq in Eq. �7� is composed by two dif-
ferent energy scales: �i� The energy scale comparable with
the pair potential �1�
0 and �ii� the much smaller energy
scale �0�
0

2 /EF��1 in the weak-coupling limit 
0�EF.
For a single vortex state with w=1, the lowest branch of the
dispersion relation, i.e., n=0, reproduces the well-known

CdGM eigenstate with Eq�−

0

2

2EF
�q	− 1

2 � �3�. The lowest
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CdGM state yields the “pseudozero” energy Eq�
0
2 /EF

�
0 in the weak-coupling regime. The wave function is
localized in the core region within r�� �see Fig. 1�a��,
where � is the coherence length, �
kF / �M
0�, and charac-
terizes the core radius of the w=1 vortex. In addition, Eq. �7�
for arbitrary winding number w�1 is in good agreement
with the result obtained from the semiclassical approxima-
tion �18�.

Here, two important facts arising from Eq. �7� should be
mentioned. �i� For an odd number of vorticity w, a core
bound CdGM state always exists with the pseudozero energy
and q	=0, because the second term in Eq. �7� can vanish. In
general, the wave function is well expressed by Eq. �A3� in
the region within r��, i.e., uq�r��Jq	

�kFr���kFr�	q		.
Hence, the wave function of the lowest CdGM state with
q	=0 may have a large intensity on the vortex center. In
contrast, the pseudozero “core bound” state with q	=0 never
appears in the case of the even number w, because the sec-
ond term in Eq. �7� remains finite. The energy of the low-
lying state on the vortex center is of the order of 
0. �ii�
Apart from the core bound state with q	=0, for w�1, there
may exist a state with pseudozero energy Eq�0 even in the
even number of w when 	q		�O�kF��. In addition, the num-
ber of such a state is determined by the winding number of
vortices, as we will show below. Hence, it is concluded that
the pseudozero energy states can appear inside or around a

giant vortex core with arbitrary winding number, while the
peak position of the wave function sensitively depends on
the winding number, namely, the topological structure of

�r�.

To numerically confirm the direct relation between the
winding number and the pseudozero energy states, it is
worthwhile to visualize the quasiparticle structure of the
w-fold quantized vortex in balanced systems. Here, we intro-
duce the local density of states �LDOS� N��r ,E�, which is
given by

N↑�r,E� = �
q

	uq�r�	2�E − Eq� , �8a�

N↓�r,E� = �
q

	vq�r�	2�E + Eq� . �8b�

Figure 1 shows the LDOS for vortex states with w
=1,2 ,3 ,4 in the case of population balance �=0, where
N�r ,E�
�N↑�r ,E�+N↓�r ,E�� /2. In the core of the odd-
number vortex �w=1,3�, the lowest eigenstate is situated at
r=0 and in the vicinity of the Fermi level �E�0�. As we
have mentioned above, the vortex state with the even w has
the distinct energy gap on the center of the vortex, where the
excitation spectrum is almost symmetric with respect to the
Fermi level. The CdGM branches in the giant vortex with
w�1 always touch the zero energy in the position far from

FIG. 1. �Color online� Local density of states N�r ,E� around the core in multiply quantized vortices without population imbalance in the
case of w=1 �a�, w=2 �b�, w=3 �c�, and w=4 �d� at T=0, where only the eigenstates with qz=0 are taken into account. The solid line shows
the corresponding local pair potential �
�r�. Throughout this paper, the Fermi surface at �=0 is put on E=0.
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the vortex center, e.g., for w=2, the CdGM branches in Fig.
1�b� become zero around rkF�12, which is comparable with
the coherence length kF�=20. In addition, the number of the
pseudozero energy state depends on the winding number of

�r�. For instance, it is seen from Fig. 1�c� that the vortex
state with w=3 has two pseudozero modes: The wave func-
tion of one mode has a peak at r=0 and the other is at r
�25kF

−1. Hence, it is numerically confirmed that the peak
position and the number of the pseudozero energy states de-
pends on the winding number w of vortices.

