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The stationary nonlinear Schrödinger equation �or Gross-Pitaevskii equation� for one-dimensional potential
scattering is studied. The nonlinear transmission function shows a distorted profile, which differs from the
Lorentzian one found in the linear case. This nonlinear profile function is analyzed and related to Siegert-type
complex resonances. It is shown that the characteristic nonlinear profile function can be conveniently described
in terms of skeleton functions depending on a few instructive parameters. These skeleton functions also
determine the decay behavior of the underlying resonance state. Furthermore, we extend the Siegert method for
calculating resonances, which provides a convenient recipe for calculating nonlinear resonances. Applications
to a double Gaussian barrier and a square-well potential illustrate our analysis.
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I. INTRODUCTION

Transport properties of Bose-Einstein condensates �BECs�
are of considerable current interest, both experimentally and
theoretically. In particular, atom-chip experiments are well-
suited to study the influence of interatomic interaction on
transport properties of BECs in waveguides since various
waveguide geometries can be realized by different methods
�1–10�.

A convenient theoretical approach is based on the Gross-
Pitaevskii equation �GPE� or the nonlinear Schrödinger
equation �NLSE�,

i�
���x,t�

�t
= �−

�2

2m
�2 + V�x� + g���x,t��2���x,t� , �1�

which describes the dynamics in a mean-field approximation
at low temperatures �11–14�. Another important application
of the NLSE is the propagation of electromagnetic waves in
nonlinear media �see, e.g., �15�, Chap. 8�. The ansatz
��x , t�=exp�−i�t /����x� reduces Eq. �1� to the correspond-
ing time-independent NLSE,

�−
�2

2m
�2 + V�x� + g���x��2���x� = ���x� �2�

with the chemical potential �.
Various interesting phenomena have been reported origi-

nating from the nonlinearity of Eq. �1�, such as, for instance,
a bistability of the barrier transmission probability �16–19�.
A paradigmatic model in this context is the transmission
through a one-dimensional rectangular barrier or across a
square-well potential, one of the rare cases in which the one-
dimensional NLSE

�2

2m
�� + �� − V�� − g���2� = 0 �3�

can be solved analytically �19–22�. As an example, Fig. 1
shows the nonlinear transmission coefficient �T�2 as a func-

tion of the chemical potential for the square-well potential
considered in �19�, which is discussed in more detail in Sec.
IV.

One observes a clearly structured behavior: the well-
known Lorentz profiles determined by the complex-valued
resonances for linear transmission are distorted. The curves
bend to the right �to the left for attractive nonlinearity g
�0� and are multivalued in certain regions. A time-
dependent numerical analysis shows that the lowest branch
of the transmission coefficient is populated if an initially
empty waveguide is slowly filled with condensate with a
fixed chemical potential � �16,19�, whereas the highest
branch can be populated if the chemical potential is adiabati-
cally increased during the propagation process, which is
equivalent to applying an additional weak time-dependent
potential �16�. These and related aspects are discussed in
detail in �23�.

It is the purpose of the present paper to analyze the func-
tional form of the transmission profile of the resonance peaks
characterized by �T�2=1 for a general �symmetric� potential
by relating them to Siegert-type complex-valued resonances.
It is demonstrated that the nonlinear resonances can be con-
veniently described by two skeleton functions that can be
easily computed and approximately fitted by a few param-
eters. In particular, we show that the line shape of the reso-
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FIG. 1. �Units �=m=1.� Transmission coefficient obtained from
solving the stationary NLSE �3� for a square-well potential with b
=20 and V0=−50 for g= +1 �see Sec. IV B and �19��.
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nance peaks is determined by the decay behavior of the un-
derlying metastable resonance state.

The paper is organized as follows. In Sec. II, we discuss
the nonlinear transmission problem and develop a formula
for the nonlinear Lorentz profiles that describes the transmis-
sion coefficient in the vicinity of a resonance in terms of
skeleton functions. In Sec. III, we present a convenient
recipe for calculating nonlinear resonances and skeleton
curves by a Siegert method. The applicability of this tech-
nique to the nonlinear resonance theory of Sec. II is illus-
trated in Sec. IV for two example potentials. Two Appen-
dixes present additional material, namely the continuation of
solutions of the NLSE to complex chemical potentials in
Appendix A, and, in Appendix B, the derivation of a useful
formula for the decay coefficient for a symmetric finite range
potential, denoted as the Siegert relation.

II. NONLINEAR LORENTZ PROFILE

A. The transmission problem

In the case of the NLSE, the superposition principle is not
valid. Therefore, the definition of a transmission coefficient
is nontrivial. Here we review and slightly extend an ap-
proach based on the time-dependent NLSE �see �16,19,23��.
Following Paul et al. �23�, we consider an experimental
setup where matter waves from a large reservoir of con-
densed atoms at chemical potential � are injected into a one-
dimensional waveguide in which the condensate can propa-
gate �see Fig. 2�. In a time-dependent approach, the system is
described by the NLSE,

i��̇�x,t� = −
�2

2m
���x,t� + V�x���x,t� + g���x,t��2��x,t�

+ f�t�e−i�t/���x − x0� , �4�

where the source term f�t�e−i�t/���x−x0� located at x=x0
emits monochromatic matter waves at chemical potential �
and thus simulates the coupling to a reservoir. The barrier
potential V�x� is assumed to be zero for x�x0.

