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We investigate numerically the zero-temperature physics of the one-dimensional Bose-Hubbard model in an
incommensurate cosine potential, recently realized in experiments with cold bosons in optical superlattices [L.
Fallani et al., Phys. Rev. Lett. 98, 130404 (2007)]. An incommensurate cosine potential has intermediate
properties between a truly periodic and a fully random potential, displaying a characteristic length scale (the
quasiperiod) which is shown to set a finite lower bound to the excitation energy of the system at special
incommensurate fillings. This leads to the emergence of gapped incommensurate band-insulator (IBI) phases
along with gapless Bose-glass (BG) phases for strong quasiperiodic potential for both hard-core and soft-core
bosons. Enriching the spatial features of the potential by the addition of a second incommensurate component
appears to remove the IBI regions, stabilizing a continuous BG phase over an extended parameter range.
Moreover, we discuss the validity of the local-density approximation in the presence of a parabolic trap,
clarifying the notion of a local BG phase in a trapped system; we investigate the behavior of first- and
second-order coherence upon increasing the strength of the quasiperiodic potential; and we discuss the ab initio
derivation of the Bose-Hubbard Hamiltonian with quasiperiodic potential starting from the microscopic Hamil-

tonian of bosons in an incommensurate superlattice.
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I. INTRODUCTION

Localization effects in random potentials represent a strik-
ing manifestation of the wavelike nature of quantum par-
ticles, and they are particularly pronounced in dimensions
less than 3, where, in the absence of an interaction, the sup-
pression of transport due to disorder occurs at all energy
scales [1,2]. A particularly intriguing aspect of localization
phenomena is their subtle interplay with particle-particle in-
teractions. In the following we will limit our discussion to
bosons. The screening effect of weak interactions can lead to
a transition from a localized (Anderson) insulator to a
superfluid—namely, to the persistence of superfluidity in a
disordered potential [3,4]. Systems on a commensurately
filled lattice without disorder exhibit a gapped Mott-
insulating (MI) phase for strong interactions, competing with
a superfluid (SF) phase as the interaction is reduced; in the
presence of disorder, the gapless Bose-glass (BG) insulator
competes with the MI when the disorder strength becomes
comparable with the Mott gap [4,5].

Recent experiments on trapped cold atoms have demon-
strated the ability of loading an atomic Bose gas in a well-
controlled disordered potential [6—11]. In particular, the re-
gime of strong repulsion in a strong pseudodisordered
potential has been achieved by loading cold bosons in a deep
one-dimensional quasiperiodic (QP) optical superlattice,
formed by two standing waves with incommensurate wave-
lengths [10]. In the insulating phase of the system, Bragg
spectroscopy reveals an excitation spectrum which strongly
differs from that of a MI, showing that the QP potential
introduces many new states in the spectral Mott gaps, caused
by the strong repulsion. This feature indirectly suggests that
the insulating phase measured in the experiments could be a
BG; yet, direct experimental inspection in the low-energy
spectrum, which is decisive to distinguish a BG insulator
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from a more conventional MI, is currently not available.

On the theoretical side, the study of tight-binding models
in QP potentials has a long history [12-16] connected to the
fundamental question of the fate of Anderson localization in
quasirandom potentials. Although Bloch’s theorem does not
apply to QP potentials, for one-dimensional systems it was
soon realized that the single-particle spectrum of the system
is composed of bands made of either all extended or all
localized states depending on the potential strength. There-
fore, filling such a system with spinless fermions leads to the
appearance of incommensurate band-insulator (IBI) phases
alternating with metallic phases for a weak QP potential and
with Anderson-insulating ones for a strong QP potential. Re-
markably, the very same picture can be exactly recovered for
bosons in the hard-core repulsive limit [17,18], with the fol-
lowing correspondence between fermionic and bosonic
phases: “metallic” — “superfluid” and “Anderson insulator”
— “Bose glass.”

In this paper we provide a systematic study of one-
dimensional bosons in a QP potential. We explicitly map out
the phase diagram of the system in the hard-core limit
through exact diagonalization, reconstructing the tight alter-
nation of the SF, IBI, and BG phases upon changing the
chemical potential. Making use of quantum Monte Carlo
techniques, we can then move on to the sof-core case which
is the most appropriate for the experiments [10]. There we
find that a strong QP potential, equaling in strength the in-
terparticle repulsion, completely removes the MI phase, leav-
ing space for various insulating phases at fractional fillings:
similarly to the hard-core case, slight changes of the model
parameters (chemical potential and hopping amplitude) can
drive the system from BG to IBI in a tight alternation. There-
fore the pseudodisorder created by a single incommensurate
potential component leads to a significantly different phase
diagram than in the case of a truly random potential [19-21],
where a continuous BG appears, becoming the only insulat-
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ing phase for strong enough disorder. The fundamental dif-
ferences between a truly random potential and a QP one are
explained quantitatively within a generalized atomic-limit
approximation, which captures how the statistics of spatial
structures in the potential reflects itself in the spectral prop-
erties. On the basis of this observation, we extend the de-
grees of freedom of the QP potential beyond what has been
so far explored in experiments [10], in search of the minimal
setup which would lead to a similar behavior to the case of a
truly random potential. We find that the addition of a further
incommensurate component, leading to a two-color QP po-
tential, causes the removal of the IBI phases and hence to the
appearance of a BG persisting over an extended filling range.

Moreover, we discuss the behavior of the system in the
presence of a parabolic trap, mimicking the experimental
situation encountered in current optical-lattice setups. The
local-density approximation (LDA), generally successful in
the absence of a QP potential, is critically discussed in its
presence. On the one hand, the density profile and local
particle-number fluctuations are correctly predicted by the
LDA; on the other hand, the identification of the local be-
havior in the trapped system with that of the bulk system at
the same chemical potential does not generally hold, due to
the severeness of the finite-size effects imposed by the trap in
the presence of the QP potential. At the same time we show
that a two-color QP potential can realize a uniform BG phase
in the trap, on average over the fluctuations of the spatial
phases of the potential components. Finally we make a closer
connection to optical-lattice experiments by investigating the
behavior of the currently accessible observables, which are
shown to reveal the full evolution of phase and density cor-
relations in the system upon changing the strength of the QP
potential; and we discuss in details the ab initio derivation of
the one-dimensional Bose-Hubbard Hamiltonian in the case
of an incommensurate optical superlattice.

This paper is structured as follows. Section II introduces
the Bose-Hubbard model in an incommensurate cosine po-
tential and the numerical methods used in the paper; Sec. III
discusses the phase diagram in the hard-core limit; the phase
diagram of the soft-core model is then presented in Sec. IV;
Sec. V discusses the emergence of the IBI in the presence of
the QP potential; Sec. VI focuses on the local-density ap-
proximation in the trapped system; Sec. VII shows results for
the experimental observables; and Sec. VIII presents the ab
initio derivation of the Bose-Hubbard Hamiltonian. Sum-
mary and conclusions are presented in Sec. IX.

II. MODEL AND METHODS

We investigate the one-dimensional Bose-Hubbard model
in an incommensurate cosine potential, with Hamiltonian

i=1

L
. U
Hoy= E {_J(bibi'+1 +H.c.)+ Eni(ni_ 1)

+Vzg(i§a,¢)ni—ﬂni}, (1)

with
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where b; and b:f are bosonic operators, J is the hopping am-
plitude, U is the on-site repulsion, V, is the strength of the
QP potential, and u is the chemical potential. The incom-
mensuration parameter 0 <« <1 is in principle an irrational
number; making use of periodic boundary conditions, it is
appropriate to take a=Nye,/L (With noninteger L/Neycies)
so that the incommensurate cosine potential has a period
exactly equal to the lattice size L.

