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We consider the propagation of a matter wave packet of two-level atoms through a square potential created
by a super-Gaussian laser beam. We explore the matter wave analog of Goos-Hänchen shift within the frame-
work of atom optics where the roles of atom and light are exchanged with respect to conventional optics. Using
a vector theory, where atoms are treated as particles possessing two internal spin components, we show that not
only large negative but also large positive Goos-Hänchen shifts can occur in the reflected atomic beam.
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I. INTRODUCTION

In conventional optics for light waves, Goos-Hänchen in
1947 discovered that a light beam under the condition of
total reflection can experience a lateral shift �or displace-
ment� along the surface of a dielectric boundary �1�. This
pioneering work has stimulated a large volume of studies
�2–32�, concerning the Goos-Hänchen shift of reflected or
transmitted �3–5� light beams of different polarizations �13�
in different media characterized with, for example, periodic
structures �14,20,23,30�, �left or right� handedness
�22,24,25,27�, multilayers �9�, weakly absorbing �15,28�,
lower-index �19� or negative-index of refraction �16�, etc.
The key physics behind the Goos-Hänchen shift is the nature
of wave interference. From the perspective of wave optics,
the incident beam of a finite transverse width can be viewed
as composed of plane wave components, each of which has a
slightly different transverse wave vector. Each wave compo-
nent, after the total internal reflection, undergoes a different
phase shift, and the superposition of all the reflected wave
components gives rise to the lateral shift of the intensity peak
in the reflected beam �2�.

In this sense, it is not so much the total internal reflection
but rather the phase modulations for different plane wave
components that remains the true mechanism behind the lat-
eral shift. Thus the Goos-Hänchen shift is expected to occur
in matter waves where particles have finite masses. As is
known, under the usual conditions �or temperatures�, elec-
trons possess a de Broglie’s wavelength much longer than
atoms because the latter is much heavier in mass than the
former. Thus it is much easier to demonstrate the Goos-
Hänchen shift with electrons �33,34� or even neutrons
�35,36� than with atoms. The situation, however, has been
rapidly changed over the last two decades. Nowadays, ultra-
cold atoms with a relatively long de Broglie’s wavelength
can be routinely made available, thanks to the rapid advance-
ment of the laser cooling and trapping technology. Motivated
by the fact that ultracold atoms have led to many important
applications in atom optics �37�, we explore, in this paper,

the matter wave analog of the Goos-Hänchen effect within
the framework of atom optics where matter waves of ultra-
cold atoms are manipulated by laser fields. An important
difference between the matter waves in atom optics and the
light waves in conventional optics is that atoms have internal
electronic structures while photons are structureless. Thus an
accurate description of the Goos-Hänchen effect in atom op-
tics must regard atoms as particles possessing internal spins
�energy states�. To the best of our knowledge, our work here
represents the first that is seriously devoted to the problem of
the Goos-Hänchen effect with cold atoms. As such, we limit
our goals to establishing a general theoretical framework and
to applying it for a basic understanding of the Goos-Hänchen
effect in matter waves with cold two-level atoms, while at
the same time hoping that our work can draw significant
attentions from experimentalists for future applications.

Our paper is organized as follows. In Sec. II, we derive a
set of coupled one-dimensional �1D� Schrödinger equations
to describe the scattering of two-level atoms by a super-
Gaussian laser beam in a 2D setting. In the same section, we
present the connection between the lateral shifts and the co-
efficients of reflection and transmission. In Sec. III, we de-
rive, with the help of a dressed state picture, a set of analyti-
cal expressions for the reflection and transmission
coefficients, which are to be used in Sec. IV to significantly
simplify our calculations. In Sec. IV, we combine the tools
developed in Sec. II with those in Sec. III to numerically
investigate, within the context of atom optics, the matter
wave analog of Goos-Hänchen-like shifts. Finally, a conclu-
sion will be given in Sec. V.