In the following, we assume a constant source strength
f�t�= f0 and look for stationary solutions ��x , t�=��x�exp�
−i�t /�� of Eq. �5� arriving at

���x� = −
�2

2m
���x� + V�x���x� + g���x,t��2��x,t� + f0��x

− x0� . �5�

Application of the integral operator

lim
�→0
�

x0−�

x0+�

dx �6�

leads to

	−
�2

2m
��+� − �−��	

x0

+ f0 = 0, �7�

where we have introduced the notation

��x� = 
�−�x� , x � x0

�+�x� , x 	 x0.
� �8�

Since we have V�x�=0, x�x0 and there is no incoming
current from x=−
, the solution in the region x�x0 is given
by the plane wave �−�x�=�−

0exp�−ik−x� with k−

=�2m��−g��−
0�2� /� and �−��x�=−ik−�−�x�. Inserting this into

Eq. �7� leads to

	 f0 =
�2

2m
��+� + ik−�−�	

x0

�9�

or, taking into account the continuity of the wave function
���+−�−��x0

=0 at x=x0, to

	 f0 =
�2

2m
��+� + ik+�+�	

x0

�10�

with k+=�2m��−g��+�x0��2� /�. Equation �10� relates the
wave function �+ in the region x�x0 to the source strength
f0. In order to relate the source strength to the incoming
condensate current, we consider the special case in which
V�x�=0 everywhere, i.e., without a barrier. Then the wave
function in the region x�x0 is given by a plane wave
�+�x�=A exp�ikA�x−x0�� with kA=�2m��−g�A�2� /� and
�+��x�=−ikA�+�x�. From the continuity of the wave function
�−�x0�=�+�x0�=A, we get k−=k+=kA, and together with Eq.
�10� we obtain

f0 = i
�2

m
kAA . �11�

For a given source strength f0, Eq. �11� can have up to
two different solutions for A. In the following, we only con-
sider the solution corresponding to the limit of weak interac-
tion. The incoming current emitted by the source is given by
jin= �

mkA�A�2= �f0��A� /�. Inserting Eq. �11� into Eq. �10�, we
obtain the relation

�2ikAA = ��+� + ik+�+��x0
�12�

connecting the condensate wave function with the incoming
current. We define the transmission coefficient as

j
in

j
ref

j
t

e−ikx eikx

coupling (source)

BEC
reservoir
chem.
pot. µ

x
0

x
scattering potential V(x)

FIG. 2. �Color online� At x0 condensate with chemical potential
� is injected into the waveguide from a reservoir. The reservoir
emits a plane matter wave in both directions into the guide so that
an incoming beam with current jin is partially reflected �current jref�
and partially transmitted �current jt� at the barrier potential V�x�.

K. RAPEDIUS AND H. J. KORSCH PHYSICAL REVIEW A 77, 063610 �2008�

063610-2



�T�2 =
jt

jin
, �13�

where the current jt transmitted through the barrier is ob-
tained by evaluating the current operator

jt = −
i�

2m
��+

��+� − �+�+�
�� �14�

anywhere in the region x�x0, and jin is the current in ab-
sence of the barrier. In the noninteracting limit g→0, this
definition coincides with the usual definition of the transmis-
sion coefficient known from the linear Schrödinger theory. It
has the advantage of being also applicable in the time-
dependent case.

In order to illuminate the dependence of the transmission
coefficient on the position x0 of the source term, we consider
the transmission through a single � barrier V�x�=���x� lo-
cated at x=0 as a fixed output problem, i.e., we always have
��x�=C exp�ikx� for x�0 with a fixed value of C. Since we
are only interested in the influence of the nonlinearity in the
upstream region x�0, we set g=0 for x	0 so that k
=�2m� /�. If there is no reflection, the wave function in the
upstream region x�0 is given by a plane wave and the trans-
mission coefficient is always equal to unity, independent of
the position of the source. In the opposite limit of total re-
flection, the transmission coefficient is zero for any position
of the source term. Thus the strongest position dependence
can be expected for an intermediate transmittivity. For our
study, we therefore choose the parameters �=2, �=2, and
C=0.5, which lead to a transmission of �T�2=0.5 in the non-
interacting �g=0� limit.

In the general case, the wave function ��x� in the up-
stream region x�0 is given by a Jacobi elliptic function with
a period 
x �see, e.g., �19� and references therein�. Thus the
position dependence of the transmission coefficient inherits
the same periodicity as we can see in the middle panel of
Fig. 3, which shows the transmission coefficient �T�2 in de-
pendence on the position x0 of the source term for a fixed
nonlinearity of g=0.1. The amplitude of the oscillation in-
creases with the interaction parameter g as shown in the
upper panel of Fig. 3, where the maximum �solid red curve�
and minimum �dashed blue� value of the transmission coef-
ficient are plotted against g. For comparison, the dashed-
dotted black curve shows the transmission according to an
ansatz resulting from a thought experiment where the inter-
action parameter g�x� is adiabatically ramped up from some
position x1 with g�x1�=0 to its final value g�x1+L�=gfinal
over some distance L. By relating the current in the region
x�x1, where g�x�=0 and thus the superposition principle is
valid, to an adiabatically invariant quantity that is indepen-
dent of the position x, the transmission coefficient can be
expressed by the formula

�T�2 = �1 +
�

2�mjt
�


x

��x���x���2dx�−1

�15�

�see �23� for details�, which requires integration over the
spatial period 
x. It assumes a fixed incoming current jin
rather than a fixed source strength f0 as the definition given

in Eqs. �12�–�14�. In the linear case �g=0�, both definitions
are equivalent but in the presence of interaction they differ
due to the back-reaction of the effective interaction potential
g���x��2 �see the lower panel of Fig. 3� on the source. One
observes that the transmission according to Eq. �15� agrees
reasonably well with the minimum value of the position-
dependent transmission coefficient where the influence of the
effective potential is small.

In the vicinity of a resonance, the effective interaction
potential g���x��2 outside the barrier is typically very small
compared to the chemical potential so that the dependence
on the source position is weak. Therefore, a good agreement
between both definitions of the transmission coefficient can
easily be achieved by an appropriate choice of the source
position x0 within one spatial period 
x �cf. Sec. IV A�.