The realization of the Bose-Hubbard model by loading
cold bosons in the lowest band of an optical lattice [22] has
been demonstrated by now in a large variety of experiments
[23-25]. More recently Fallani et al. [10] have been able to
add a QP potential to a one-dimensional optical lattice by
application of a secondary standing wave, with an incom-
mensurate wavelength N\, with respect to that (\;) of the
primary lattice. If the intensity of the secondary wave is sig-
nificantly weaker than that of the primary lattice, the main
effect of the \, lattice is to modulate the depth of the poten-
tial wells of the primary A; lattice, as modeled by the
V,-term in Eq. (1) (see Sec. VIII for a thorough discussion of
this point). We choose the representation of the incommen-
surate cosine potential as in Eq. (2) such that the potential
strength V, reflects directly the intensity of a secondary
standing wave at wavelength N\,=N\;/a: given that the first,
dominant standing wave “discretizes” the space to points
x;=(\,/2) i, the secondary standing wave creates a potential
on such points which is proportional to cos?[(27/\)x;+ ¢]
=cos’(ami+¢) as in Eq. (2). The wavelength relation defines
the incommensuration parameter, a=\A;/\,=830.7/1076.8
=0.771 37.... In the following we will use different rational
approximants thereof (a=97/126, 830/1076).

A fundamental limit of the Bose-Hubbard model is the
hard-core case U— <, in which double occupancy is strictly
forbidden and which has been experimentally demonstrated
in Ref. [26]. In the hard-core limit the constraint of forbidden
double occupancy can be directly incorporated in the opera-
tor algebra by introducing on-site anticommutation rules for
the hard-core-boson operators, {a,-,aj}:l and {af),af)}:o,
coexisting with ordinary bosonic commutation rules between
different sites. Hard-core bosons can be exactly mapped onto
spinless fermions f; and ﬁ through the Jordan-Wigner trans-
formation [27],

i-1 i-1
P - o
al =fi11 e ™, a;=T] e™f,, (3)
k=1 k=1

so that the resulting Hamiltonian is that of free fermions in a
potential:
L-1
H = E [_ ](‘flfj+] + HC) + Vzg(l,a’ d))ml — /-Lm,]
i=1

—J(e"f.f] +Hoe.). (4)

The boundary phase term resulting from the nonlocal nature
of the Jordan-Wigner transformation reads 6=[(N+1) = 1],
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where N is the particle number and the sign + (—) applies to
periodic (antiperiodic) boundary conditions.

Once reduced to spinless fermions, the hard-core boson
problem is exactly solvable through simple single-particle
diagonalization. In the following we will focus our attention
on two fundamental quantities: namely, the superfluid den-
sity, estimated through the energy difference between peri-
odic (+) and antiperiodic (—) boundary conditions,

py=——5(E7) = EW), (5)

and the compressibility k=dn/du, where n=N/L is the par-
ticle density.

In the soft-core case of the original Hamiltonian (1) an
exact solution is not available. In this case we make use of
quantum Monte Carlo (QMC) simulations, based on the sto-
chastic series expansion formulation and on the directed-loop
algorithm [28]. The simulations are systematically done at
temperatures low enough (typically T~ J/L) so as to remove
significant thermal effects. The truncation of the local Hilbert
space up to a maximum bosonic occupancy np,, is accu-
rately done to avoid significant truncation errors (we went up
to n,,,=6 for the largest fillings considered, n=~3). When
averaging over different realizations of the QP potential, we
have considered typical samples of 100-300 realizations.
The QMC method we use is formulated in the Fock-state
basis, so that all quantities which are diagonal in that basis
(density, compressibility, etc.) are straightforwardly evalu-
ated. The superfluid density is estimated through the fluctua-
tions of the winding number W in the world-line configura-
tions produced during the simulation [29], p,=(W?)L/(2]).
Finally we calculate the momentum distribution

1 . .
n(k) = =, =" (bl (6)

Im

obtained through the statistics of the directed-loop update
[30,32]. Most of the QMC results of the paper are based on a
standard grand-canonical algorithm, already well docu-
mented in the literature [28,30]. In Secs. VI-VIII we also
present results obtained with a novel canonical algorithm
with multiple directed loops, designed for the calculation of
higher-order off-diagonal correlators. The description of the
algorithm is beyond the scope of the present paper, and we
postpone it to a forthcoming publication.

III. HARD-CORE LIMIT

In this section we present exact results for the hard-core
case. The study of hard-core bosons in QP potentials has
been recently initiated by Refs. [17,18]. Remarkably the ex-
act mapping onto spinless fermions, Eq. (4), allows one to
exploit the large body of results produced several years ago
in the context of tight-binding models in a QP potential [16].
In particular, focusing on localization phenomena, a funda-
mental result is the so-called Aubry-André conjecture
[13,16] stating that for V,<4J all single-particle states are
extended, while for V,>4J all states are localized. The
single-particle spectrum is organized in bands, which have a
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FIG. 1. (Color online) Density for hard-core bosons in a QP
superlattice; here, the system size is L=1076 and the incommensu-
ration parameter is a=830/1076.

fractal support [12] (Cantor set) at the critical value V,=4J.

According to Eq. (4), the properties of the many-body
system, and in particular its elementary excitations, are eas-
ily read out from the single-particle spectrum for periodic
and antiperiodic boundary conditions. Figure 1 shows the
atom density, while Fig. 2 shows the superfluid density and
compressibility of the hard-core boson system as a function
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FIG. 2. (Color online) Superfluid density (upper panel) and
compressibility (lower panel) for hard-core bosons in a QP super-
lattice (parameters as in Fig. 2). The cyan horizontal line marks the

critical value V,/J=4 for the localization transition. The “zebra”-
like features in the superfluid density are finite-size effects.
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FIG. 3. (Color online) Dispersion relation for a single particle in
a QP potential of intensity V,/J=6.

of the chemical potential and strength of the QP potential.
The first quantity clearly show the occurrence of plateaus at
incommensurate values (the most prominent ones being at
n=0.229 and at n=0.457), signaling the presence of IBI
phases. The latter two quantities exhibit a highly nonmono-
tonic dependence on the chemical potential w at all finite
values of V,. The compressibility is clearly finite for a finite
single-particle density of states at the chemical potential,
p(w) [p(w)] for periodic [antiperiodic] boundary condi-
tions depending on the number of particles as in Eq. (4); in
this case, an extra particle can be added to the system by an
infinitesimal change of the chemical potential. As for the
superfluid density p,, in a truly periodic system (namely, in a
commensurate superlattice) this quantity is directly propor-
tional to the group velocity of the single-particle dispersion
relation at the chemical potential [33], as it immediately
emerges from the definition of p, as a response function to an
infinitesimal phase twist in the operators, b;— b; exp(idl):
namely, p,= (L/2J)PE/ 38| s (E is the total energy of the
system). Hence p, is finite when the chemical potential is
inside a band and zero otherwise [33]. In the case of a QP
potential the direct connection between superfluid density
and group velocity breaks down formally, as quasimomen-
tum is not a good quantum number anymore and the single-
particle states do not have consequently a well-defined group

velocity. Even though the new quantum number k labeling
the single-particle states is not, strictly speaking, the momen-

tum, the single-particle spectrum e(ig) shows a dependence

on k which is reminiscent of that of a system in a periodic
potential (see Fig. 3 for an example); in particular, close to a

gap, the dependence of e(k) on k is extremely weak and it

vanishes at the band edge. If l;edge is the quantum number of
the edge state and if the quantum numbers are defined on an

interval Ak, the quantum number of the closest state at lower
energy will be Eg;;ezk”edge—m?/ L. A vanishing derivative of
the energy spectrum with respect to k implies then that

[e(igedge) - E(];éaée)] -0
Ak/L

(7)

for L—0; this means in turn that the energy difference
E(gedge)—e(g(_) ) vanishes faster than 1/L in the thermody-

edge
namic limit. Consequently, when the chemical potential sits
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close to the band edge, the infinitesimal perturbation induced
by a change in the boundary conditions from periodic to
antiperiodic is going to mix states with an energy difference
decreasing faster than 1/L, and hence is it going to produce
an energy change EC)—E™ which obeys the same scaling.
This then leads to a vanishing p, as defined in Eq. (5).