II. MODEL AND BASIC EQUATIONS

Figure 1 is the schematic of our model, in which a matter
wave packet composed of two-level atoms of transition fre-
quency �a is obliquely incident upon a “slab” made up of a
traveling laser beam of frequency �L and wave number kL. In
our model, we require that both the atom and laser beams be
sufficiently wide along the direction normal to the plane of
incidence �x-y plane� so that the degree of freedom in the z
dimension can be completely liberated. Under such a circum-
stance, we can adopt the following coupled 2D Schrödinger
equations �38�:
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to describe the evolution of the wave functions, �1 and �2,
of the ground state �1�, and the excited state �2�. In Eqs. �1a�
and �1b�, we have defined m as the atomic mass, �2

	�2 /�x2+�2 /�y2 as the 2D Laplacian operator, �=�L−�a
as the laser detuning, and � as the decay rate of the excited
atomic state. In addition, we describe the dipole interaction
between the laser field and atoms by a Rabi frequency in the
form of

��x� = �F�x� , �2�

where � is the peak value and F�x� is a normalized spatial
function, representing the laser profile. In this paper, the laser
is assumed to possess a beam profile in the form of a high-
order Gaussian function, F�x�=exp�−�x2 /wL

2�N�; such a beam
is experimentally accessible through spatial shaping tech-
niques �39–41� or optical techniques �42�. To further sim-
plify the problem, we restrict our study to the super-Gaussian
beam with an order number N so large that, to a fairly good
approximation, F�x� can be idealized as a step function,

F�x� = 
1, − L/2 � x � L/2
0, x 	 L/2,x � − L/2

.� �3�

Next, we utilize the fact of the Rabi frequency �Eq. �2��
being y independent to eliminate y in favor of y wave vector
ky through the Fourier transformation

�1�r,t� =� dky
1�x,ky,t�eikyy−i�k2/y/2mt, �4a�

�2�r,t� =� dky
2�x,ky,t�ei�ky+kL�y−i�k2/y/2mt, �4b�

where r= �x ,y�. By doing so, we transform Eqs. �1� into
coupled 1D Schrödinger equations,

i�
̇ = �−
�2

2m

�2

�x2 Î + V̂�
 , �5�

where 
= �
1 ,
2�T is a two-component vector field, Î is a

2�2 unit matrix, and V̂ is the potential matrix given by

V̂ = −
�

2 0 �

� 2�� +
1

2
i�� � . �6�

In Eq. �6�, we have defined

� = � −
�kykL

m
−

�kL
2

2m
, �7�

as the effective detuning, where �kykL /m and �kL
2 /2m are,

respectively, the Doppler and the photon recoil frequency.
Equation �5� serves as the starting point for the next section,
where we calculate the scattering matrix, which determines
all the scattering properties of our model.

For now, we turn our attention to the lateral shifts of the
reflected and transmitted wave packets. For this purpose, let
us first jump ahead to Eqs. �15� of Sec. III, which define
various transmission and reflection coefficients via the sta-
tionary scattering solutions in free space. Of relevance to our
interest here are the coefficients of transmission T1 and re-
flection R1 of the ground state; we ignore T2 and R2 of the
excited state since the excited wave, being highly susceptible
to the decay by the spontaneous emission, cannot propagate
far from the scattering region. Let 1

R,T�k� be the phases of
reflection and transmission coefficients defined through the
relation

S1�k� = �S1�k��ei1
S�k�, �8�

where for notational simplicity, we have used �and will con-
tinue to use� S=R and S=T to symbolize reflection and trans-
mission, respectively. For an incident wave packet initially
�t=0� located at �x0 ,y0� far away from the laser beam �see
Fig. 1�, we can construct, through the superposition of the
time-independent solutions �Eqs. �15��, its reflected and
transmitted wave packets in the form of

�1
S�r,t� =� d2k�f�k� − k��S1�k���ei�1

S�k�,r�, �9�

where �1
R,T are the total phases defined as

�1
R�k�,r� = 1

R�k�� − kx��xR + ky��yR −
�k�2t

2m
, �10a�

�1
T�k�,r� = 1

T�k�� + kx��xT + ky��yT −
�k�2t

2m
, �10b�

with�xR=x+x0, �xT=x−x0, �yR=�yT=y−y0, and k�2=kx�
2

+ky�
2. In Eqs. �9�, f�k�−k� is a �real� weighting function

peaked around k�=k with a momentum distribution suffi-
ciently narrow and smooth that Eqs. �9� represent fairly ac-
curately the plane waves of velocity �k /m. Equation �9� in-
dicates that the reflected and transmitted waves are the result
of interference among different wave components distin-

y
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FIG. 1. A wave packet of atoms with two internal states im-
pinges on a laser “slab.”
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guished by wave vector k�= �kx� ,ky��. As a result, the values of
these waves at a given time and location, �r , t�, depend cru-
cially on the phases �Eqs. �10�� of each k� component. In
particular, �1

