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We study the crossover of a quasi-two-dimensional Fermi gas trapped in the radial plane from the Bardeen-
Cooper-Schrieffer �BCS� regime to the Bose-Einstein condensation �BEC� regime by crossing a wide Feshbach
resonance. We consider two effective two-dimensional Hamiltonians within the mean-field level, and calculate
the zero-temperature cloud size and number density distribution. For a model 1 Hamiltonian with renormalized
atom-atom interaction, we observe a constant cloud size for arbitrary detunings. For a model 2 Hamiltonian
with renormalized interactions between atoms and dressed molecules, the cloud size deceases from the BCS to
BEC side, which is consistent with the picture of BCS-BEC crossover. This qualitative discrepancy between
the two models indicates that the inclusion of dressed molecules is essential for a mean-field description of
quasi-two-dimensional Fermi systems, especially on the BEC side of the Feshbach resonance.
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I. INTRODUCTION

The interest in low-dimensional Fermi systems has been
recently reinvoked by the experimental developments of
cooling and trapping atoms in optical lattices �1–3� and on
atom chips �4�. With the aid of tuning an external magnetic
field through a Feshbach resonance, these techniques provide
a fascinating possibility of creating quasi-low-dimensional
Fermi systems with a controllable fermion-fermion interac-
tion. In particular, the interaction between fermions can be
tuned from a Bardeen-Cooper-Schrieffer �BCS� limit to a
Bose-Einstein condensation �BEC� limit, such that the BCS-
BEC crossover can be studied in quasi-low-dimensions. The
BCS-BEC crossover has been extensively studied in three-
dimensional �3D� Fermi systems, where a single-channel
model �5� and a two-channel model �6� are both applied to
give a consistent description around a wide Feshbach reso-
nance. This agreement between single- and two-channel
models is rooted on the fact that the closed-channel �Fesh-
bach molecule� population is negligible near a wide reso-
nance, so it will not cause any significant difference by tak-
ing the molecules into account �as in the two-channel model�
or completely neglecting them �as in the single-channel
model�. The BCS-BEC crossover of a uniform two-
dimensional �2D� Fermi system has also been considered in
connection with high-Tc superconductors �7�, where an effec-
tive 2D Hamiltonian with renormalized fermion-fermion in-
teraction is employed.

In this paper, we study the BCS-BEC crossover in a
quasi-2D Fermi gas, first using an effective 2D Hamiltonian
with renormalized atom-atom interaction �model 1� �8,9�,
and then a more general model with renormalized interaction
between atoms and dressed molecules �model 2� �10�. The
dressed molecules mainly come from population of atoms in
the excited levels along the strongly confined axial direction
near a Feshbach resonance �10,11�. When considering the
effect of a weak harmonic trap in the two loosely confined
dimensions under the local density approximation �LDA�,
we adapt the mean-field �MF� treatment to calculate the zero-
temperature cloud size and number density distribution in the
radial plane. We find a significant difference between the two

models. By using model 2, we show that the cloud size de-
creases from the limiting value of a weakly interacting Fermi
gas as one moves from the BCS to the BEC side of the
Feshbach resonance, and approaches to the limiting value of
a weakly interacting Bose gas in the BEC limit. This behav-
ior is a signature of the BCS-BEC crossover in quasi-two-
dimensions. On the contrary, model 1 fails to describe this
crossover behavior, but predicts a constant cloud size and
identical density profile for all magnetic field detunings. This
discrepancy implies that the MF results given by model 1 is
unreliable, even at a qualitative level. Given this qualitative
discrepancy and the problem associated with model 1 for
description of the two-body ground state of the system �12�,
it is likely that the oversimplification is rooted in the model
itself instead of the mean-field approximation.