B. Resonance line shape

In the following, we will derive a formula for the trans-
mission coefficient �T�2 of a symmetric potential well V�x�
=V�−x� with the finite range a �i.e., V�x�=0 if �x�	a� in the
vicinity of a resonance in dependence on the chemical po-
tential � of the incoming condensate current. Our approach
is based on a generalization of Siegert’s derivation of the
dispersion formula for nuclear reactions, and we closely fol-
low the arguments in �24�. An alternative ansatz makes use
of the Feshbach formalism �23,25�.

We consider the situation in which the condensate source
is located at x0=−a. The solution in the downstream region
x	a is then given by a plane wave ��x�=C exp�ikCx� with
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FIG. 3. �Color online� �Units �=m=1.� Upper panel: Maximum
�solid red� and minimum value �dashed blue� of the transmission
coefficient �T�2 for different values of the interaction parameter g.
Dashed-dotted black curve: transmission coefficient according to
Eq. �15� for comparison. Middle panel: position dependence of the
transmission coefficient for a fixed interaction strength g=0.1.
Lower panel: Effective interaction potential g���x��2 for g=0.1.
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kC=�2m��−g�C�2� /� so that the transmitted current is given
by jt=

�

mkC�C�2. At x=−a, the wave function must satisfy Eq.
�12� with x0=−a.

Thus the scattering wave function � in the interval
�−a ,a� is a solution of Eq. �3� with boundary conditions

��a� = CeikCa, ���a� = ikC��a� , �16�

2ikAA = ���− a� + ik��− a� , �17�

where k=�2m��−g���−a��2� /�. The transmission coefficient
given by �T�2= jt / jin= �kC /kA��C /A�2 depends on the chemical
potential � and, due to the nonlinear term in Eq. �3�, also on
the magnitude of the wave function. If the incoming ampli-
tude A is kept fixed, this dependence can be conveniently
described by the magnitude �C�2 of the outgoing amplitude.

Now we consider C /A as a function of �. From Eqs. �16�
and �17�, we obtain

C

A
=

2ikA��a�exp�− i�k + kC�a�
ik��− a� + ���− a�

. �18�

Singularities of Eq. �18� occur for certain complex chemi-
cal potentials Wsk where the denominator vanishes. These
values of the chemical potential are defined by the eigen-
value problem

�2

2m
�sk� + �Wsk − V��sk − g��sk�2�sk = 0 �19�

in −a�x�a with the boundary conditions

�sk�a� = Ceikska, �sk� �a� = iksk�sk�a� , �20�

�sk�− a� = Cei�kska+i��, �sk� �− a� = − iksk�sk�− a� , �21�

where ksk=�2m�Wsk−g�C�2� /� and � is some real-valued
phase. Because of the nonlinear term in Eq. �19�, the com-
plex energy Wsk=�sk− i�sk /2 with real �sk and �sk depends
explicitly on �C�2. The problem concerning the continuation
of the solution to the domain of complex chemical potentials
is discussed in Appendix A. Motivated by the analogy to a
driven nonlinear oscillator, we call the functions �sk��C�2�
and �sk��C�2� skeleton curves and �sk the skeleton wave func-
tion.

From Eq. �19� and its complex conjugate as well as the
boundary conditions �20� and �21�, we derive the useful for-
mula

�2

2m
��sk�a��2 =

�sk/2
ksk + ksk

� �
−a

a

��sk�2dx . �22�

In order to obtain C /A in the vicinity of the singularity
Wsk, we multiply Eq. �3� by �sk and Eq. �19� by � and sub-
tract these equations. By integrating the resulting equation

�2

2m
��sk� � − ���sk� + �Wsk − ���sk� + g�sk�����2 − ��sk�2� = 0

�23�

from x=−a to x= +a and using the boundary conditions, we
arrive at

�2

2m

i�sk�a���a��ksk − kC� + �sk�− a��iksk��− a� + ���− a���

+ g�
−a

a

�sk�����2 − ��sk�2�dx + �Wsk − ���
−a

a

�sk�dx = 0.

�24�

Thus we can write the denominator of C /A in Eq. �18� as

ik��− a� + ���− a� = −
Wsk − �

��2/2m��sk�− a��−a

a

�sk�dx

−
2mg

�2�sk�− a��−a

a

�sk�����2 − ��sk�2�dx

− i�ksk − kC�
�sk�a���a�

�sk�− a�
− i�ksk − k�

���− a� . �25�

Using

ksk − kC =
2m

�2

Wsk − �

ksk + kC
, �26�

ksk − k =
2m

�2

Wsk − � − g��C�2 − ���− a��2�
ksk + k

, �27�

we obtain

ik��− a� + ���− a� = −
Wsk − �

��2/2m��sk�− a��−a

a

�sk�dx

−
2mg

�2�sk�− a��−a

a

�sk�����2 − ��sk�2�dx

− i
Wsk − �

��2/2m��sk�− a�
�sk�a���a�

ksk + kC

− i
Wsk − � − g��C�2 − ���− a��2�

��2/2m��sk�− a�

�
�sk�− a���− a�

ksk + k
. �28�

Assuming that the eigenvalue Wsk is not degenerate, we
have the following in the limit �→Wsk: �→�sk, ���−a��2
→ �C�2, and k ,kC→ksk, so that

ik��− a� + ���− a� → −
Wsk − �

��2/2m��sk�− a���−a

a

�sk
2 dx

+ i
�sk

2 �a� + �sk
2 �− a�

2ksk
� . �29�

For the numerator of C /A, we get 2ikA��a�exp�−i�k
+kC�a�→2ikA�sk�a�exp�−2ikska�. Thus C /A becomes