On the contrary, for states corresponding to the middle of
the bands the perturbation induced by a change in the bound-
ary conditions will cause an energy shift scaling like 1/L,
leading to a finite p,, provided that such states are affected at
all by a local perturbation [34]—namely, provided they are
extended [35]. Hence in Fig. 2 it is not surprising to observe
a finite p, corresponding to a finite compressibility for
V,/J<4 and to observe an indentically vanishing p, regard-
less of the chemical potential for V,/J>4, as, according to
the Aubry-André conjecture, the critical point marks a tran-
sition from all extended to all localized states. This means
that the hard-core boson system exhibits an alternation of SF
and IBI phases for V,/J<<4, while for V,/J>4 the alterna-
tion is between IBI phases and BG phases, displaying a finite
compressibility in the absence of superfluidity.

IV. SOFT-CORE CASE

When releasing the hard-core constraint for the bosons,
we lose the possibility of describing the system via free fer-
mionic quasiparticles and a fundamental question arises on
the fate of the phase alternation described in the previous
section. For V,=0 the phase diagram of the one-dimensional
Bose-Hubbard model in the grand-canonical ensemble is
well known [36,37], and it features an extended SF region at
large J/ U ratio and a succession of Mott lobes with integer
fillings for lower J/U. Similarly to what is done in the ab-
sence of a QP potential, we study the phase diagram in the
(J/U, !/ U) plane, which is also directly relevant for the in-
tepretation of the behavior in a trapped system (see Sec. VI).
For definiteness, we choose to study the system with a strong
QP potential compared to the interparticle repulsion; namely,
we choose V,=U in Eq. (1). Under this condition the MI
regions are completely destabilized, given that the Mott gap
is upper-bounded by U and hence the Mott phase is not
going to survive the application of an Hamiltonian term
which is systematically larger than the gap. Hence the only
insulating phases surviving in the V,=U case will generi-
cally be compressible or incompressible incommensurate
ones—namely, insulating phases with incommensurate filling
factors—as shown in Fig. 4.

We map out the phase diagram for V,=U via grand-
canonical quantum Monte Carlo simulations for a single lat-
tice size L=126 and for a commensurate approximant «
=97/126 to the incommensuration parameter used in the ex-
periment [10]. The phase factor ¢ of Eq. (2) is set to 0 for
simplicity. Similarly to the soft-core case, the characteriza-
tion of the phases is carried out by investigating the com-
pressibility « and the superfluid density p,. The phase dia-
gram emerging from the simulations is of extreme
complexity, and several observations are in order, as it will
be discussed extensively in the next subsection, Sec. IV A. It
is important to stress that what we present in Fig. 5 is the
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FIG. 4. (Color online) Density plot for the phase diagram of the
Bose-Hubbard model in a QP potential with strength V,=U (L
=126). The red line marks the boundary between the insulating
(small-J/U) and the superfluid (large-J/ U) regions. The bold black
line is the density curve in the atomic limit J— 0 (notice that it is
reported on the graph minimum J/U=0.02 for comparison with the
numerical data at finite J). The dashed blue line shows the same
curve for V,=0 and for a shifted chemical potential u— u—U/2
(see text).

phase diagram for a finite-size system and for a single real-
ization of the QP potential (namely, a single value of ¢); we
will see in Sec. IV A how to overcome these limitations. In
the phase diagram, in the absence of superfluidity, we ob-
serve a patchwork of compressible and incompressible insu-
lating regions. In Fig. 5 we indicate with a blue dot a point in
parameter space which is found to be incompressible.

A. Finite-size effects

Before discussing the fundamental features of the phase
diagram, it is important to stress the following technical
point. At strictly zero temperature, the number of particles,
N, is a constant, given that it is a good quantum number of
the Bose-Hubbard Hamiltonian in an external potential; the
variation of N upon changing the chemical potential u pro-
ceeds in integer steps, and hence the compressibility, giving
the slope of such curve, is simply a succession of & peaks.
Given a system size L and a wu value such that the ground-
state particle number is N, the energy gaps between the

3
0 T ——
222 incompressible (IBl) > 25
compressibie 1Ll .
ouv\f\v‘ll na 2
PGI nud
1.5
L wu
pressible (BG) 1
- 0.5
S9000000e o--o.om
¢ -0.5
0.05 0.1 0.15 0.2 0.25

JIU

FIG. 5. (Color online) Phase diagram of the Bose-Hubbard
model in a QP potential with strength V,=U (L=126). Blue dots
mark points which are found incompressible. Other symbols as in
Fig. 4.
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ground state in the N-particle sector and the ground states in
the sectors with N+1 and N—1 particles can either scale to a
constant for L — o0, in which case the system is incompress-
ible in the thermodynamic limit, or they can scale to 0, in
which case the system is compressible in that limit and the
apparent incompressibility at finite L is a finite-size artifact.
The quantum Monte Carlo method we make use of is intrin-
sically a finite-T approach, and even for a finite-size system,
it can deliver a finite compressibility value if 7T is larger than
the finite-size gap between different particle number sectors.
In the simulation of, e.g., the Bose-Hubbard model without
QP potential, one can rely on the (finite-temperature) com-
pressibility to approximately locate the zero-temperature
phase boundary between the compressible SF phase and the
incompressible MI phase. The error that one can make in that
case is to ascribe to the SF phase that portion of the MI phase
whose gap is comparable to the temperature, but this is defi-
nitely a tolerable error as long as the topology of the phase
diagram is simple (e.g., one single boundary line dividing
two extended phases).

In the case under consideration, we are far from simplic-
ity. In fact, Figs. 4 and 5 are apparently conflicting, since Fig.
4 seems to suggest an insulating region with a smoothly
varying n(u) over most of the parameter space—namely, an
insulating region which is mostly compressible—whereas
Fig. 5 suggests rather the opposite—namely, that a dominant
part of the insulating phase diagram is incompressible. The
compressibility data upon which Fig. 5 is based are obtained
at a temperature (7=J/96) which is possibly lower than most
finite-size gaps in the insulating region, so that the incom-
pressible portion of the finite-size phase diagram is overesti-
mated with respect to that in the thermodynamic limit. Rais-
ing T is not recommendable, given that in this way narrow
incompressible domains in the phase diagram, expected in
principle on the basis of the hard-core limit (see Sec. III),
might be washed out if their gap becomes lower than the
temperature. Hence, given the tight alternation of compress-
ible and incompressible regions, the finite-size or finite-
temperature error that one can make in overestimating the
ones over the others is considerable.

One possible strategy to circumvent this intrinsic conun-
drum of finite-size simulations is based on the following ob-
servation. If a truly irrational « is taken in Eq. (2), increasing
the system size leads to a self-averaging QP potential;
namely, the properties of the system in the thermodynamic
limit become independent of the phase ¢. This means that
increasing the system size toward the thermodynamic limit at
fixed ¢ is equivalent to averaging over the phase ¢ on a
sample of fixed size L, as long as L is chosen to be much
larger than any correlation length & in the system. Hence,
away from the critical line between the SF phase and the
insulating one(s) (where &£— o), the behavior of the system
in the thermodynamic limit can be obtained by averaging the
finite-size results over all possible values of ¢. In practice,
for a compressible region of the phase diagram one expects
that, for some values of ¢, the finite-size gap between dif-
ferent N sectors becomes smaller than the selected tempera-
ture, so that a finite compressibility is recovered on average.
This numerical procedure is computationally demanding, and
we limit it to two selected cuts through the phase diagram,
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FIG. 6. (Color online) Compressibility for the Bose-Hubbard
model in a QP potential with fixed spatial phase ¢=0, compared
with the same quantity averaged over ¢ fluctuations.

one for fixed J/U=0.04 and one for fixed w/U=1. The re-
sults are shown in Fig. 6: they confirm the expectation that
the fixed-¢ phase diagram overestimates the incompressible
regions, but at the same time they confirm the presence of
sizable incompressible (IBI) regions, in tight alternation with
the compressible ones (BG). Given the finiteness of the grid
used in the (J/U,u/U) plane to sample the phase diagram,
we cannot exclude that an even tighter alternation between
IBI and BG regions exists among the dots, possibly revealed
by a finer mesh.