The presence of the splitting of the Fermi level between
two spin states, i.e., ��0, enables to reveal the two char-
acteristic features of the CdGM states inside the giant vortex
core, namely, �i� the pseudozero or gapful excitation at the
core r=0 and �ii� the “pseudo” gapless excitation at r��.
Figure 2 shows the local “magnetization” profile

m�r� 
 �↑�r� − �↓�r� , �9�

around the core region of giant vortices with w=1,2 ,3 ,4.
Here, �↑,↓�r� are the local particle densities in hyperfine spin
states, which are given by

�↑�r� = �
q

	uq�r�	2f�Eq� , �10a�

�↓�r� = �
q

	vq�r�	2�1 − f�Eq�� . �10b�

The magnetization of the vortex core results from the fact
that the excess atoms of the majority component can be ac-
commodated by eigenstates with the pseudozero energy. For
instance, the core of the single quantized �w=1� vortex is
filled in by the paramagnetic moment, as seen in Fig. 2�a�.
The accommodation of the magnetic moment inside the
core is associated with the low-lying quasiparticle state,
i.e., the CdGM state. Since �↑,↓�r�=�−�

� N↑,↓�r ,E�f�E�dE

��−�
EF

�↑,↓�
N�r ,E�dE at T=0, the local magnetization m�r� is

determined by the eigenstates embedded in the spacing be-
tween the Fermi surfaces of two spin species. Here, N�r ,E�
is the LDOS at �=0, shown in Fig. 1. In the case of im-
balanced population, the Fermi energy of the majority �mi-
nority� spin component is shifted from that of the balanced
case upward �downward�, EF

�↑�=EF+� �EF
�↓�=EF−��.

Hence, the low-lying CdGM states are embodied by the local
paramagnetic moment inside the core, when �=0.

For the odd-number vortex, since the lowest CdGM state
at the vortex center has the much small energy �
0

2 /EF, the
vortex center is always magnetized in the presence of the
small splitting of the Fermi level ��
0 as seen in Figs.
2�a� and 2�c�. This is contrast to that in the even number
vortex, where the vortex center cannot be magnetized in the
situation of ��
0 because of the large energy gap of the

FIG. 2. Local magnetization m�x ,y� around the vortex center in multiply quantized vortices with w=1 �a�, 2 �b�, 3 �c�, and 4 �d�. All the
data are at �=0.02EF and T=0, where P=0.003 �a�, 0.002 �b�, 0.005 �c�, 0.005 �d�.
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CdGM state. Furthermore, it is seen from Figs. 2�b�–2�d�
that the pseudogapless excitation at r�0 leads to the con-
centric oscillation pattern of the local magnetization, depend-
ing on the winding number w. For instance, in the case of the
doubly quantized vortex with w=2 in Fig. 1�b�, since the
branches of the CdGM state touch the Fermi level at r
=12kF

−1 and their excitations have almost zero energy, the
excess atoms can be accommodated there under small split-
ting of the Fermi level ��
0. The peak position of m�r� at
r�12kF

−1 in Fig. 2�b� coincides to the spatial profile of the
pseudozero states in Fig. 1�b�. The w=4 vortex has two
crossing points of the CdGM branches on the Fermi level as
seen in Fig. 1�d�, leading to the double peak structure on the
concentric circles with radius rkF�15 and 30 in Fig. 2�d�.

We should mention the reason why the population imbal-
ance P in Fig. 2 is extremely small. As we have mentioned
above, the oscillation patterns in m�r� are induced by the
splitting of the Fermi level � smaller than the Pauli limit
�c=
0 /�2 �32�. In a system with a uniform pair potential,
the superfluid pairing between the spin singlet fermions com-
pletely excludes the magnetization up to ���c, and the
Pauli limit of the Fermi level splitting �=�c gives rise to
a first order superfluid-normal phase transition with an
abrupt jump of the local magnetization from the zero to finite
value. In a system having a singular vortex, however, the
imbalanced spin density can appear inside the vortex core as
seen in Fig. 2, because the pair potential 
�r� is strongly
suppressed there. Hence, only the fermions inside the vortex
core contribute to the net population imbalance P in Fig. 2.
This is, however, peculiar to the uniform system without any
background potential V�r�=0, and as shown later in Figs. 4
and 6, the presence of a harmonic potential can enhance the
value of the population imbalance P, because the pair poten-
tial gradually weakens toward the outside of the trap.