C

A
= −

�2/2m

Wsk − �

2ikAe−2ikska�sk�a��sk�− a�

�
−a

a

�sk
2 dx + i

�sk
2 �a�+�sk

2 �−a�
2ksk

. �30�
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For sufficiently small values of �sk, we can multiply �sk
by a suitable constant � of magnitude 1 that makes ��sk real
�up to terms of order �sk� in the regions of slowly varying
phase, which give the main contribution to the integral
�−a

a ��sk�2dx. In this limit, we can thus use the approximation

�
−a

a

�2�sk
2 dx � �

−a

a

��sk�2dx . �31�

We furthermore define the phase factor �sk by ��sk�a�
= ��sk�a��exp�ikska+ i�sk /2�. Using these definitions and �sk�
−a�=�sk�+a�exp�i��, Eq. �30� can be written as

C

A
= −

�2/2m

Wsk − �

2ikA exp�i�sk + i����sk�a��2

�
−a

a

��sk�2dx + i��sk�a��2
exp�2ikska+i�sk��1+exp�i���

2ksk

�32�

or, using Eq. �22�,

C

A
= − ei�sk+i� �sk/2

Wsk − �

2ikA

ksk + ksk
� + i�sk

2m exp�2ikska+i�sk��1+exp�i���
�2ksk

.

�33�

As �sk tends to zero, ksk becomes real and the last term in
the denominator of Eq. �33� is negligible, so that we have in
this limit

C

A
= ei�sk+i� kA

ksk

i�sk/2
� − �sk + i�sk/2

. �34�

Thus the transmission coefficient in the vicinity of a reso-
nance is given by

�T�2 =
kC

kA
	C

A
	2

=
kA

ksk

�sk
2 /4

�� − �sk�2 + �sk
2 /4

�35�

with ksk�kC. This result formally resembles the Lorentz or
Breit-Wigner form that occurs in the respective linear theory.
However, the chemical potential �sk and the width �sk de-
pend implicitly on �T�2. This dependence disappears in the
linear limit g→0 and we recover the usual Lorentz profile.
Equation �35� can be inverted to the form

�� = �sk �
�sk

2
� kA

ksk�T�2
− 1, �36�

i.e., the skeleton chemical potential is the average of the two
branches �� at fixed �T�2 and the skeleton �sk the
��T�-weighted� width

�sk = ��+��T�� − �−��T���� �T�2

�kA/ksk� − �T�2
. �37�

Figure 5 shows a typical nonlinear Lorentz curve of the
type �35� for the case of a repulsive nonlinearity. The skel-
eton curve �sk, indicated by the dashed line, appears as a
kind of backbone structure of the nonlinear Lorentz profile,
justifying its name, which is taken from the theory of classi-
cal driven nonlinear oscillators �26� where resonance curves
similar to Eq. �35� occur.

The skeleton curves �sk and �sk can either be param-
etrized in terms of the amplitude �C�2 or in terms of the
number of particles N=�−b

b ��sk�x��2dx inside the potential
well. It was shown �27,28� that in an adiabatic approxima-
tion, the decay behavior of a resonance state is determined
by the imaginary part �sk�N�t�� of the instantaneous chemical
potential via

�tN�t� = −
�sk�N�t��

�
N�t� . �38�

Thus there is a close connection between the transmission
line shape and the decay behavior of the corresponding reso-
nance state as it is known for the linear limit g=0, where the
decay coefficient is constant and the line shape is Lorentzian.

III. CALCULATING SKELETON CURVES

As shown in Sec. II, the skeleton curves �sk��C�2� and
�sk��C�2� are obtained by solving the NLSE �19� with the
Siegert boundary conditions �20� and �21�. It has been shown
that the use of Siegert boundary conditions is equivalent to a
complex rotation of the coordinates �29�. Different proce-
dures based on this principle, e.g., direct complex scaling or
complex absorbing potentials, have been successfully ap-
plied to resonance states of the NLSE �27,30,31�. Here we
present an alternative method that is numerically cheap, easy
to implement, and, though not quite as accurate as the com-
plex scaling procedures, provides a convenient basis for ap-
proximations.

This method, which we call the Siegert method, is based
on neglecting the imaginary part −�sk /2 of the chemical po-
tential and thus having only real values of ksk
=�2m��sk−g�C�2� /�, which is justified for not too large val-
ues of �sk. Since the boundary conditions �20� and �21� can
no longer be satisfied simultaneously for real values of ksk,
we replace the boundary conditions �21� by the less restrict-
ing condition

	 d

dx
��sk�2	

x=0
= 0, �39�

which preserves the symmetry ��sk�−x��2= ��sk�x��2 of the
skeleton wave functions. This is equivalent to calculating the
wave function for which the transmission coefficient as-
sumes a maximum. The new boundary value problem given
by Eqs. �19�, �20�, and �39� is solved using a shooting pro-
cedure where the NLSE �19� is integrated from x= +a to x
=0 using a Runge-Kutta solver with starting conditions �20�
at x=a for a fixed value of C. By means of a bisection
method, �sk is adapted until the condition �39� is satisfied.
The imaginary part of the chemical potential can then be
estimated by the Siegert relation

�sk =
�2ksk�C�2

m�
0

b

��sk�x��2dx

, �40�

where �b are the positions of the maxima of the symmetric
trapping potential �see Appendix B�.
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Before we use our simple method to compute skeleton
curves in Sec. IV, we demonstrate its validity for the lowest
resonance state of the standard test potential,

V�x� =
x2

2
exp�− �x2� �41�

with �=0.1 so that the position of the potential maxima is
given by b�3.16 using units where �=1 and m=1 as we do
for all numerical calculations in this paper. We choose a
=30 to be sufficiently large to ensure that the approximation
V�x��0 for �x�	a is valid and thus the resonance wave
function �sk�x� is well approximated by a plane wave in the
area x	a. The amplitude C is chosen such that the wave
function is normalized in the region �x��b, i.e.,
�−b

b ��sk�x��2dx=1. Note that because of the nonlinearity, �sk
is not proportional to C.