R,T�r , t� reach peak values when a constructive
interference takes place or equivalently when �k��1

R,T at k�
=k vanish. Using this condition, we find that the peaks of the
wave packets in the coordinate space propagate with time
according to

�xR = −
�kx

m
t +

�1
R

�kx
, �yR =

�ky

m
t −

�1
R

�ky
, �11a�

�xT = +
�kx

m
t −

�1
T

�kx
, �yT =

�ky

m
t −

�1
T

�ky
, �11b�

where all the derivatives are assumed to be taken at k�=k.
Let t0, tR, and tT be, respectively, the time duration of the

atomic beam between t=0 and right before it hits the bound-
ary at x=−L /2, between t=0 and immediately after it is re-
flected from the boundary at x=−L /2, and between t=0 and
right after it is transmitted from the boundary at x=L /2. In
terms of t0, we have x0=−�L /2+�kxt0 /m� and y0=
−�kyt0 /m, which, when substituted into Eqs. �11� for �xR,T,
allows us to find tR,T,

�tS = tS − t0 =
m

�kx
� �1

S

�kx
+ L� . �12�

Finally, by incorporating these results into Eqs. �11� for
�yR,T, we find that the induced Goos-Hänchen-like lateral
shift yR due to the reflection and yT due to the transmission
�see Fig. 1� are governed by

yS =
�ky

m
�tS −

�1
S

�ky
, �13�

where �1
S /�ki �i=x ,y and S=R ,T� are evaluated using

�1
S

�ki
= − i� 1

S1

�S1

�ki
−

1

�S1�
� �S1�
�ki

� , �14�

which is a direct consequence of Eq. �8�. In contrast to the
usual shifts, which are solely determined by the part directly
proportional to �tS, the lateral shifts in Eq. �13� contain an
additional term �1

S /�ky. This is a unique aspect of atom
optics, where momentum conservation during the photon
emission and absorption makes the effective laser detuning �
�Eq. �7�� ky dependent. As a result, the phase 1

S becomes a
function of ky via its dependence on �, which, in turn, leads
to a finite �1

S /�ky.
From this derivation, it is clear that �a� the Goos-

Hänchen-like lateral shifts are the wave phenomena, that de-
pend crucially on the ability of the optical potential to
modify the phases of various matter wave components, and
�b� the key to the lateral shifts is the transmission and reflec-
tion coefficients, which will be the focus of our study in the
next section.

III. TRANSMISSION AND REFLECTION COEFFICIENTS

In this section, we construct the reflection and transmis-
sion coefficients, starting from the stationary scattering solu-

tions of Eq. �5� for an incident ground atomic beam having
an energy Ex=�kx

2 /2m and wave number kx along the x di-
mension. Let us first introduce the reflection and transmis-
sion coefficients for the ground state, R1 and T1, and those
for the excited state, R2 and T2, via the scattering solutions in
regions I and III. By virtue of the decoupling between the
excited and ground states in free propagation regions I and
III outside the laser slab, the scattering solutions take the
form


I = �eik1x + R1e−ik1x

R2e−ik2x �e−iEx/�t, �15a�


III = �T1eik1x

T2eik2x �e−iEx/�t, �15b�

where we have defined the free-space wave vectors

k1 = kx,k2 =�2
m

�
�� + i

�

2
� + kx

2. �16�

The excited-state and ground-state components in region II
are, however, mixed because Eq. �5� is a coupled equation.
To solve Eq. �5� and thus to find the vector wave function 
II

in region II, we first seek to diagonalize the matrix V̂ �Eq.