Before turning to the unitary limit, we mention to the
temperature dependence of the local magnetization inside the
giant vortex core. Figure 3 shows the local magnetization
around the core region r�50kF

−1 of the w=3 vortex at several
temperatures T /TF=0,0.01,0.02, where �=0.02EF is fixed.
It is found that the paramagnetic moment in the outside of
the region r�30kF

−1 increases as T increases, which is char-

acterized by the Yosida function �33�, while that at the vortex
center �r=0� and at the concentric peak �r�25kF

−1� de-
creases. The temperature comparable to � smooths the con-
centric peak structure in m�r�. In addition, it should be men-
tioned that since the oscillation patterns of the magnetization
are produced by the occupation difference of the low-lying
CdGM state having the energy close to the Fermi level, the
experimental detection of the distinct pattern requires the
temperature to be lower than the order of its level spacing
�
0

2 /EF. For instance, T�
0
2 /EF=0.01EF in the current

situation with 
0=0.1EF.

III. GIANT VORTICES WITH POPULATION IMBALANCE:
TRAPPED FERMI GASES NEAR FESHBACH

RESONANCE

A. BCS-BEC crossover theory

Having obtained the direct relation between the quasipar-
ticle structures and magnetization inside giant vortex cores in
the weak-coupling limit, let us now proceed to extend the
analysis into the more realistic situation, such as a trapped
Fermi gas under an s-wave Feshbach resonance. Here, we
consider the three-dimensional cylindrical system that the
fermions are confined by the two-dimensional trap potential
V�r�= 1

2 M�2r2, where r2
x2+y2. To do with the vicinity of
s-wave Feshbach resonance, we have to modify the theoret-
ical framework based on the BdG equation in Sec. II A.
First, the ultraviolet divergence in Eq. �4� is removed by
replacing g to the effective coupling constant g̃, which is
associated with the energy cutoff Ec and the dimensionless
coupling constant 1 / �kFa� �12,34�,

EF

g̃kF
3 =

1

8�kFa
+

1

4�2�Ec

EF
, �11�

where a is an s-wave scattering length. Also, the chemical
potential � is adjusted during the iteration to conserve the
total particle number

N = N↑ + N↓, N↑,↓ =� �↑,↓�r�dr , �12�

where the particle density of each spin state is given by Eq.
�10�.

The BdG Eq. �2� is now self-consistently coupled with the
particle number Eq. �12� and the regularized gap Eq. �4�,
where the bare coupling constant g in Eq. �4� is replaced to
the effective one g̃ in Eq. �11�. The set of equations is free
from the energy cutoff Ec and allows one to describe the
qualitative feature of T=0 superfluid phases in the entire
range of �kFa�−1 from the BCS ��kFa�−1→−�� to the BEC
limit ��kFa�−1→ +��.

We numerically solve the gap Eq. �4� up to the energy
E�BdG�=100�r, by using the quasiparticle wave function ob-
tained from Eq. �2�. In addition, the higher energy contribu-
tion above E�BdG� is supplemented by employing the local
density approximation �LDA�. The details of the BdG-LDA
hybrid method are described in Ref. �27�. For all data, the
total particle number is conserved as N=9000, and we also

0

0.001

0.002

0 10 20 30 40 50

m
(r

)k
F-3

rkF

T=0
T=0.01TF
T=0.02TF

FIG. 3. Local magnetization around the core region of the w
=3 vortex within r�50kF

−1 at T /TF=0 �solid�, 0.01 �dashed�, 0.02
�dashed-dotted line�. The chemical potential shift is fixed as �
=0.02EF and max	
�r�	=0.1EF at T=0.
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set L=3d, corresponding to the Fermi energy EF
=��30�Nd / �16L��2/5=50�. Here, the trap length and energy
scales are introduced, i.e., d
�1 /M� and �, respectively.
The calculation is carried out in the range from the weak-
coupling regime �kFa�−1=−1.2 to the unitary limit �kFa�−1

=0.

B. Quasiparticle structure and local magnetization inside giant
cores

Here, since in the actual experiment the net magnetization
is conserved due to the absence of the spin relaxation pro-
cess, it is convenient to introduce the population imbalance
between two hyperfine spin states

P 

N↑ − N↓

N↑ + N↓
. �13�

Similarly to the nontrapped system in Fig. 2, it is found that
the distinct pattern of the local “magnetization” m�r� for vor-
tices with arbitrary winding number appears inside the core
in the weak-coupling regime 1 / �kFa�=−0.4,−1.2, even in
the presence of the trap potential. Note that the coherence
length is estimated as �
kF / �M
0�=5.2kF

−1=0.52d at
1 / �kFa�=−0.4 and �=16.7kF

−1=0.167d at 1 / �kFa�=−1.2,
where 
0
max	
�r�	 at T=0. The magnetization profiles in-
side the w=1,2 ,3 vortex cores at 1 / �kFa�=−0.4 are dis-
played in Figs. 4�a�, 4�c�, and 4�e�, respectively, where the
fermions are confined by the harmonic trap.