In Table I, we compare our results for the lowest reso-
nance of the potential �41� with the results of direct complex
scaling and the complex absorbing potential method �27�.
The agreement between the different methods is very good,
especially if the interaction constant g is small, which is also
the case within our calculations of skeleton curves in the
following section. Apart from being numerically cheap and
easy to implement, the Siegert method proposed here can
provide analytical expressions for �sk and �sk if the potential
in consideration is simple enough �see Sec. IV B�.

The Siegert method can be generalized to resonances of
asymmetric barrier potentials where the matter wave is local-
ized between two maxima at x=−c�0 and x=b	0 with
�b� , �c��a, but then the situation is more involved because
the symmetry condition �39� no longer applies. Instead one
can again consider the problem of transmission through the
barrier and calculate the states �asym and the corresponding
real chemical potentials �asym that maximize the transmis-
sion coefficient �see the remark following Eq. �39��. The re-
lation �40� for the decay coefficient is generalized to

�asym =
�2k+a��asym�a��2 + �2k−a��asym�− a��2

m�
−c

b

��asym�x��2dx

, �42�

where k�a=�2m��asym−g����a��2� /�.

IV. APPLICATIONS

In the preceding section, we presented a convenient recipe
for calculating nonlinear resonances and skeleton curves by a
Siegert method. In this section, we will illustrate the appli-
cability of this technique to the nonlinear resonance theory of
Sec. II for two model potentials that illuminate special fea-
tures of the transmission problem, namely a double-Gaussian
barrier with full nonlinearity on the whole axis and a square
well with vanishing nonlinearity outside the well. The ap-
proximate resonance results are compared with exact nu-
merical computations. Finally, the decay behavior as a func-
tion of time is briefly discussed, again illustrated by the
nonlinear square well.

To this end, we calculate the skeleton curves �sk and �sk,
which can either be parametrized in terms of the amplitude
�C�2 or in terms of the mean number of particles N
=�−b

b ��sk�x��2dx inside the potential well, by means of the
Siegert method presented in the preceding section. Further-
more, we show that these skeleton curves are conveniently
approximated by polynomials depending on a few instructive
parameters.

A. Example 1: The double-Gaussian barrier

To demonstrate the validity of our model �35�, we apply it
to the potential

V�x� = V0
exp�− �x + b�2/�2� + exp�− �x − b�2/�2�� �43�

for �x��a and V�x�=0 for �x�	a with the parameters V0=1,
b=14.7 /2, �=b /5, a=30, and a nonlinearity of g=0.005.
The mean number of particles N=�−b

b ��sk�x��2dx inside the
potential well is calculated between the maxima x= �b of
the potential �43�; the source term shall be located at x0=
−a. For the given parameters, the dependence of the trans-
mission coefficient on the position of the source term is neg-
ligible �see Sec. II A�. In �16�, the transmission coefficient of
this potential in dependence on � is calculated for the case of
an initially empty waveguide. The incoming amplitude �A�2 is
connected with the incident current jin �i.e., the current in the
absence of the barrier� via jin= �A�2�2��−g�A�2� /m. In the
following, we will assume �A�2=1 in all numerical calcula-
tions.

Using the method described in Sec. III, we numerically
calculate the skeleton curves �sk��C�2�, �sk��C�2� with �C�2

TABLE I. Chemical potential and decay rates for the lowest quasibound state, calculated with the Siegert
method �S�, complex scaling �CS�, and complex absorbing potentials �CAP� �units �=m=1�.

g �S �CS �CAP �S /2 �CS /2 �CAP /2

0 0.4601 0.4601 0.4602 9.63e-7 9.35e-7 9.62e-7

1 0.7954 0.7954 0.7954 1.81e-5 1.82e-5 1.80e-5

2 1.0772 1.0765 1.0772 1.56e-4 1.55e-4 1.56e-4

3 1.3192 1.3190 1.3192 8.11e-4 8.05e-4 8.05e-4

4 1.5317 1.5315 1.5312 2.79e-3 2.76e-3 2.75e-3

5 1.7247 1.7236 1.7231 6.78e-3 6.65e-3 6.63e-3

6 1.9070 1.9043 1.9035 1.27e-2 1.24e-2 1.23e-2
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� �A�2. For �C�2= �A�2, we have �T�2=1 �see Sec. II�. We call
the quantities �R��sk��C�2= �A�2�, �R��sk��C�2= �A�2�, and
�R�x���sk�x ; �C�2= �A�2� the resonance chemical potential,
resonance width, and resonance wave function, respectively.
In the limit �C�2→0, the influence of the nonlinear term in
the NLSE �19� can be neglected so that �sk��C�2→0�=�n
and �sk��C�2→0�=�n, where �n and �n are the respective
quantities of the linear problem with g=0.

Now we will show that over a wide range of parameters,
the skeleton curves �sk�N� and �sk�N� are well approximated
by simple elementary functions, and that the five quantities
�n, �n, �R, �R, and �A�2 provide all the necessary informa-
tion.

Since the shift in the chemical potential is caused by the
term g��sk�2 in the NLSE �19�, we assume this shift to be
approximately proportional to the number of particles inside
the potential well, that is,

�sk�N� = �n +
�R − �n

NR
N , �44�

where NR=�−b
b ��R�x��2dx is the norm inside the well in the

case of resonance. Next we represent the amplitude �C�2
= ���a��2 as a function of N by a Taylor series that we trun-
cate after the quadratic term,

�C�2 � �T�2�A�2 � �1N + �2N2. �45�

If there are no particles �N=0�, the transmitted amplitude
�C�2 is zero so that there is no constant term in Eq. �45�.
Inserting Eqs. �44� and �45� into Eq. �40�, we obtain

�sk�N� =
2�2ksk�C�2

N
�

2�2�

�m
��sk�N� − g��1N + �2N2���1

+ �2N� . �46�

From Eq. �46�, we obtain

�sk�N = 0� = �n = 2�2���n/m�1, �47�

NR = 2��2��R − g�A�2�A�2/��m�R� , �48�

so that the coefficients �1 and �2 are given by �1
=�n

�m / �2��2�n� and �2= �A�2 /NR
2 −�1 /NR. Inverting Eq.