�6�� by looking for the eigenvectors of V̂. This leads to two
eigenvalues V+ and V−, given by

V� =
�

2
�− �� + i

�

2
� ���� + i

�

2
�2

+ �2� . �17�

The corresponding eigenvectors are expressed as the first and
second column vectors of the following transformation ma-
trix:

U = � sin � cos �

− ei� cos � e−i� sin �
� , �18�

where � and �, defined as

tan � =
��

2�V+�
, V+ = �V+�ei�, �19�

are two angles introduced to characterize the dressed states

� + � = sin ��1� − ei� cos ��2� , �20a�

�− � = cos ��1� + e−i� sin ��2� , �20b�

The inverse of U, which will also be an important part of the
scattering problem involving vector matter waves, is given
by

U−1 = f�e−i� sin � − cos �

ei� cos � sin �
� �21�

where f = �e−i� sin2 �+ei� cos2 ��−1 is a normalization factor.
In the absence of spontaneous decay �=0, we have �=0, and
U becomes unitary. The dressed states can be simplified into
the ones well known in quantum optics �43�. The presence of
the spontaneous decay renders the Hamiltonian non-
Hermitian �44�, which is why U is no longer a unitary matrix
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when ��0 as one can easily verify from Eq. �18�.
With these preparations, we now express 
II, in terms of

wave functions 
� on the dressed-state basis, as


II = U�
+


−
�e−iEx/�t,

	U�A1e�1x + B1e−�1x

A2e�2x + B2e−�2x �e−iEx/�t, �22�

where Ai and Bi are the superposition coefficients, and for
easy organization, we introduce �1	�+ and �2	�−, where

�� = �2mV�/�2 − kx
2. �23�

To facilitate the derivation below, besides U and U−1, we
also introduce the matrix W and its inverse W−1, where

W = �ik1 0

0 ik2
�−1

U, W−1 = U−1�ik1 0

0 ik2
� �24�

or equivalently,

Wij = �iki�−1Uij, �W−1�ij = ikj�U−1�ij . �25�

Next, we require that 
I,II,III and their derivatives be continu-
ous at location x=L /2, leading to

�u1

u2
� = U−1�T1eik1L/2

T2eik2L/2 � , �26a�

�v1

v2
� = W−1�T1eik1L/2

T2eik2L/2 � , �26b�

where �ui ,vi� are a set of new variables defined as

ui = Aie
�iL/2 + Bie

−�iL/2, �27a�

vi = �i�Aie
�iL/2 − Bie

−�iL/2� . �27b�

Similarly, application of the continuation conditions at loca-
tion x=−L /2 results in

U�x1

x2
� = �e−ik1L/2 + R1eik1L/2

R2eik2L/2 � , �28a�

W�y1

y2
� = �e−ik1L/2 − R1eik1L/2

− R2eik2L/2 � , �28b�

where �xi ,yi� are defined in terms of �Ai ,Bi� as

xi = Aie
−�iL/2 + Bie

�iL/2,

yi = �i�Aie
−�iL/2 − Bie

�iL/2� . �29�

By combining all these conditions �for details see the Appen-
dix�, we arrive at a set of compact formulas for the transmis-
sion coefficients,

T1 =
2M22

�+�

M11
�+�M22

�+� − M12
�+�M21

�+�e
−ik1L, �30a�

T2 = −
2M21

�+�

M11
�+�M22

�+� − M12
�+�M21

�+�e
−i�k1+k2�L/2, �30b�

and for the reflection coefficients

R1 =
M11

�−�M22
�+� − M12

�−�M21
�+�

M11
�+�M22

�+� − M12
�+�M21

�+�e
−ik1L, �31a�

R2 =
M21

�−�M22
�+� − M22

�−�M21
�+�

M11
�+�M22

�+� − M12
�+�M21

�+�e
−i�k1+k2�L/2, �31b�

where

Mij
��� = �

n=1,2
Uin�U−1�nj��1 �

kj

ki
�cosh��nL�

− i
kikj � �n

2

ki�n
sinh��nL�� . �32�

In the next section, Eqs. �30a� and �31a� will be used in
connection with the results from Sec. II to numerically de-
termine the lateral shifts.