As the interaction approaches the unitary limit, however,
the profile of m�r� is drastically changed. Figures 4�b�, 4�d�,
and 4�f� show the profile of the local magnetization around
the giant vortex core at the unitary limit 1 /kFa=0, where the
coherence length �=3.0kF

−1=0.3d. In the vortex state with
w=1 at 1 / �kFa�=0, the lowest CdGM state has a large en-
ergy gap comparable with 
0, because of 
0 /EF=O�1�.
Hence, the energy gap of the lowest CdGM state bounded on
the vortex center leads to the absence of the magnetization
inside the core even in the high value of P. Note that the
large population imbalance in the w=1 vortex in Fig. 4�b�
results from the magnetization accommodated around the
edge region of the cloud, r��. This means that the volume
of the magnetization m�x ,y� inside the core within r /d�1 is
almost the same in Figs. 4�a�–4�f�.

At 1 / �kFa�=0, in the vortex state with w�1, we also find
a completely different behavior of m�r� from that at
1 / �kFa�=−0.4. For instance, in contrast to the pattern shown
in Figs. 2�b� and 4�c�, the core of the doubly quantized vor-
tex in Fig. 4�d� is filled in by a large number of excess
fermions, which yields the single peak structure around the
vortex center. Similarly, the small depletion of m�r� appears
at r=0 in the w=3 vortex on a resonance, which is contrast
to that in Figs. 2�b� and 4�c�.

The behavior of m�r� in the core region of various giant
vortices results from the strong-coupling effect with 
0 /EF
�O�1� at 1 /kFa=0. To understand this, in Fig. 5�a�, we first
plot the energy shift of the peak of N�r=0,E� at �=0, as
functions of 1 / �kFa�. As seen in Fig. 1�b�, in the weak-
coupling regime with 
0 /EF=0.1 and �=EF, the LDOS’s
N↑,↓�r=0,E� of the w=2 vortex yield the double peak struc-

tures at E� �0.7
0 on the vortex center, whose spectral
evolution is almost symmetric with respect to the Fermi level
E=0. At 1 /kFa=0, however, the double peaks of N↑,↓�r
=0,E� in the w=2 vortex are shifted upward and their posi-
tions become asymmetric with respect to the Fermi energy,
as seen in Fig. 5�a� with the solid line. Here the lower branch
stays near the E�0 region in the 1 / �kFa��0 region. This
shift is understandable from the analytic expression of the
CdGM state shown in Eq. �7�,

Eq
�w=2� = �0 �

1

2
�1, �14�

with q	=0, qz=0, and n=0,−1. Here, let us recall that �0

and �1 are of the order of

0

2

EF
and 
0, respectively, i.e., �0

��1 in the weak-coupling regime. Then, the eigenenergies
of two lowest CdGM states in the w=2 vortex are symmetric
with respect to the Fermi level E=0. Indeed, as plotted at
1 / �kFa�=−1.2 in Fig. 5�a�, the point below �above� E=0
corresponds to the plus �minus� sign of Eq. �14�. Approach-
ing the unitary limit 1 /kFa=0, however, �0 becomes compa-
rable to �1, which causes the energy shift of the CdGM state
with �0− 1

2�1 located inside the Fermi level toward E=0,
e.g., E=−0.05
0 at 1 / �kFa�=0 in Fig. 5�a�. These energy
shifts of the CdGM states localized on the center of giant
vortices are also confirmed in Ref. �19�, where the CdGM
states shift up across E=0 approaching the BEC limit
�1 / �kFa�→ +��.

Figure 5�b� shows the LDOS at r=0 in w=2 vortex state
with and without population imbalance at 1 /kFa=0. In a
finite population imbalance, since the energy of two spin
states is shifted downward �↑ spins� or upward �↓ spins�, the
lower branch of the two CdGM states is occupied �unoccu-
pied� by the majority �minority� spin component, which
gives rise to the magnetization of the vortex center even in
the even number winding vortex.