�45� leads to N�=−�1 / �2�2����1
2 / �4�2

2�+ �C�2 /�2. Thus we
can compute �sk and �sk as a function of �T�2.

It is often useful to approximate Eq. �46� by a second-
order Taylor polynomial

�sk = �n�1 + �1N + �2N2� , �49�

where �1=�2 /�1+ ��R−�n� / �2�nNR�−g�1 /�n and �2
=�2��R−�n� / �2�nNR�1�−g�1 /�n− ���R−�n� / ��nNR�
−g�1 /�n�2.

Figure 4 reveals an excellent agreement between the nu-
merically calculated skeleton curves and the approximation
described by Eqs. �44�–�48�.

Figure 5 compares a peak of the transmission coefficient
with the resonance model �35�. While the qualitative features
such as the bending of the curve are well reproduced, the
resonance model �35� slightly overestimates the width of the
resonance curve.

B. Example 2: The square well

For illustrative purposes, we now apply the result �35� to
a simple analytically solvable toy model system that has a
similar transmission behavior to the double-Gaussian barrier
considered in the preceding section. In addition, it shows
resonance peaks originating from the bound states of the cor-
responding linear �g=0� system that have been destabilized
due to repulsive �g	0� interaction and have thus undergone
a transition from bound to resonance state �19�. We consider
the finite square-well potential with vanishing interaction
outside the potential well, where the wave function ��x�
must satisfy

�−
�2

2m

d2

dx2 − ����x� = 0, �x� 	 b 	 0 �50�

and

�−
�2

2m

d2

dx2 + g���x��2 + V0 − ����x� = 0, �x� � b �51�

with V0�0. The source term can be located at an arbitrary
position x0�−b since there is no interaction in this region so
that the results do not depend on the position of the source
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FIG. 4. �Color online� �Units �=m=1.� The numerically calcu-
lated curves �sk�N�, �sk�N�, and �C�2�N� �solid blue� and the ap-
proximation described by Eqs. �44�–�48� �dashed red� for the po-
tential �43� as well as the Taylor approximation �49� �dashed-dotted
black curve� are almost indistinguishable on the scale of drawing.
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FIG. 5. �Color online� �Units �=m=1.� Comparison between
the nonlinear Lorentz curve �35� �solid red curve� and the transmis-
sion coefficient obtained from solving the stationary NLSE �dotted
blue curve� for the double-Gaussian potential �43�. Dashed blue:
skeleton curve �sk��T�2�.
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term �see Sec. II A�. This model with vanishing interaction
outside the potential well was introduced in �19� in order to
discuss the scattering process in terms of ingoing and outgo-
ing waves and thus enabling an analytical treatment. In the
context of nonlinear wave transmission, this assumption is
widely used �see, e.g., �32�. and references therein�. In prin-
ciple, the interaction outside the potential well can be elimi-
nated by means of a magnetic Feshbach resonance �see, e.g.,
�33�� or by a larger transversal extension a� of the wave-
guide in this region since the effective one-dimensional in-
teraction strength is proportional to 1 /a�

2 �see, e.g., �11��.
Alternatively, instead of neglecting the interaction outside
the potential well, one might add additional repulsive barri-
ers at x= �b without affecting much the qualitative behavior
of the system with the disadvantage of making the analytical
treatment more complicated.

In �19�, the transmission coefficient is calculated analyti-
cally and it is shown that the respective states satisfying the
NLSE �51� and �50� with the boundary conditions �20� and
�39� �skeleton states� have the chemical potential

�sk = V0 +
3

2
g�C�2 +

�2K2�p�n2

2mb2 
 1 + p

1 − 2p ,
� �52�

where n is an integer number and K�p� is the complete ellip-
tic integral of the first kind �see e.g., �34��. The upper and
lower alternatives correspond to g�C�2�V0+g�C�2��0 and 0
�g�C�2� �V0�, respectively. The parameter 0� p�1 is deter-
mined by

g�A�2�V0 + g�C�2�
2m2b4

�4n4 = K4�p�
 p

p�p − 1� � �53�

and the norm of the wave function inside the well reads

N = 2b�C�2 +
2�2K�p�n2

gmb

 K�p� − E�p�

�1 − p�K�p� − E�p� .
� �54�

Since g=0 in the region �x�	b, we have ksk=�2m�sk /�
so that the decay width is given by

�sk =
2��2�R�C�2

�mN
, �55�

where �sk and N are given in Eqs. �52� and �54�. As in Sec.
IV A, the skeleton curves can be approximated by a Taylor
polynomial. Applying our model to resonances of the square-
well potential �50� and �51�, it turns out that it is sufficient to
truncate the Taylor polynomials in Eqs. �45� and �49� after
the linear term. This leads to N /NR= �T�2 and thus

�sk = �n + ��R − �n��T�2, �56�

�sk = �n + ��R − �n��T�2. �57�

Figures 6 and 7 show the transmission probability �T�2���
in the vicinity of a resonance, the exact solution, and the
resonance approximation introduced in Sec. III for a deep
square well with V0=−50 and b=20. For both repulsive and
attractive interaction, where the curves bend to the right or
left, respectively, a good agreement between the nonlinear
Lorentz curve �35� in a first-order approximation �56� and

�57� and the respective resonance peak �see �19�� is ob-
served. In particular, Fig. 7 shows that the nonlinear Lorentz
curve �35� is also able to describe the unusually shaped peaks
surrounding resonances that correspond to bound states in
the linear limit g→0 �see �19��. The deviations are due to the
fact that only a single resonance is included in the present
approximation.