The quasi-2D geometry can be realized by arranging a
one-dimensional �1D� optical lattice along the axial �z� di-
rection and a weak harmonic trapping potential in the radial
�x-y� plane, such that fermions are strongly confined along
the z direction and form a series of quasi-2D pancake-shaped
clouds �3�. Each such pancake-shaped cloud can be consid-
ered as a quasi-2D Fermi gas when the axial confinement is
strong enough to turn off intercloud tunneling. The strong
anisotropy of trapping potentials introduces two different or-
ders of energy scales, with one characterized by ��z and the
other by ���, where �z ���� are the trapping frequencies in
the axial �radial� directions. The separation of these two en-
ergy scales ��z���� allows us to first deal with the axial
degrees of freedom and derive an effective 2D Hamiltonian,
and leave the radial degrees of freedom for later treatment.

II. MODEL 1 WITH RENORMALIZED
ATOM-ATOM INTERACTION

The effective 2D Hamiltonian for model 1 is obtained by
assuming that the renormalized atom-atom interaction can be
characterized with an effective 2D scattering length, with the
latter derived from the exact two-body scattering physics
�8,9�. Thus, for a wide Feshbach resonance where the
Feshbach-molecule population is negligible, we can write
down an effective Hamiltonian only in terms of 2D fermi-
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onic operators ak,� and ak,�
† , with �pseudo� spin � and trans-

verse momentum k= �kx ,ky�. The model 1 Hamiltonian thus
takes the form �7–9�

H1 = �
k,�

��k − ��ak,�
† ak,� +

V1
eff

L2 �
k,k�,q

ak,↑
† a−k+q,↓

† ak�,↓a−k�+q,↑,

�1�

where �k=�2k2 / �2m� is the 2D dispersion relation of fermi-
ons with mass m, � is the chemical potential, and L2 is the
quantization area. The bare parameter V1

eff is connected with
the physical one V1p

eff through the 2D renormalization relation
�V1

eff�−1= �V1p
eff�−1−L−2�k�2�k+��z�−1 ���z is from the zero-

point energy�, and V1p
eff=V1p

eff�as ,az� depends on the 3D scat-
tering length as and the characteristic length scale for axial
motion az��� / �m�z� with the expression given in Refs.
�8–10�. Notice that the chemical potential � can be a func-
tion of the radial coordinate r= �x ,y� under LDA. In the fol-
lowing discussion, we choose ��z as the energy unit so that
�, V1

eff, and �k=az
2k2 /2 become dimensionless.

By introducing a BCS order parameter �also dimension-
less in unit of ��z� ���V1

eff /L2��k�ak,↓a−k,↑	, we get the
zero temperature thermodynamic potential density

	 = −
�2

V1
eff +

1

L2�
k

��k − � − Ek� , �2�

where Ek=���k−��2+�2 is the quasiparticle excitation spec-
trum. The ultraviolet divergence of the summation over k
cancels with the renormalization term in �V1

eff�−1. The gap
and number equations can be obtained, respectively, from
�	 /��2=0 and n=−�	 /�� �n=N /L2 is the density of par-
ticles�, leading to

1

V1p
eff�as,az�

=
ln�− � + ��2 + �2�

4
az
2 , �3�

n =
� + ��2 + �2

2
az
2 . �4�

Notice that Eq. �3� can be rewritten as F�as ,az�=−�
+��2+�2, where the function F absorbs all the dependence
on as and az. Thus, by substituting this expression into Eq.
�4�, we get a closed form for the number equation

n =
1


az
2
F�as,az�

2
+ �� . �5�

Now we take into account the harmonic trapping potential
U�r�= ��� /�z�2r2 / �2az

2� in the radial plane by writing down
the position-dependent chemical potential ��r�=�0−U�r�,
where �0 is the chemical potential at the trap center. It can be
easily shown that the spatial density profile is now a pa-
rabola, n�r�= ��� /�z�2�RTF

2 −r2� / �2
az
4�, with the Thomas-

Fermi cloud size RTF=�2�0az��z /���. By assigning the
condition that the total number of particles in the trap is fixed
by N=�n�r�d2r, the cloud size takes the constant value RTF

=RBCS��2�z /���N�1/4az, which is independent on the 3D
scattering length as. In fact, as one varies the scattering

length as, the chemical potential at the trap center �0 is ad-
justed accordingly such that the identical density profile is
maintained.