Figure 5�a� also tells us that as 1 / �kFa� approaches uni-
tarity, the pseudozero eigenstate, which appears in the w=3
vortex at 1 / �kFa�=−1.2, is quickly shifted upward, e.g., E
=20�=0.57
0 at unitarity, as seen in Figs. 5�a� and 5�c�. It
indicates that at 1 /kFa=0, the distinct energy gap may
emerge in the vicinity of E=0 in the case of the odd number
w. This energy gap leads to the suppression of m�r� at r=0 as
seen in Fig. 4�f�. This is in contrast to the case of the weak-
coupling regime. For instance, as seen in Fig. 4�e�, the mag-
netization in the w=3 vortex at 1 / �kFa�=−0.4 has a distinct
peak at r=0 and also another peak on the concentric circles.
This oscillation pattern of m�r� becomes clear approaching
the weak-coupling limit �1 / �kFa�→−��.

In addition, we mention that due to the presence of the
trap potential, finite population imbalance and depairing oc-
curs in the vicinity of the edge, in addition to the inner region
of the core. The numerical results for the pairing field and
local magnetization shown in Fig. 6 reveals the phase sepa-
rated state between the superfluid and spin polarized normal
domains at 1 /kFa=0. Similarly to the nonvortex �27� and the
case of singly quantized vortex �26�, the pairing field in
1 /kFa�0 yields an oscillation in the surface region, that is,
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the Fulde-Ferrell-Larkin-Ovchinnikov-like oscillation. It is
found that the oscillation of 
�r� is proper to imbalanced
systems both with and without a vortex line in the extensive
range 1 /kFa�0. As the interaction touches the unitary limit,
however, the coexistence area becomes narrow, since the os-
cillation period is reduced to the interparticle distance �kF

−1

�27�.

IV. CONCLUDING REMARKS

In this paper, we have investigated the core structure of
multiply quantized vortex in imbalanced Fermi systems with
and without a trap potential. In conclusion, it is found that in
the weak-coupling regime, as shown in Fig. 2, the local mag-
netization inside the core of multiply quantized vortices
yields the concentric oscillation pattern, which reveals the

FIG. 4. Local magnetization m�x ,y� around the vortex core with the winding number w=1 �a�,�b�; 2 �c�,�d�; 3 �e�,�f� at T=0. �a�, �c�, and
�e� are in the BCS side of the resonance 1 / �kFa�=−0.4, and the others are at the resonance 1 / �kFa�=0. Population imbalance is estimated
as �a� P=0.12 �w=1�, �b� 0.82 �w=1�, �c� 0.014 �w=2�, �d� 0.03 �w=2�, �e� 0.014 �w=3�, �f� 0.03 �w=3�.
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quasiparticle structure bound inside the core, called the
CdGM states. The “pseudozero” energy of the CdGM states
in vortices with an odd-winding number enables the accom-
modation of the magnetization on the vortex center. In con-
trast, the magnetic moment is excluded from the vortex cen-
ter in the case of an even winding number. This is because
the CdGM state has a distinct energy gap of the order of 
0
as shown analytically in Eq. �7� and numerically in Fig. 1.
Note that the clear oscillation patterns in the weak-coupling
regime require the temperature to be lower than the order of
the level spacing of the CdGM states �
0

2 /EF.
This difference of the magnetization profile is alterna-

tively understandable from the �-phase shift of the pairing
field �29,35–38�. In general, in the presence of the kink struc-
ture of the pair potential, quasiparticles across the domain
wall feel the sign change of the pair potential, giving rise to
the eigenmodes with the zero energy, called the Andreev
bound state �39� or the midgap state �35–37�. The modes are
strongly bounded around the domain wall. In the case of
giant vortices with an odd winding number, since quasipar-
ticles tracing the path across the vortex center r=0 always
experience the �-phase shift of 
�r�, the bound state, called

the CdGM state with the pseudozero energy in the text, ap-
pears in the vicinity of the Fermi level, whose energy scale is
much smaller than the energy gap in the bulk region. In
contrast, the pseudozero modes never appear in case of an
even winding number, where the pair potential does not
change its sign along the path across the vortex center. The
relation between the topological structure of 
�r� and the
quasiparticle state has been shown analytically in Eq. �7� and
numerically in Fig. 1. The pseudozero CdGM states can eas-
ily participate the magnetization, when the Fermi level of
two spin states is mismatched. The peak structure of the local
magnetization appears at r=0 in Figs. 2�a� and 2�c�. In the
even number of winding, however, the distinct energy gap
arising from the topological reason prevents the accommo-
dation of the excess spins at r=0, as seen in Figs. 2�b� and
2�d�.