C. Decay behavior

As discussed in Sec. II, the decay behavior of the reso-
nance state is described by
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FIG. 6. �Color online� �Units �=m=1.� Nonlinear Lorentz curve
�35� �solid red curve� and transmission coefficient obtained from
solving the stationary NLSE �dotted black curve� for a square-well
potential with b=20, V0=−50 for the resonance with quantum num-
ber n=129 for g= +1 �upper panel� and g=−1 �lower panel�.
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FIG. 7. �Color online� �Units �=m=1.� Nonlinear Lorentz curve
�35� �solid red curve� and transmission coefficient obtained from
solving the stationary NLSE �dotted black curve� for a square-well
potential with b=20, V0=−50 for the resonance with quantum num-
ber n=127, which had been a bound state in the linear case g=0, for
g= +1.
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�tN = −
�sk�N�

�
N . �58�

For the simple situation in which the skeleton curves are
approximately linear in �T�2, as in Eqs. �56� and �57�, an
analytical expression for the time dependence can be de-
rived. With �sk�N�=�n+ ��R−�n��N /NR�, we obtain

��t
N

NR
= − �n

N

NR
− ��R − �n�� N

NR
�2

. �59�

Separation of variables yields

−
�dy

�ny + ��R − �n�y2 = dt �60�

with y=N /NR. This can be integrated to give

N�t� =
�nNR

�R�e�n�t−t0�/� − 1� + �n
. �61�

In the limit g→0, this reduces to the linear decay behav-
ior N�t�=NRexp�−�n�t− t0� /��. In the limit of long times t
� t0, the system shows a linear decay N�t�
→ ��n /�R�NRexp�−�n�t− t0� /���exp�−�n�t− t0� /�� as well.

As an example, Fig. 8 shows the decay according to for-
mula �61� for the potential-well system �see example 2
above� in comparison with the numerical solution of Eq. �58�
and the linear decay in a semilogarithmic plot. Formula �61�
agrees well with the numerical solution of Eq. �58�. In the
limit of long times, both curves are parallel to the linear
decay curve so that the system adopts a linear decay behavior
as predicted above.

V. CONCLUSION

We have presented an analysis of the nonlinear reso-
nances found for transmission of a BEC through a one-
dimensional potential barrier in a mean-field GPE descrip-
tion. The Siegert method for determination of resonances is
generalized to the nonlinear case providing a convenient
recipe for the computation of nonlinear resonances.

Based on this Siegert method, we developed a formula for
the nonlinear Lorentz profiles that can be described in terms
of skeleton functions depending on a few instructive param-
eters. The skeleton curves also determine the decay behavior

of the underlying resonance state thus relating the transmis-
sion line shape to the resonance lifetime.

Applications to a double-Gaussian barrier and a square-
well potential illustrate and support our analysis. Finally, for
a simple model an analytical expression for the decay behav-
ior could be derived. We are therefore hopeful that the theo-
retical ideas presented may be useful in future work on non-
linear resonances.
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APPENDIX A: ANALYTICAL CONTINUATION

Since the NLSE

−
�2

2m
���x� + V�x���x� + g���x��2��x� = ���x� �A1�

explicitly contains the squared magnitude ���x��2 of the wave
function, it is not analytical and therefore the analytical con-
tinuation of its solutions for complex values of � is non-
trivial. Following the arguments given in �35�, we decom-
pose the solution of the stationary GPE as ��x�=X�x�
+ iY�x� with real functions X�x� and Y�x�. From the real and
imaginary part of Eq. �A1�, we get a system of two equa-
tions,

−
�2

2m
X��x� + V�x�X�x� + g�X2�x� + Y2�x��X�x� = �X�x� ,

�A2�

−
�2

2m
Y��x� + V�x�Y�x� + g�X2�x� + Y2�x��Y�x� = �Y�x� ,

�A3�

which are analytical. The solutions of this system of equa-
tions, therefore, have a straightforward continuation into the
domain of complex chemical potentials. As an example, we
consider the plane-wave solution of the free �V�x�=0� GPE
with ��x�=C exp�ikCx�, kC=�2m��−g�C�2� /�, and C
= �C�exp�i��. One can easily verify that its decomposition
X�x�= �C�cos�kCx+��, Y�x�= �C�sin�kCx+�� satisfies the sys-
tem �A2� and �A3� for all complex values of �.

APPENDIX B: THE SIEGERT RELATION

Derivation. In the following, we will derive a formula for
the decay coefficient of a resonance state of an arbitrary sym-
metric finite range potential. For the sake of generality and
for future applications, we consider the cases of one, two,
and three dimensions simultaneously. For now, we only con-
sider resonances of the linear Schrödinger equation �Eq. �1�
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FIG. 8. �Color online� �Units �=m=1.� Decay according to for-
mula �61� �solid red line�, the numerical solution of Eq. �58�
�dashed blue line�, and the linear decay behavior �dashed-dotted
black line� for a potential well with parameters b=20, V0=−50, and
g= +2.

BARRIER TRANSMISSION FOR THE ONE-DIMENSIONAL ... PHYSICAL REVIEW A 77, 063610 �2008�

063610-9



with g=0�. The applicability to the nonlinear case is dis-
cussed separately further below.