B. Emergence of the incompressible regions

The tight alternation of compressible and incompressible
insulating regions upon varying the chemical potential re-
veals that there are several “magic” incommensurate fillings
at which a quasiparticle band is filled, similarly to what hap-
pens to the exact fermionic quasiparticles in the hard-core
limit. In the compressible BG regions, on the other hand,
varying the chemical potential leads to variations in the fill-
ings, and all the newly added particles are effectively local-
ized by the QP potential and by the interaction with the den-
sity background of the other particles. Figure 4 shows the
filling of the lattice in the region of phase diagram we
sampled numerically, along with the atomic limit both for the
case V,=U and for the case V,=0. It is to be noticed that the
QP potential of Eq. (2) is symmetric around zero energy, and
in particular the local chemical potential in its minima takes
the value u—U/2; hence, a correct comparison with the case
V,=0 requires one to consider a Bose-Hubbard Hamiltonian
with a shifted chemical potential u— u—U/2. The presence
of the strong QP potential alters significantly the density
curve in the atomic limit, washing out the steps associated
with Mott lobes in the case V,=0, given that the system has
lost translational invariance and the average density can take
all possible values. Therefore a seemingly continuous curve
emerges, with integer densities appearing only at semi-
integer values of w/U; this behavior reflects the broad dis-
tribution of local chemical potentials in the sites of the QP
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FIG. 7. (Color online) Schematic depiction of the random-
atomic-limit approach for a QP potential (upper panel) and for a
truly random one (lower panel). This approach subdivides the sys-
tem into potential wells, here marked in red, and it diagonalizes the
problem of one, two, and three particles confined in each well,
extracting the corresponding ground-state energies E;, E,, and E;.
Such energies are then used to reconstruct the density of states of
the system for low filling.

potential, gradually occupied upon increasing u until the nth
“shell” is completed when an integer density n is reached.
The density of atomic states in a QP potential is peaked
around the energies *V,/2 (see Figs. 7 and 8 below), as
expected given that these are the values where the potential
has minimum derivative, and consequently the density curve
has maximum slope around w=(m+1/2)U (with m integer).
Hence the atomic limit picture suggests a finite compressibil-
ity for all chemical potentials, and intuitively one would ex-
pect the compressibility to stay finite a fortiori in the pres-
ence of quantum fluctuations, turned on through the hopping
term. This would be generally true in the case of a truly
random potential, on average over the possible realizations
of the potential or in the thermodynamic limit. Yet, in the
case of a pseudorandom potential, one of the main quantum
effects is to break the continuous classical many-body spec-
trum into bands. This mechanism is discussed in the next
section.
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FIG. 8. (Color online) Random-atomic-limit result for the effec-
tive single-particle density of states of a Bose-Hubbard model in a
QP potential with V,=U and over a large system size (L=10°). The
quantum case of J/U=0.04 is compared with the classical limit J
=0.

063605-6



BOSONS IN ONE-DIMENSIONAL INCOMMENSURATE ...

V. TRUE DISORDER vs PSEUDODISORDER

In this section we describe the formation of bands in the
quantum many-body spectrum of the Bose-Hubbard model in
an incommensurate potential making use of a generalization
of the atomic limit which includes the first quantum correc-
tion in a nonperturbative way. The central idea is to subdi-
vide the QP potential in uncorrelated wells, which are as-
sumed to be independent from each other in the case V,/J
> 1, and to diagonalize the N-boson problem in each of the
wells. We call this approach the random atomic limit. This
approach not only reproduces the main features of the n(u)
curve and of the associated many-body density of states at
low fillings, but it also nicely elucidates the fundamental
difference between a pseudorandom potential and a truly ran-
dom one and the fundamental mechanism leading to BG
physics. Finally it suggests a strategy to emulate the behavior
of a truly random potential making use of a combination of
two superimposed QP potentials.

A. Random atomic limit

We propose here an approximate treatment of the strongly
interacting Bose-Hubbard model in an intense QP potential,
U=V,>J, in the case of low fillings. The idea is that the QP
potential subdivides the lattice into potential wells between
which tunneling is negligible when not assisted by the inter-
action (namely, for low fillings) and hence interwell coher-
ence can be neglected within a good approximation. Hence
the Bose-Hubbard model in the grand canonical ensemble
can be treated as follows: (a) isolate each potential well,
cutting the chain at the location of the maxima delimiting the
well itself, and diagonalize the Bose-Hubbard Hamiltonian
in this potential for N=1,2,... particles, finding the ground
state energies E|, E,,...; (b) due to the QP potential and to
the interaction U, adding a second particle to the well costs
more energy than adding the first, and so for the third:
namely, £y <E,—-E;<E;—-E,—E;<---. Hence one can build
an effective single-particle density of states (DOS) p!"'(E) by
accumulating the energy costs for the addition of a single
particle to each well, €,=FE,, e;=E,—E|, =E;—E,—E|, etc.
We moreover normalize the DOS to unity: namely,

LS Soe-e. ®)

statesi=1,2,3,... ¢

pV(E) =

The filling for a given u is simply found by integrating
p"(E) up to u, similar to the case of noninteracting fermi-
ons.

For J=0, and in the case U=V, and n<1, any new par-
ticle added to the ground state of the system occupies the
least energetic site that remains empty. Hence the DOS
p(E) in that case simply reflects the distribution of the
on-site energies in the potential, which is a continuous one in
the interval [-U/2,U/2]. The quantum corrections to it, ob-
tained for up to N=3 particles per well, are shown in Fig. §;
the calculation was made for a large sample of the QP po-
tential considered so far (J/U=0.04), such that self-
averaging of the system properties is guaranteed. We observe
the striking feature of the opening of gaps in the DOS, de-
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FIG. 9. (Color online) Density curve for the Bose-Hubbard
model in a QP potential with a=97/126, J/U=0.04, and V,=U on
a system size L=126. Inset: random-atomic-limit calculation on a
large system size (L=109).

fining effective bands which are populated by the gradually
added particles. It is important to stress that the states asso-
ciated with these bands are localized and that the nature of
these bands is determined by the many-body physics inside
each well. In particular the first band is associated with states
in singly occupied wells and the finite energy cost to add an
extra particle to any of the well in the system causes the
appearance of a gap to the next band. The potential-energy
cost of adding an extra particle is completely compensated
for by the gain in chemical potential; hence, the only remain-
ing energy cost which prevents particle addition is purely
quantum in nature and it comes from the loss of kinetic
energy in the first particle when adding a second one to the
well. The same reasoning applies when adding a third par-
ticle, which gives rise to a further band, etc. In periodic
systems, the emergence of Bloch bands is due to the strong
scattering of traveling matter waves with wave vector at the
edges of the Brillouin zone; here, we have on the contrary
the appearance of bands associated with tightly localized par-
ticles and band gaps emerging due to a strong correlation
among the particles.