In contrast to the weak-coupling regime, where the mag-
netization inside vortex cores can be closely associated with
the topological structure of the pairing field, it has been
found that the magnetization profile inside the core of vari-
ous giant vortices is drastically changed in the vicinity of
Feshbach resonance. The key factor is that two energy scales
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FIG. 5. �Color online� �a� Eigenenergies of the CdGM states having the intensity at r=0 as functions of 1 / �kFa�. The solid and dashed
lines denote the CdGM branch in the w=2 and 3 vortex states, respectively. The eigenenergies in �a� are scaled by 
0, which is given by

0
max	
�r�	. LDOS at r=0, N↑,↓�r ,E�, of w=2 �b� and 3 �c� vortex state with and without population imbalance. The all dates in �b� and
�c� are at 1 /kFa=0.
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in Eq. �7�, �0 and �1, become comparable as 1 /kFa ap-
proaches the unitary limit. The upward shift of all core
bound states gives rise to a larger change of the magnetiza-
tion profile inside the cores from that in the BCS limit.

Finally, we should emphasize that the oscillating pattern
of the magnetization inside the giant core provides the spec-
troscopy of the discretized core structures. As seen in Fig. 4,
the magnetization profile inside the core is drastically
changed as 1 / �kFa� varies. Namely, it is proposed that the
density experiments using phase contrast imaging reveal the
spectrum of the core localized CdGM states via the magne-
tization.
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APPENDIX: ANALYTIC SOLUTION OF CdGM STATES IN
GIANT VORTICES

In this appendix, we describe the details on the derivation
of the analytic expression of CdGM states in Eq. �7�, from
the BdG Eq. �2� without the chemical potential shift �=0
and trap potential V�r�=0. Using Eqs. �1� and �3� and assum-
ing qz
k�

�1−sin2����k�
�2M	�	2, the BdG Eq. �2� can
be rewritten in the cylindrical coordinate to

�Lm�̂0 − 2iM
�̂2�uq = �̂3�w�q	 −
w

2


r2 − 2MEq�uq.

�A1�

Here we set 


�r�, uq
uq�r�= �uq�r� ,vq�r��T, and

Lm 

d2

dr2 +
1

r

d

dr
−

m2

r2 + k�
2 sin2��� �A2�

with m=�q	
2−wq	+ w2

2 . Also, we use the Pauli matrices �̂1,2,3
and 2�2 unit matrix �̂0=diag�1,1�. Throughout this appen-
dix, we consider the BCS regime with ��0.

Following the procedure proposed by Caroli et al. �3�, we
introduce a radius rc that 
�r�=0 for r�rc. Then, the BdG
Eq. �A1� can be analytically solved if one assumes the fol-
lowing conditions: �i� 	q		�rckF�kF�, �ii� Eq�
0, and �iii�
Eq� 	�	2 sin2���.

The wave function in Eq. �A1� is obtained in the range
r�rc as

uq�r� = � AuJq	
„k+���r…

AvJq	−w„k−���r…� , �A3�

where Au and Av are the arbitrary constant and we set

k���� 
 k� sin��� �
Eq

v����
, �A4�

with v����=k� sin��� /M. For r�rc, the wave functions are
composed of the Hankel function Hm

�i� and the slow functions
�i�r� varying over the order of � �3�,

uq�r� = �
i=1,2

Hm
�i�
„k� sin���r…�i�r� . �A5�

Then, Eq. �A1� can be reduced to

��̂0
d

dr
− �̂2




v�
��1 = i�̂3�Eq

v�

−

w�q	 −
w

2


2Mv�r2 ��1 �A6�

and �2�r���1
��r�. Here, we set v�
v���� and �1
�1�r�.

Under the conditions �i�–�iii� described above, the right-hand
side of Eq. �A6� can be regarded as the small perturbation.
We now assume the solution of Eq. �A6� as

�1�r� = �1
�0��r� + iB1e−��r�� �1�r�

− i�2�r� � , �A7�

where �1
�0��r� is the solution when the right-hand side of Eq.