IV. DISCUSSION

In this section, we carry out a numerical study of the
lateral shifts by first obtaining �1

S /�ki from Eq. �8� with the
help of Eqs. �30a� and �31a�, and then determining the lateral
shifts using Eqs. �12� and �13�. In our calculation, we replace
kx=k cos � and ky =k sin �, and correspondingly, � /�kx
=cos �� /�k−k−1 sin �� /�� and � /�ky =sin �� /�k
+k−1 cos �� /��, where k is the magnitude of the wave vector
and � is the incident angle of the atomic wave. In addition,

we adopt the following scaled variables: �̃=� /�, k̃L=kL /k�,

k̂=k /k�, L̃=L /k�
−1, Ṽ�=V� /��, �̃�=�� /k�, and ỹS=yS /k�

−1,

where k�	�2m� /�. In all the examples given below, unless

stated otherwise, �̃=1, k̃ =3, L̃=6,�̃=20, and k̃L=8.1125.
Let us first consider a case where the laser detuning is set

at �̃=−100. At this �̃, the effective laser detuning � remains
�deeply� red detuned across all the incident angles as shown
in Fig. 2�a�. Under such a circumstance, we have �V+�
� �V−� according to Eq. �17� and � approaches a small value
according to Eq. �19�. As a result, the scattering properties in
this case are largely determined by the �−� dressed state. For
this reason, we only display in Fig. 2�b� potential V− as
“seen” by the atoms in state �−�, which corresponds to a
potential well since Re�V−� remains negative. As a result, the
�−� mode function oscillates in the x dimension with a spatial
frequency of Im��−�, whose value is shown in Fig. 2�c��.

The corresponding intensity �S1�2, phase 1
S, and lateral

shift yS of the reflected �S=R, left column� and transmitted
�S=T, right column� waves are displayed in Fig. 3 as func-
tions of the incident angle �. As our discussion above sug-
gests, we expect to see the phenomenon of resonance scat-
tering by potential wells. Indeed, in the region where the
phase experiences a � shift �Fig. 3�b��, the reflectivity �R�2
�Fig. 3�a�� approaches a small value while the transmissivity
�T�2 �Fig. 3�d�� becomes nearly perfect, which explains the
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oscillatory behavior exhibited both in �R�2 and in �T�2. It
needs to be stressed that the phase of the reflected wave, as
shown in Fig. 3�b�, increases �or decreases� sharply, as � �or
kx� sweeps across each resonance. This causes the reflected
wave to experience a large negative Goos-Hänchen shift
around each resonance as indicated in Fig. 3�c�.

Next, we consider a situation where �̃=200. With this �̃,
� remains �deeply� blue detuned for all the incident angles as
Fig. 2�d� illustrates. As a result, according to Eqs. �17� and
�19�, �V+�� �V−� and � approaches � /2; the scattering behav-
ior is dominated by the �+ � dressed state. Here, the laser
beam, as illustrated in Fig. 2�e�, creates an effective repulsive
potential Re�V+�	0. Under such a circumstance and pro-
vided that �2k2 /2m	Re�V+�, we can introduce a critical
angle defined as �c	cos−1�2mRe�V+� /�2k2 at which the �x�
kinetic energy of the atomic beam equals the height of the
potential barrier. �Such a critical angle does not exist for the
case of red detuning.� In our case here, we identify from Fig.
2�f� that �c�69.4°, which has the physical meaning that be-
low �c, the �+ � mode oscillates at a spatial frequency close to
Im��+� while beyond �c, it undergoes quantum tunneling
with 1 /Re��+� being the characteristic tunneling distance.