The opening of gaps in the effective single-particle DOS
leads to plateaus in the n(w) curves and hence to incompress-
ible phases at special, incommensurate fillings. The n(u)
curve obtained in the random atomic limit is compared with
the QMC results at J/U=0.04 and for low fillings in Fig. 9.
We observe that the random-atomic-limit calculation repro-
duces very well all the fine details of the n(u) curve from
QMC: (a) it perfectly captures the large plateau which cor-
responds in Fig. 8 to the gap between the one-particle band
and the two-particle band, occurring at a filling n=0.229...
(also observed in the hard-core limit; see Fig. 1 [38]); (b)
moreover, it also correctly captures the finite-size plateaus
due to the discrete jumps in the particle number in the n(u)
curve. Here the significance of finite-size issues in the deter-
mination of the phase diagram of the system is particularly
evident: in fact, for the L=126 chain the finite-size gaps are
completely masking the second plateau in the n(u) curve at
density n=0.457..., which on the contrary is clearly exhib-
ited in the random-atomic-limit calculation on a large system
size (inset of Fig. 9).
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B. From pseudodisorder to true disorder: The two-color
quasiperiodic potential

The discussion of the previous section allows us to clearly
identify the origin of the incompressible behavior in the in-
sulating regime of the QP potential. At some specific fillings
the addition of an extra particle requires one to locally
squeeze the particles already present in the QP potential
wells, and this squeezing costs a finite amount of kinetic
energy which translates into a gap over the ground state.
Actually the energy cost for the addition of a single particle
can be arbitrarily lowered if the potential wells are made
arbitrarily large, given that in this way the kinetic energy cost
for the particles already present can be minimal. In a well of
characteristic size / a particle has a confinement energy
~h2/2ml?; the addition of a second particle, which is ideally
impenetrable to the first one, roughly lowers the effective
space available to the latter to //2 and hence it increases its
confinement energy to ~4#%/2mi>. Hence the energy in-
crease scales to 0 as -2 when increasing the well size.

The QP potential has a characteristic length scale given by
the quasiperiod of the QP potential—namely, =27/ (k.
—ka)z(l—a)"—coming from the beating between the in-
commensurate cosine potential at wave vector kop=27a and
the underlying lattice (formally at a wave vector k; =2).
Potential wells cannot exceed this length scale, and therefore
the confinement energy scale is bounded from below. This
means that gaps to particle addition at particular incommen-
surate fillings are unavoidable in the system. Moreover,
working with a fixed number of particles at the same special
filling, a gap opens to particle-hole excitations: intrawell ex-
citations are clearly gapped due to the finite size of the well,
and particle-hole excitations which cause the transfer of a
particle from a well to another are also gapped, due to the
chemical potential mismatch between particle and hole.

One fundamental feature of a truly random potential, on
the other hand, is the absence of an upper bound for the
extent of potential wells and hence the possibility of always
adding a particle to the system at an infinitesimal energy cost
or, at fixed filling, to introduce a particle-hole excitation at
arbitrarily low energy. This feature, based on the statistics of
rare regions (large wells), is at the heart of the gaplessness of
the BG phase [5,39,40]. To corroborate this statement quan-
titatively, we apply the random-atomic-limit approach de-
scribed in the previous subsection to a truly random potential
with a random on-site energy evenly distributed over the
interval [-U/2,U/2]. We use two different criteria to iden-
tify the potential wells: Criterion 1. A potential well is de-
limited by two successive local maxima with positive height.
Criterion 2. A potential barrier is identified with a local
maximum whose height over the previous local minimum is
larger than U/2, and we hence identify a well with a region
between two such barriers (see Fig. 7). Criterion 1 is less
restrictive than criterion 2, and it surely underestimates the
size of the potential wells. Yet in the case of the QP potential
of Eq. (2) both criteria would lead to the same identification
of the potential wells as the one used in the previous subsec-
tion. As shown in Fig. 10, regardless of the criterion the
resulting effective single-particle DOS p'") associated with
many-body intrawell states is continuous for a truly random
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FIG. 10. (Color online) Density of states from the random
atomic limit for a truly random potential (upper panel) and for a
two-color QP potential (lower panel). The random potential takes
values over the interval [-U/2,U/2], while the two-color QP po-
tential has V,=U. For both systems L=10°. Results from two dif-
ferent criteria for the identification of the potential wells (see text)
are compared with the classical limit (J=0).

potential and all gaps are removed by the absence of an
upper bound in the well length .

From the point of view of the cold-atom experiments,
realizing optically an ideal white-noise potential requires one
to superimpose a large number of standing-wave components
with different wave vectors and with the same weight; this
translates into the need of a large amount of lasers at differ-
ent frequencies and with the same intensity, which is ex-
tremely demanding. Hence an interesting question, both at
the fundamental level and at the practical one, is the follow-
ing: can we mimic de facto the physics of a system of bosons
in a truly random potential by just using a finite number of
superimposed standing waves or, in more suggestive terms,
how many colors do we need for a pseudorandom potential
to call it disorder?

As discussed above, our goal is to realize a pseudorandom
potential with the minimal amount of Fourier components
giving rise to a continuous many-body spectrum—namely,
not exhibiting incompressible IBI phases. The guiding prin-
ciple is that of realizing a potential whose spatial features are
richer than those of a simple QP potential, such that larger
wells are realized giving rise to intrawell excitations at lower
energy and such that states with a different number of par-
ticles in different wells become quasidegenerate, giving rise
to low-energy interwell particle-hole excitations.

From this perspective we explore the most straightfor-
ward generalization to the QP potential so far considered;
namely, we add a second incommensurate component to the
QP potential of Eq. (2), having the same intensity as the first
one, thus realizing a two-color QP potential

gV a, ') = cos*(mai + @) + cos*(ma'i + ') — 1.

)

In what follows we take a’'=71/126=0.563 49.... Figure 10
shows the random-atomic-limit calculation for such a poten-
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FIG. 11. Compressibility and superfluid density (upper panel)
and total density (lower panel) for the Bose-Hubbard model in a
two-color QP potential, Eq. (9), on a L=126 lattice with «
=97/126, a'=71/126, V,=U, and J/ U=0.04. The QMC results are
averaged over independent fluctuations of the spatial phases ¢ and
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tial on a large sample size (which makes the particular values
of the phases ¢ and ¢’ irrelevant). For both criteria of well
identification we obtain a gapless single-particle DOS—
namely, no incompressible phase at low filling—opposite to
the case of a simple QP potential. This encourages us to
explore the behavior of the system over a larger filling inter-
val, making use of QMC simulations. Figure 11 shows the
compressibility, superfluid density, and total density for the
Bose-Hubbard model in a two-color QP potential for a large
m/ U range; the results shown are averaged over independent
fluctuations of the ¢, ¢’ phase, hence exploiting the whole
statistics associated with the potential of Eq. (9) and remov-
ing finite-size effects, as discussed in Sec. I'V. Noticeably, the
density curve at low fillings (n=<0.5) agrees very well with
that predicted by the random-atomic-limit calculation. Fur-
thermore, over the larger grid of chemical potentials and fill-
ings which is accessible to QMC simulations (we went up to
n=13) we find a finite compressibility everywhere, generally
coexisting with insulating behavior (only around u/U=2 a
tiny superfluid density shows up). Hence this particular
pseudodisordered potential features a continuous BG phase
without intermediate IBI regions. This means that the Bose-
Hubbard model in a two-color QP potential seems to capture
some of the fundamental physical features of the classic
dirty-boson problem [5]. It remains to be seen whether the
transition from SF to BG in such a potential belongs to the
same universality class as that of the system in a truly ran-
dom potential and whether the absence of incompressible
regions in the phase diagram applies to the whole parameter
space and to any combination of the incommensurability pa-
rameters « and «: we leave these questions open for future
investigations.

VI. TRAPPED SYSTEM AND LOCAL-DENSITY
APPROXIMATION

In the following sections we discuss the behavior of a
system of bosons in an incommensurate optical superlattice
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FIG. 12. (Color online) Local quantities for a Bose-Hubbard
system in a trap with parameters U=20J, V,=0.0014 U, pyp
=2.5 U, and L=126 (from top to bottom panel: density, on-site
particle-number fluctuations, local coherent fraction, and local com-
pressibility), compared with the same quantities for a bulk system
with a chemical potential matching the local one in the trap.

in the presence of a parabolic trapping potential, to make
contact with the experimental setup of current optical-lattice
experiments [10,23]. Hence we consider the Hamiltonian

Htrap =Hy+ Vz(i - i0)2, (10)

where V, is the strength of the trapping potential and i is the
center of the trap.