This result of a constant cloud size is obviously inconsis-
tent with the picture of a BCS-BEC crossover in quasi-two-
dimensions. In fact, in a typical experiment with az �
�m�
much greater than the interatomic interaction potential Re
�
nm�, the scattering of atoms in this quasi-2D geometry is
still 3D in nature. In particular, fermions will form tightly
bound pairs on the BEC side of the Feshbach resonance as
they do in 3D. Thus, in the BEC limit when fermion pair size
apair�az and binding energy �Eb����z, the system essen-
tially behaves similar to a weakly interacting gas of pointlike
bosons, for which one would expect a vanishing small cloud
size in the loosely confined radial plane �8,13�.

The MF result of a finite cloud size in the BEC limit from
model 1 indicates a finite interaction strength between paired
fermions, no matter how small they are in size. This state-
ment can be extracted directly from the number Eq. �5�,
which can be written in the form �=n
az

2−F�as ,az� /2. In
the BEC limit, the second term on the right-hand side de-
notes one half of the binding energy, while the first term
indicates a finite interaction energy per fermion pair since it
is proportional to the number density. As a comparison, the
actual equation of state for fermion pairs one should expect
must take the form as for a quasi-2D Bose gas in the weakly
interacting limit �8�

�B � 3nazas, �6�

in which case the quasi-2D gas is treated as a 3D condensate
with the ground state harmonic oscillator wave function in
the z direction.

The interaction strength between paired fermions can also
be derived by writing down a Bose representation for this
system, where the fermionic degrees of freedom are inte-
grated out in the BEC limit �14�. This Bose representation
leads to a two-dimensional effective Hamiltonian for bosonic
field ��r�,

Heff =� dr
�†�r��−
�2�2

4m
+ 2U�r����r� −

g2

2
���r��4� ,

�7�

where the quartic term characterizes the bosonic interaction.
Within the stationary phase approximation, the interaction
strength g2 is calculated by the leading diagram of a four-
fermion process with four external boson lines and four in-
ternal fermion propagators, leading to �14�

g2 = 2�
p,�


0
4�p�G0

2�p,��G0
2�− p,− �� . �8�

Here, 
0= �−p2 /m+ �Eb���0�p� is the boson-fermion vertex,
�0�p� is the Fourier transform of the relative wave function
�0�r� of two colliding fermions in the s-wave channel, and
G0�p ,��= �i�− p2 /2m− �Eb� /2�−1 is the free propagator for
fermions. After summing over momentum p and Matsubara
frequency �, we can directly show that g2 indeed takes a
constant value, being independent of the binding energy �Eb�
of paired fermions and hence the 3D scattering parameter as.
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Thus, we conclude that the MF theory based on model 1 fails
to recover the picture of a weakly interacting Bose gas of
paired fermions in the BEC limit, and cannot be directly
applied to describe the BCS-BEC crossover in quasi-two-
dimensions.

III. MODEL 2 WITH INCLUSION
OF DRESSED MOLECULES

Having shown the problem associated with model 1, next
we consider model 2 by taking into account the axially ex-
cited states via inclusion of dressed molecules. As derived in
Ref. �10�, the effective 2D Hamiltonian takes the form �also
in unit of ��z�

H2 = �
k,�

��k − ��ak,�
† ak,� + �

q
� �q

2
+ �b − 2��dq

†dq

+
�b

L
�
k,q

�ak,↑
† a−k+q,↓

† dq + H.c.�

+
Vb

L2 �
k,k�,q

ak,↑
† a−k+q,↓

† a−k�,↓ak�+q,↑, �9�

where dq
† �dq� denotes the creation �annihilation� operator for

dressed molecules with radial momentum q, and �b, �b, and
Vb are the 2D effective bare detuning, atom-molecule cou-
pling rate, and background interaction, respectively. These
parameters can be related to the corresponding 3D param-
eters by matching the two-body physics �10�. By introducing
the order parameter ���b�d0	 /L+ �Vb /L2��k�ak,↓a−k,↑	, we
obtain the mean-field gap and number equations

1

V2p
eff�2��

=
ln�− � + ��2 + �2�

4
az
2 , �10�

n =
� + ��2 + �2

2
az
2 + �2�2��V2,p

eff �x��−1

�x
�

x=2�

, �11�

where the inverse of effective interaction is connected with
the 3D physical parameters through �10�

�V2p
eff�x��−1 = 
Vb +

�b
2

x − �b
�−1

+
1

L2�
k

1

2�k + ��z

=
�2


az
2 
�Up +

gp
2

x − �p
�−1

− Sp�x� + �p�x�� .

�12�

Here, Up=4
abg /az, gp
2 =�coWUp / ���z�, and �p=�co�B

−B0� / ���z� are 3D dimensionless physical parameters,
where abg is the background scattering length, �co is the
difference in magnetic moments between the two channels,
W is the resonance width, and B0 is the resonance point. The
functions in Eq. �12� take the form

Sp�x� =
− 1

4�2

�

0

�

ds
 ��s − x/2�
��s + 1/2 − x/2�

−
1
�s
� , �13�

�p�x� =
ln�x�

4
�2

, �14�

where ��x� is the gamma function.
Using this model 2 Hamiltonian, we first consider a uni-

form quasi-2D Fermi gas with a fixed number density n,
where the inhomogeneity in the radial plane is neglected. In
this case, the gap and number Eqs. �10� and �11� need to be
solved self-consistently for a given magnetic field. A typical
set of results for both 6Li and 40K are shown in Fig. 1,
indicates a smooth crossover from the BCS �right� to the
BEC �left� regimes. Here, results obtained from model 2
�black� are compared with those from model 1 �gray�. In this
figure and the following calculation, we use the parameters
abg=−1405a0, W=300 G, �co=2�B for 6Li and abg=174a0,
W=7.8 G, �co=1.68�B for 40K, where a0 and �B are Bohr
radius and Bohr magneton, respectively.

There are two major points that need to be emphasized in
Fig. 1. First, when plotted as functions of the inverse of 3D
scattering length az /as, the results for 6Li �solid� and 40K
�dashed� are very close, manifesting the near resonance uni-
versal behavior. Second, the results from model 1 and model
2 are significantly different, especially on the BEC side of
the resonance. In particular, the dressed-molecule fraction in
model 2 is already sizable �
0.16� at unitarity, and becomes
dominant on the BEC side of the resonance �see Fig. 1�c��.

FIG. 1. The BCS-BEC crossover behavior of a uniform
quasi-2D Fermi gas at zero temperature, showing �a� the chemical
potential �, �b� the gap �, both in unit of ��z, and �c� the dressed-
molecule fraction nb /n. Notice that the results for 6Li �solid� and
those for 40K �dashed� almost coincide as plotted as functions of
az /as, indicating a universal behavior around the resonance point.
Furthermore, significant difference between model 1 �gray� and
model 2 �black� can be observed in �b� and �c�, which shows that
model 1 is oversimplified at unitarity and on the BEC side of the
resonance. The parameters used in these plots are �z=2

�62 kHz and naz

2=0.001.
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This result provides another signature of inadequacy of
model 1, where the dressed-molecule population is always
assumed to be negligible.