�A6� is neglected, and �1,2�r� is the small correction to
�1

�0��r�, i.e., 	�1,2�r�	�1. Hence, one finds �1
�0��r�

=B1e−��r��1,−i�T with

��r� 

1

v�����0

r


�r��dr�. �A8�

Since 	�1,2�r�	�1, Eq. �A7� can be also expressed as
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FIG. 6. Profile of the local pair potential 
�r� �a� and magneti-
zation m�r� �b� at the unitary limit 1 /kFa=0. Population imbalance
is estimated in vortex states with various winding number as P
=0.143 �w=2, solid line�, 0.126 �w=3, dashed line�, 0.123 �w=4,
dashed-dotted line�.
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�1�r� � B1e−��r�� ei�1�r�

− iei�2�r� � . �A9�

Within Eq. �A7�, one can find the solution of Eq. �A6� as

�1�r� = − �2�r� 
 ��r� = − �
r

� �Eq

v�

−

w�q	 −
w

2


2Mv�r�2 �
�e−2����r��−��r���dr�, �A10�

where we set v�
v����, again.
To get the solution of the BdG Eq. �A1�, the wave func-

tions in two different domains, Eq. �A3� for r�rc and �A5�
for r�rc, are now matched at r�rc. Because of the condi-
tion �i�, 	q		�rckF, making use of the asymptotic forms of
J��z� and H�

�1,2��z� in z� 	�	, the wave functions for r�rc in
Eq. �A3� are rewritten as

uq �� 2M

�v�r
Au cos�k+r +

q	
2 −

1

4

2k+r
−

2q	 + 1

4
�� ,

�A11a�

vq �� 2M

�v�r
Av cos�k−r +

�q	 − w�2 −
1

4

2k−r
−

2q	 − 2w + 1

4
��

�A11b�

with v�
v���� and k�
k����. Also, Eq. �A5� with Eq.
�A9� for r�rc� 	q		 /kF is

uq �� 2M

�v�r
e−��r�� B1ei�+�r� + B2e−i�+�r�

− iB1ei�−�r� + iB2e−i�−�r� � �A12�

with

���r� 
 Mv�r +

m2 −
1

4

2Mv�r
−

2m + 1

4
� � ��r� . �A13�

To match two expressions of uq�r� in Eqs. �A11a� and �A12�
at r=rc, one should put the coefficients B1,2 as

B1 =
Au

2
ei�, B2 =

Au

2
e−i�. �A14�

By comparing with Eqs. �A11a� and �A12�, one can obtain
the expression of � as

��r� �
Eq

v�

r +

w�q	 −
w

2


2Mv�r
+

m − q	

2
� − � . �A15�

In a same way, one finds the another expression from Eqs.
�A11b� and �A12�

��r� �
Eq

v�

r +

w�q	 −
w

2


2Mv�r
−

m − q	 + w

2
+ � − �n +

1

2
� ,

�A16�

where n is the integer. The expressions on ��r� in Eqs. �A15�
and �A16� become identical when � satisfies

� =
�

2
�m − q	 +

w + 1

2
 +

�

2
n . �A17�

The alternative expressions of ��r� in Eqs. �A10� and �A15�
with Eq. �A17� should be identical at r=rc. Hence, we finally
obtain the eigenvalue of the BdG Eq. �2�,

Eq = − �q	 −
w

2
 �0

sin���
+ �n +

w − 1

2
sin����1,

�A18�

where

�0 


w�
rc

� 
�r��
k�r�

e−2��r��dr�

�
0

�

e−2��r��dr�

, �A19a�

�1 

�k�

2M�
0

�

e−2��r��dr�

. �A19b�

To estimate the order of the energy scale of �0,1, let us con-
sider the simplest case of 
�r�, that is, 
�r�=
0 tanh�r /��. In

this situation, one find �1� �
2 
0 and �0=g w

2

0

2

EF
with

�0
�e−2��r��dr�=�. Here, g�O�1�. Hence, the eigenvalue Eq is

composed of two different energy scales, such as 
0 and

0

2 /EF. The expression in the case of a singly quantized vor-
tex �w=1� coincides to that in Ref. �3�, and that with an
arbitrary w reproduces the results within the semiclassical
approximation in Ref. �18�. The further details on Eq. �A18�
is described in Sec. II B. We should mention that the inte-
grals in �0 and �1 depends on the winding number of 
�r�.
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