In the absence of an incommensurate potential, the behav-
ior of the Bose-Hubbard model in a trap is generally con-
nected to that of the bulk system via a local-density approxi-
mation [30,41,42]. Here we discuss how that approximation
holds only partially in the presence of an incommensurate
potential and how the behavior of the trapped system has to
be regarded in its own respect.

A. Bose-Hubbard model without QP potential

In the presence of a smoothly varying potential—namely,
under the assumption that V,<<J,U—recent works
[30,41,42] have shown that a local-density approximation
fully applies to the standard Bose-Hubbard model [Eq. (1)
with V,=0]; namely, the local properties in the trap, such as,
e.g., the density, can be directly related to those of the ho-
mogeneous system in the grand-canonical ensemble by
matching the local chemical potential in the trap, w;=
—V,(i—iy)? to that of the homogeneous system. A similar
calculation is shown in Fig. 12, where the local density (n;)
and the on-site particle number fluctuations
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o= (n}) — (n;)? (11)

are compared for a trapped system and a bulk system. Good
agreement between the data for the trapped system and those
for the bulk system is observed away from the crossover
regions between a locally SF and a locally MI region, while
in the crossover regions the data for the trapped system have
generally less sharp features with respect to those for the
homogeneous one. This can be intuitively understood by no-
ticing that finite-size effects are typically most pronounced
close to the critical boundaries between different phases,
where discontinuities and singularities are rounded off by the
finiteness of the system. In the trapped system the finite-size
effects are not only given by the overall trapping potential,
but most significantly by the finiteness of those regions
whose local chemical potential corresponds to critical bound-
aries between MI and SF in the homogeneous case.

Despite the finite-size corrections, the above results lead
typically to interpret the various regions in the trapped sys-
tem as locally superfluid or locally Mott insulating depend-
ing on the corresponding phase at the same chemical poten-
tial in the phase diagram of the bulk system. This conclusion
is particularly confirmed when looking at the local conden-
sate fraction

1 .
ek =0) = -2 (bb;) (12)
J
and at the local compressibility, introduced in Ref. [31],
BJ
Kioc,i = ?2 (nin) = (nXny)). (13)
J

Notice that in the homogeneous bulk system with global con-
densate fraction n(k=0) and global compressibility «, we
have that ny,;(k=0)=n(k=0)/L and i, ;=«/L. From Fig.
12 we see that the behavior of both n.. (k=0) and «,; in
the trapped system follows qualitatively that of the global
quantities in the bulk system. In particular it is important to
notice that both ny,. ;(k=0) and k.. ; are actually nonlocal
quantities and their final values depend not only on the local
chemical potential at point i, but also on the properties at
other points in the trap and in particular on the total number
of particles in the trap. Thus a close agreement with the bulk
data is generally not expected, in particular whenever the
correlation functions (bfbj) and ((nn;)—(n;)(n;)) become
long ranged in the bulk system: namely, in the SF phase and
at the SF-to-MI boundary, respectively. Nonetheless, ny,. ;(k
=0) and ki, ; capture the short-range behavior of those cor-
relators in the trapped system around the point i; therefore,
their local enhancement expresses the fact that phase coher-
ence between the points in those regions is strong, which is
typical of a locally superfluid islands, and that particle num-
ber fluctuations in those regions are strongly correlated,
which is a signature of the existence of low-energy and long-
wavelength density modes. Conversely a vanishing local
compressibility manifests a local gap to particle-hole excita-
tions and it is typically accompanied by a lower local phase
coherence. These two combined observations form the basis
to the LDA interpretation of local MI and SF phases in a
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FIG. 13. (Color online) Local density, particle-number fluctua-
tions, and coherent fraction (from top to bottom) for a Bose-
Hubbard system in a trap plus QP potential, with parameters U
=30/, V,;=0.0014 U, pyp=1.8 U, V,=U, and L=126. The above
quantities are compared to those of the bulk system with matching
local potential [Eq. (14)].

trap. This interpretation is fundamental to conclude that the
MI phase is realized at all in the trapped system, with a halo
of SF surrounding it; indeed, only an infinite repulsion U and
an infinitely steep trap would allow to realize a pure MI in
the trap.

B. Bose-Hubbard model with QP potential

When introducing the incommensurate cosine potential as
in Eq. (1), the picture becomes significantly more complex.
We will henceforth limit our discussion to the case V,=U
already discussed in Secs. IV and V—namely, the case in
which the MI phase is completely removed from the phase
diagram and substituted by a variety of incommensurate
gapped and gapless insulating phases.

In the presence of an incommensurate cosine potential,
even the bulk system becomes inhomogeneous, and hence
the LDA has to be rephrased as the approximation relating
the properties of a point in the trapped system to those of a
point in a bulk system experiencing the same local chemical
potential, resulting from the global chemical potential plus
the cosine potential; in mathematical terms, we have to iden-
tify a site iy, of the trapped system with a site iy of the
bulk system such that

Mioc = Mtrap — Vr(ilrap - iO)2 - VZg(itrap; a, ¢) = Mbulk
— Va8 ipui @ ), (14)

where iy, and py, are the global chemical potentials for
the trapped and bulk systems, respectively. Figure 13 com-
pares the results for the bulk and trapped systems following
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the prescription of Eq. (14) in the case of a strongly interact-
ing system in a deep incommensurate potential, U/J=V,/J
=30. With these parameter values the bulk system lies in the
insulating region of the phase diagram for a broad range of
chemical potentials. In what follows we consider .,/ U
=1.8 so that the local chemical potential in the trapped sys-
tem, which is upper-bounded by the above value, experi-
ences a superfluid region of the bulk phase diagram (Fig. 5)
only around the value wu,,./U=1.5.

Despite the high inhomogeneity of both the bulk and
trapped systems, we generally observe a good quantitative
agreement between their respective data for the local average
density, local density fluctuations, and local coherent frac-
tion. For the interval of chemical potentials spanned by ;..
only two nearby critical points are present in the bulk phase
diagram around w,,./U=1.5, so that, away from those two
points, the system is deep in an insulating region with a short
correlation length, and finite-size effects are therefore not
severe. The problematic aspect of the LDA in the presence of
the QP potential is nonetheless the subsequent interpretation
of the trapped system as locally exhibiting a phase of the
bulk system. In particular, what is the meaning of a local
Bose glass?

In this respect, the examination of the local compressibil-
ity compared with the global one is illuminating. As shown
in Fig. 14, the local compressibility of the trapped system is
in strong disagreement with the global one, and it is gener-
ally vanishing when the global one is not. This is not at all
surprising in a strongly inhomogeneous system, in which the
global compressibility is due to the local response of discon-
nected regions to the variation of the chemical potential, and
it is related to the existence of localized low-energy particle-
hole excitations. Although a region in the trap might be at a
chemical potential which would correspond to a BG phase in
the bulk phase diagram, it is very likely that such a region
does not correspond to the region of the bulk system that is
hosting the locally quasigapless excitation and which is
hence exhibiting a finite local compressibility. This is indeed
the case for what depicted in Fig. 14, where we show the
local compressibility of the bulk system for a chemical po-
tential corresponding in the trap to a locally incompressible
region: as observed there, the bulk system has a finite com-
pressibility at that chemical potential, coming from the local
compressibility of regions which do not correspond to the
ones reproduced in the trap (shaded areas). Hence it is evi-
dent how the finite-size effects induced by the trap are dras-
tically altering the local behavior of the system with respect
to that of the bulk one.