Next, we impose a radial harmonic trap U�r� and calcu-
late the Thomas-Fermi cloud size for a fixed number of par-
ticles in the trap N=�2
n�r�rdr, as shown in Fig. 2. The
most important feature of Fig. 2 is that the cloud size given
by model 2 �solid� is no longer a constant as predicted by
model 1 �dashed�. On the contrary, by crossing the Feshbach
resonance, the cloud size decreases from the limiting value
RBCS of a noninteracting Fermi gas in the BCS limit, and
approaches to the 3D results �dotted� in the BEC limit. This
trend successfully recovers the corresponding physics in both
the BCS and the BEC limits. In addition, we also find that
for a given number of particles in the trap, the curve trend is
insensitive to the radial trapping frequency �� within the
experimentally accessible region. �The ��=2
�10 Hz and
2
�50 Hz results, not shown, coincide with the 2

�20 Hz line and are hardly distinguishable within the figure
resolution.� Considering the fact that there is a scaling rela-
tion between �� and N such that the physics is only deter-
mined by N��� /�z�2, this insensitivity with respect to the
radial trapping frequency suggests that the experimental
measurement has a rather wide range of tolerance on the
number of atoms.

In Fig. 3 we show the number density and the dressed-
molecule fraction distribution along the radial direction for
various values of az /as. A typical case in the BCS regime is
shown in the top panel of Fig. 3, where the dressed-molecule

fraction is vanishingly small, and models 1 and 2 predict
similar cloud sizes and number density distributions. The
middle panel shows the case at unitarity. As compared with
model 1, notice that the cloud is squeezed in model 2 and the
dressed-molecule fraction increases to a sizable value. The
bottom panel shows a typical case in the BEC regime, where
the cloud is squeezed further in model 2 as the dressed-
molecule fraction becomes significant. Notice that the results
of model 2 successfully describes the BCS-BEC crossover,
in clear contrast to the outcome of model 1.

IV. CONCLUSION

In summary, we have considered in this paper the BCS-
BEC crossover of a quasi-2D Fermi gas across a wide
Feshbach resonance. We analyze two effective Hamiltonians
and compare predictions of zero-temperature cloud size and
number density distribution in the radial plane within a
mean-field approach and local density approximation. Using
model 1 with renormalized atom-atom interaction, we show
that the cloud size remains a constant value through the en-
tire BCS-BEC crossover region, which is inconsistent with
the picture of a weakly interacting Bose gas of fermion pairs
in the BEC limit. On the other hand, model 2 with renormal-
ized interaction between atoms and dressed molecules pre-
dicts the correct trend of cloud size variation. Based on this
qualitative comparison, it is likely that the inclusion of
dressed molecules �10,11� is essential to describe the BCS-
BEC crossover in quasi-low-dimensions.

FIG. 2. The Thomas-Fermi cloud size of a quasi-2D Fermi gas
of 6Li over a wide BCS-BEC crossover region. Here, results from
model 2 �solid� are compared with those from model 1 �dashed�. All
curves are normalized to the cloud size of a noninteracting Fermi
gas RBCS. Notice that the results of model 2 recover the correct
pictures in the BCS and BEC limits, in clear contrast to the model
1 prediction of a flat line. Parameters used for these two plots are
�z=2
�62 kHz, ��=2
�20 Hz, and the total particle number
N=104. For reference, the results for an isotropic 3D Fermi gas
with the same total particle number is also plotted �dotted�, where a
single-channel model and a two-channel model are both incorpo-
rated to give indistinguishable predictions.

FIG. 3. �Color online� The in-trap number density �the solid
lines� and dressed-molecule fraction �the dashed lines� distribution
along the radial direction of a quasi-2D Fermi gas of 6Li, obtained
from model 2 �a–c� and model 1 �d–f�. The top panels correspond to
the case of az /as=−1 �BCS side�, the middle panels to the case of
az /as=0 �unitarity�, and the bottom panels to the case of az /as=1
�BEC side�. The parameters are �z=2
�62 kHz, ��=2

�20 Hz, and N=104.
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