Indeed, Fig. 4 shows that �S1�2, 1
S, and yS beyond the

critical angle �	�c are qualitatively different from those
within the critical angle 0����c. For �	�c, besides rela-
tively sharp features around the boundaries, both the phase
and lateral shift exhibit no oscillations. This description ap-
plies both to the reflected and transmitted beams. For 0��
��c where the incident �x� kinetic energy exceeds the po-

tential height, the reflection �Fig. 4�a�� and transmission �Fig.
4�d�� oscillate. The phase of the reflected wave, while still
undergoes a � shift, decreases �or increases� sharply, as � �or
kx� sweeps across each resonance �Fig. 4�b��, a behavior
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completely opposite to the case of red detuning �Fig. 3�b��.
As a result, we see that the reflected wave develops a large
but positive Goos-Hänchen-like lateral shift around each
resonance �Fig. 4�c�� �This is in contrast to the phase and
lateral shift of the transmitted wave, which remain relatively
monotonic within the critical angle.�

It needs to be emphasized that large negative shifts around
resonance have been the focus of several recent studies for
light waves that propagate through absorptive medium slabs
in conventional optics �10,15,26�. In our atom optics model
here, the ground-state matter wave is coupled to the excited-
state matter wave, and this coupling greatly enriches the
physics concerning the lateral shifts. Not only do we see
large negative lateral shifts as in Fig. 3�c� when the laser is
red detuned, but also large positive lateral shifts as in Fig.
4�c� when the laser is blue detuned. Moreover, with our atom
optics model, great controls over not only the position but
also the linewidth of these peak shifts can be achieved by
taking advantage of lasers being highly tunable both in in-
tensity and in frequency �not shown�.

V. CONCLUSION

In conclusion, we have established a theoretical frame-
work for studying the matter wave analog of Goos-Hänchen-
like effect in an atom optics model where a super-Gaussian
laser beam acts as a “medium slab” for a matter wave of
two-level atoms. We have developed a vector theory based
upon a set of coupled Schrödinger equations for describing
the scattering of a wave packet of two-level atoms off a
square potential. We have derived a set of analytical formu-
las for the transmission and reflection coefficients, which
have greatly facilitated the study of Goos-Hänchen effect in
vector models where atoms are treated as particles possess-
ing two internal spin components. It is important to stress
that the coupling between the ground and excited compo-
nents in the vector model combined with the tunability of-
fered by the laser field creates new opportunities for studying
the lateral shifts. In particular, we have found that in our
atom optics model, not only a large negative Goos-Hänchen

shift as in conventional optics �5,15,28,32� but also a large
positive shift can take place in the reflected atomic beam.
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APPENDIX

In this Appendix, we provide the steps leading
to Eqs. �30� and �31�. To begin with, we insert Ai=

1
2 �ui

+
vi

�i
�e−�iL/2and Bi=

1
2 �ui−

vi

�i
�e�iL/2 obtained from Eqs. �27a�

and �27b�, into Eqs. �29�, enabling us to express �xi ,yi� in
terms of �ui , vi� as

xi = ui cosh��iL� − vi sinh��iL�/�i, �A1a�

yi = vi cosh��iL� − �iui sinh��iL� . �A1b�

By combining Eq. �28a� and Eq. �28b�, we eliminate R1 and
R2 simultaneously from Eqs. �28� and arrive at a single-
matrix equation,

U�x1

x2
� + W�y1

y2
� = �2e−ik1L/2

0
� , �A2�

which, by virtue of Eqs. �26� and �A1�, is shown to be
equivalent to

M�+��T1eik1L/2

T2eik2L/2 � = �2e−ik1L/2

0
� , �A3�

where M�+� is a 2�2 matrix given by

M��� = U�cosh��1L� 0

0 cosh��2L� �U−1 − U�sinh��1L�/�1 0

0 sinh��2L�/�2
�W−1

� W�cosh��1L� 0

0 cosh��2L� �W−1 � W��1sinh��1L�/ 0

0 �2sinh��2L� �U−1. �A4�

By a similar procedure, we find from Eqs. �28� that

2�R1eik1L/2

R2eik2L/2 � = U�x1

x2
� − W�y1

y2
� , �A5�

which, with the help of Eqs. �26�, is equivalent to
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�2R1eik1L/2

2R2eik2L/2 � = M�−��T1eik1L/2

T2eik2L/2 � , �A6�

where M�−� is also 2�2 matrix given by Eq. �A4�. A straightforward calculation involving the use of Eq. �25� shows that the
matrix element Mij

��� of Eq. �A4� has a simple and explicit form given by Eq. �32�. Finally, we arrive at Eqs. �30� and �31� by
solving Eqs. �A3� and �A6� simultaneously.
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