C. Structure of the particle-hole excitations

The above results require to discard the LDA picture of
the trapped system locally mimicking the behavior of the
bulk system when it comes to the BG phase. At the same
time, the very picture of a local realization of collective
quantum phases in a trapped system might be a limiting
point of view. As pointed out in Sec. V, the existence of
gapless particle-hole excitations, originating from rare re-
gions in the system, is at the core of the BG phase: e.g.,
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FIG. 14. (Color online) Upper panel: local density of the trapped
system compared with local density and local compressibility of a
bulk system with chemical potential gy, =1.8U. The region where
trapped and bulk density profiles match is emphasized by the
shaded area (notice that the chemical potentials fiy, and i
match perfectly only at the trap center, but the variation of iy, due
to the trapping potential is slow around the center). The regions
exhibiting a finite local compressibility in the bulk system are seen
to fall out of the region of matching densities, and consequently the
trapped system is locally incompressible (see following panel).
Lower panel: local compressibility of the trapped system compared
with the global compressibility of the bulk system. All other param-
eters as in Fig. 13.

accidentally degenerate regions separated by a potential bar-
rier, for which tunneling creates a pair of quasidegenerate
symmetric and antisymmetric superposition states similarly
to the double-well problem, or rare regions with a locally
uniform or periodic potential, which host local low-energy
excitations.

As we have seen, the inhomogeneity of the QP potential is
what causes a trapped system to fail in reproducing locally
the global properties of a bulk system at the same chemical
potential. At the same time it is conceivable that, in the pres-
ence of the trap, accidental degeneracies might occur be-
tween local quasiparticle states residing at different trapping
potentials—namely, accidental degeneracies which are not
observed in the bulk system. To directly investigate this pos-
sibility, we have run a canonical Monte Carlo simulation in
which we add particles progressively to the system. We then
define effective quasiparticle and quasihole states l//gl\l/;si_p and
lﬂéﬁ?lsi.h such that their associated density distribution corre-
sponds to the density variation of the system by adding or
removing a particle, respectively:

[ @)= n™D = ), (15)

quasi-p
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[Huasi @ =i = 0. (16)
Looking at the spatial structure of the quasiparticle and
quasihole states corresponding to the same particle number
N, we generally obtain information about the structure of the
particle-hole excitations of the system at particle number N.

In fact, starting from N—1 particles, the energy cost of
adding an extra particle is given by the kinetic energy plus
the interaction of the extra particle with the background of
the N—1 particles already present in the system and analo-
gously for adding an extra particle to go from N to N+1. If
the density variation associated with growing the particle
number from N—1 to N happens in a different spatial region
with respect to the variation caused by growing the number
from N to N+1, then the quasihole state '//Emsi-h and the qua-
siparticle state ¢é’§;si_h are nonoverlapping. In the presence of
short-range interactions as in the Bose-Hubbard model, this
implies that the addition of the Nth particle does not influ-
ence the background with which the (N+1)th particle inter-
acts, which implies, in more concise terms, that the quasipar-
ticle and quasihole are not interacting. Thus, working at
particle number N, the creation of a quasihole in state (ﬂfﬁ;si_h
and of a quasiparticle in state t//fl];]asi_p represents the true
lowest-energy particle-hole excitation of the system, with en-
ergy AEN:AEP_h:E§811+E§\?_)1—2E§8) (EQ is the ground-
state energy for the system with N particles).

If, on the contrary, the quasiparticle and quasihole states
for particle number N do overlap, then in principle the en-
ergy AE, ;, needs a correction coming form the interaction in
order to be identified with the energy of the elementary
particle-hole excitation. Yet, if AEp_h is found to be small
(U for definiteness), then the interaction between the Nth
added particle with the background of N—1 particles, enter-
ing in the E\V—E\, difference, has essentially the same en-
ergy as that of the interaction between the (N+ 1)th particle
and the background of N particles, entering in the E}f,)ll
—Eg\(,)) difference; this in turn implies that the Nth particle
minimally alters the interaction between the (N+ 1)th particle
and the remaining N—1; namely the quasiparticle and the
quasihole states are again effectively independent, and they
are moreover essentially degenerate. If not even the above
condition on AE|, ;, is satisfied, we can still generally assume
that, in the presence of repulsive interactions, AE,  repre-
sents an upper bound to AEy [43] and that the spatial struc-
ture of the true particle-hole excitations is approximately re-
produced by that of gggsi_h and wgz;si_p.

In the case of a trapped system without QP potential, the
quasiparticle and quasihole states are shown in Fig. 15 for a
selected range of particle numbers N and the associated
particle-hole gap AE,,, is shown in Fig. 16. We generally
observe that the quasiparticle and quasihole states reside in
the locally superfluid regions, as expected from the informa-
tion on the local compressibility. For the particular density
we have chosen in Fig. 15 the system exhibits two such
regions, at local filling n<<1 on the wings and at filling n
>1 in the center. We generally observe three different types
of particle-hole pairs, with AE,,<U in all cases: (a) pairs
where quasiparticle and quasihole both reside in the center of
the trap—these are the excitations which more closely mimic
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FIG. 15. (Color online) Central panels: quasiparticle
[|(/f$2lsi_p(i)|2] and quasihole [—\z/f((l]:gsi_h(i)|2] densities for the Bose-

Hubbard model in a trap at various particle numbers N and with
parameters U=20J and V,=0.0014U. A rescaled picture of the para-
bolic trap is reported in each panel for reference. Upper and lower
panels: total density profile associated with the minimum (N=51)
and maximum (N=62) number of particles shown here.

those of a finite-size SF system; (b) pairs where quasiparticle
and quasihole both reside in the wings of the trap—these
states correspond to the symmetric and antisymmetric super-
positions of the left- and right-localized states in the wings,
and the particle-hole gap AE,_;, is minimal in this case, be-
cause the large barrier provided by the intermediate MI re-
gion leads to quasidegeneracy (see for instance the case of
N=55,56,61,62); (c) particle-hole pairs with a particle re-
siding in the wings and the hole in the center or vice versa.
The excitations (b) and (c) are specific to the trapped system;
in particular, it is noteworthy that quasidegeneracy exists be-
tween states related to different trap regions, and hence the
picture of local phases described in the previous paragraph
does not extend to excitations.

In the presence of a strong QP potential with V,=U, the
structure of the excitations changes drastically, although
some of the features observed before persist: namely, the
cross talk between different trap regions. Figure 17 shows
the spatial structure of quasiparticle and quasihole states and
Fig. 18 the particle-hole gap. It is evident that the strong QP
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FIG. 16. Particle-hole gap AE,,, for the Bose-Hubbard model in
a trap. Parameters as in Fig. 15.
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FIG. 17. (Color online) Central panels: quasiparticle

[ng;si’p(i)ﬂ and quasihole [_|’/’gl\1]e)1si—h i)|?] densities for the Bose-
Hubbard model in a trap plus QP potential at various particle num-
bers N, with V,=U=20J. Other parameters as in Fig. 15. A rescaled
picture of the parabolic trap plus the QP potential is reported in each
panel for reference, together with the trap axis. Upper and lower
panels: total density profile associated with the minimum (N=69)
and maximum (N=80) number of particles shown here.

potential leads to tight localization of the added particles and
holes in the system, typically around a few lattice sites; de-
localization of the quasiparticle and quasihole states onto
two disconnected regions is due to the symmetric-
antisymmetric combination of quasidegenerate localized
states (as before, these combinations give rise to the lowest
particle-hole gaps, such as, e.g., for N=69, 72, 76, etc.).
Furthermore, quasiparticle and quasihole states are very of-
ten decoupled spatially (see, for instance, the cases N
=70,71,73,74,75,77,78). This means that the lowest-
energy particle-hole excitations are not at all confined to
equipotential regions, but they can be associated with acci-
dental quasidegeneracies of quasiparticle and quasihole
states between regions at quite different trapping potentials.
Hence the notion of “local (quasi)gaplessness™ is too restric-
tive, and the picture of a local BG, which we have seen to
break down in the previous discussion, can be superseded by
the possibility of having a global trapped BG, in which low-
energy particle-hole excitations, albeit corresponding to the

0
5

0 55 60 65 70 75 80
N

FIG. 18. Particle-hole gap AE, ;, for the Bose-Hubbard model in
a trap plus QP potential. Parameters as in Fig. 17.
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FIG. 19. (Color online) Upper panel: phase-averaged local com-
pressibility for the Bose-Hubbard model in a QP potential, with
parameters U=25J, puyp=1.8U, and V,=0.0014U. Lower panel: the
phase-averaged local compressibility of the trapped system is com-
pared to the phase-averaged global compressibility of the bulk sys-
tem (see also Fig. 6) by matching the average chemical potentials:
here pef= firap— V,(i—iy)? for the trapped system and gegr= by for
the bulk system.

transfer of a quasiparticle between two localized states, can
also occur between distant points in the trap [44].