Any solution ��x , t�=���x , t�exp�i��x , t�� of the
Schrödinger Eq. �1� with real functions ��x , t� and ��x , t�
	0 satisfies the continuity equation

�t� + divj = 0, �B1�

where

j =
�

m
� � � . �B2�

Application of the Gauss theorem for vector fields leads
to

�tN = − �
A

j · dA , �B3�

where

N = �
V

��x,t�dDx �B4�

is the norm of the wave function within a D-dimensional
volume V and A=��V� is the directed surface of V. If the
wave function is trapped inside the volume V, the decay
coefficient can be defined by the relation

�tN = −
�

�
N . �B5�

Together with Eqs. �B3� and �B4�, this leads to

� = − �
�tN

N
= �

� j · dA

�
V

��x,t�dDx

. �B6�

Now we consider a radially symmetric potential V�x�
=V�r� with finite range a, i.e., V�r�=0 if r	a, where r= �x�.
We assume the potential V�r� to have a single maximum
located at b�a. Assuming that the wave function varies
slowly in time, we replace the time-dependent wave function
��x , t� by the adiabatic resonance state ��x� of the stationary
Schrödinger equation �Eq. �2� with g=0�. Due to symmetry,
the wave function in the area r�a can be written in polar
coordinates as

��x� = R�r�Y���exp�i�r�r� + i������, r � a , �B7�

with real functions R�r� and Y���, where � stands for the
angle variables. The resonance wave functions of such a po-
tential are obtained by applying purely outgoing �Siegert�
boundary conditions,

��x� = R�a��a

r
��D−1�/2

Y���exp�ik�r − a� + i�r�a�

+ i������, r � a , �B8�

where k=Re��2m� /��. For narrow resonances where � /2
=−Im��� is small compared to �=Re���, we can make the
approximation k��2m Re��� /�. For D=1,3, Eq. �B8� is an

exact solution; for D=2, it only holds in the limit a→
 �see
below�. This ansatz makes the wave function continuous at
r=a. The continuity of the derivative implies the conditions

R��a� =
1 − D

2a
R�a�, �r��a� = k , �B9�

where the prime denotes the partial derivative with respect to
r.

The resonance wave function shall be trapped in the re-
gion 0�r�b. Thus the volume V is a D-dimensional sphere
with radius b so that dDx=rD−1drd� and dA=erb

D−1d�,
where er is a unit vector in the radial direction. For the inte-
gral �B3�, we need the scalar product er · j
= �� /m�R2�r�Y2���er ·���r+���. The volume integral �B4�
becomes

N = �
0

b

R2�r�rD−1dr�
�

Y2���d� . �B10�

For the surface integral �B3�, we make the approximation

− �tN = �
A

j · dA � �
A�

j · dA�, �B11�

where A� is the surface of the sphere with radius a, which
means that the reflection in the region b�r�a is neglected
and Eq. �B3� becomes

− �tN � �
A�

j · dA� =
�

m
aD−1R2�a��r��a��

�

Y2���d� .

�B12�

By inserting Eqs. �B12�, �B10�, and �B9� into Eq. �B6�,
we finally obtain the formula

� =
�2k

m

R2�a�aD−1

�
0

b

R2�r�rD−1dr

�B13�

for the decay coefficient of a resonance with the chemical
potential � of the potential V�r� with the finite range a,
which is trapped inside the region 0�r�b.

The formula �B13� for D=1 resembles Eq. �22�. In con-
trast to formula �B13�, the wave number ksk in Eq. �22� is
complex and the integration extends over the whole region
r�a. Thus Eq. �B13� can be regarded as an approximation
to Eq. �22� �respectively to its generalization to higher di-
mensions �see �24���.

In the two-dimensional case, the ansatz �B8� is only an
approximation. As promised above, we discuss this in more
detail now by inserting the ansatz

��r� = R�r�exp�i�r�r�� �B14�

with real functions R�r� and ��r� into the radial part

�2��r�
�r2 +

1

r

���r�
�r

+
2m�

�2 ��r� = 0 �B15�

of the two-dimensional Schrödinger equation. Separating
real and imaginary parts, we arrive at
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R��r�
R�r�

+
R��r�
rR�r�

− �r�
2�r� +

2m�

�2 = 0, �B16�

�2R��r�
R�r�

+
1

r
��r��r� + �r��r� = 0. �B17�

The choice R�r�=C /�r and �r�r�=kr+�0 with real con-
stants C, k, and �0 solves the lower equation. The remaining
equation yields k2=2m� /�2+r−2 /4. Thus Eq. �B15� is ap-
proximately solved by ��r�=C /�r exp�ikr+�0� with k
=�2m� /� if r2��2 / �8m�� so that the length a in Eq. �B8�
must be chosen accordingly.

Applicability to the NLSE. In the case of the NLSE �2�,
the ansatz �B7� and �B8� and thus formula �B13� are still
valid in many cases where the wave equation can still be
separated into a radial part and an angular part.

For D=1, inserting the ansatz �B7� and �B8� into the non-
linear term in Eq. �2� leads to g���x��2=gR2�r�Y2���

=gR2�r� since Y���= �1. This means that the nonlinear
term only modifies the radial part of the wave equation,
whereas the angular part is not affected. For r�a, g���x��2
=gR2�a� is a constant term that only causes a shift in the
chemical potential. If gR2�a��Re���, this can be accounted
for by replacing �→�−gR2�a� so that the wave vector is
now given by k=Re
�2m��−gR2�a�� /��.

If D=2, we also have �Y����=1, so that the wave function
can still be separated into a radial part and an angular part in
analogy to the one-dimensional case. For r�a, g���x��2
=gR2�a�a /r. Thus for �g�R2�a�� ��� we can neglect the in-
fluence of the nonlinear term in the region r�a and the
ansatz �B8� is still valid.

For D=3, we have �Y�����1 in general so that the wave
equation can no longer be separated into a radial part and an
angular part and thus the ansatz �B7� and �B8� fails. How-
ever, for the special case of s-wave solutions, �Y����=1 still
holds and in analogy to the case D=2, formula �B13� is
approximately valid if �g�R2�a�� ���.
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