D. Bose glass in the trap: One-color vs two-color QP potential

In Sec. VI we have seen that for a single realization of the
QP potential the concept local BG (in the sense of the LDA)
breaks down due to significant finite-size effects. This feature
is actually generic of inhomogeneous systems, and we expect
it to hold also for a single realization of a truly random
potential. The concept of local BG can be nonetheless recov-
ered on average over the statistics of the (pseudo)disordered
potential. In the specific case of a QP potential, one can
randomize its spatial phase as in Sec. V. Interestingly, from
the point of view of optical-lattice experiments, averaging
over fluctuations of the spatial phase of the QP potential is
inevitable when averaging the results over different experi-
mental runs. In fact, the spatial phase can be fixed over the
duration of a single run, but it is typically changing from run
to run [45].

Randomizing the spatial phase of the QP potential implies
that the potential profile can randomly “slide” along the trap.
If a region of the trap experiences a local chemical potential
which corresponds to that of a BG phase in the bulk phase
diagram, there is in principle a finite probability that, by
random sliding of the QP potential, a region hosting a gap-
less particle-hole excitation in the bulk system will appear in
the trap, so that on average that portion of the trap acquires
a finite local compressibility. Figure 19 compares the data,
averaged over ¢ fluctuations, of the rescaled global com-
pressibility /L for the bulk system (already shown in Fig. 6)
with those of the local compressibility in the trap, plotted as
a function of the effective chemical potential induced by the
trap, Mefr=pyap— Vi(i—ig)*. This time we observe that, upon
¢ averaging, most compressible phases in the bulk are gen-
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FIG. 20. Left panel: local compressibility of the Bose-Hubbard
model in a trap plus a two-color QP potential, averaged over fluc-
tuations of the spatial phases of the two colors. Here V;=0.0014U,
other parameters as in Fig. 11. Right panel: momentum distribution
for the same system (on a lattice of L=126).

erally mirrored by locally compressible phases in the trap
and even that there exist locally compressible phases in the
trap which correspond to incompressible phases in the bulk.
This suggests that the finite compressibility in this case is
associated with low-energy excitations which are specific of
the trapped system, as discussed in the previous section.

The above results finally suggest the following conclu-
sion: a truly random potential or a pseudorandom potential,
giving rise on average to a BG phase for a continuous range
of chemical potentials in the phase diagram of the bulk sys-
tem, should also be able to give rise on average to a locally
compressible phase on all the points of the trapped system.
To verify this statement in a particular case, we look at the
two-color QP potential of Sec. V in a trap. This potential is
seen to satisfy the above condition on the bulk compressibil-
ity over an extended range of chemical potentials (see Fig.
11). Figure 20 shows the local compressibility of this system,
averaged over spatial-phase fluctuations. In contrast with
what observed in Figs. 14 and 19, we have here a finite local
compressibility everywhere in the trap, on average over ¢
fluctuations. At the same time the system exhibits a very low
coherence which allows to rule out quasicondensation [46].
Hence we conclude that this system perfectly realizes a BG
all over the trap.

VII. RELEVANT EXPERIMENTAL OBSERVABLES FOR
THE TRAPPED SYSTEM

In this section we show results for two relevant observ-
ables that are currently accessible to time-of-flight measure-
ments in optical-lattice experiments: namely, the first-order
[10,23] and second-order [25,47-49] coherence of the
bosons. The first-order coherence contains the information
on the momentum distribution, Eq. (6). The second-order
coherence contains instead information on the correlations
between the momentum distribution fluctuations (also called
noise correlations):

G(k,k") = (n(k)n(k")) = (n(k))n(k")). (17)

What is customarily measured in experiments [25,49] is ac-
tually the average correlations between the populations at
two momenta differing by a value ¢, normalized to the fac-
torized correlator:
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D ccrny 0l +q))

I(q) = (18)

In order to evaluate G(k,k') and I(g) we need in general to
be able to evaluate four-point off-diagonal correlators of the
type (b/b jb;fbm> within QMC simulations and to successively
Fourier transform them. This is possible within a double-
directed-loop canonical algorithm that we explicitly devel-
oped for this purpose, in which the evaluation of the above-
cited four-point correlator is performed during the update
whenever the four ends of the two loops find themselves at
the same time slice on the sites i, j, [, and m. Details of the
algorithm will be reported elsewhere. We investigate the evo-
lution of the first- and second-order coherence upon increas-
ing the strength of the incommensurate cosine potential. We
fix the ratio U/J to two different values U/J=5 and 10,
which give rise to two different states at zero QP potential in
a trap of strength V,/J=0.0014U.

For U/J=5 the trapped system with V,=0 exhibits a high
coherent fraction and the application of the QP potential has
the effect of suppressing coherence, driving the system
through a superfluid-to-incommensurate-insulator crossover,
as clearly shown in Fig. 21. We then compare the evolution
of the momentum distribution with that of the density profile
upon increasing V, (also shown in Fig. 21), which is not
directly measurable in the current experiments. We notice
that the strongest suppression of the coherent peak at k=0
corresponds roughly to the value of V, at which the incom-
mensurate potential introduces unoccupied sites in the cen-
tral region of the trap, fragmenting the many-body state into
droplets.

Along the superfluid-to-insulator crossover the system
traverses a modulated superfluid phase, in which the coher-
ent fraction remains significant while the density profile ac-
quires a strong modulation due to the external potential. This
modulation is only marginally revealed in the momentum
distribution by two satellite peaks at the incommensurate
beating momenta k;,.= +27(1 —a) (see also Ref. [33] for a
similar signature in commensurate superlattices). This effect
can be understood as an effective reduction of the first Bril-
louin zone, due to the longer (quasi)period imposed by the
incommensurate potential; yet its signature is possibly too
weak to be observed in current optical-lattice experiments. It
is also to be observed that such signature becomes unobserv-
able in the strongly insulating regime, where the momentum
distribution becomes essentially featureless.

Nonetheless, as shown experimentally in Refs. [25,49],
the fluctuations of the momentum distribution, captured by
Egs. (17) and (18), have a momentum structure which re-
flects directly the Fourier transform of the density-density
correlations. Indeed, for a pure Fock state [{n;}) one can eas-
ily show that

N N
I(g)=1 +Z5q,o+;5(q), (19)

where S(¢q)=(1/L)Z,;{n;n;) is the static structure factor and N
is the total number of particles. In a more general superpo-

063605-14



BOSONS IN ONE-DIMENSIONAL INCOMMENSURATE ...

FIG. 21. (Color online) Upper panel: momentum distribution for
the Bose-Hubbard model in a trap (N=100, U=5J, V,=0.0014U,
L=140) in a QP potential of increasing strength V, (here repre-
sented in units of J). Lower panel: false-color density plot for the
same model; the false colors only apply to finite densities, while the
white regions emphasize the points with zero density.

sition state |‘lf)=2{ni}c({n,-})|{ni}) the above relation does not
hold; nonetheless, if the state contains only one or a few
dominant Fock components, the essential features of their
related structure factor will be captured by the integrated
noise correlations as in Eq. (18). Figure 22 shows the
second-order coherence as a function of the intensity of the
incommensurate potential. The central peak at g=0 shows a
nontrivial evolution, with a large increase corresponding to
the suppression of coherence and the consequent increase in
the fluctuations (n(k)?) at all momenta, which contribute to
I(g=0). But the most significant feature is the appearance of
satellite peaks at g=k;,. and also at g=2k;,.. The height of
these peaks appears to saturate around the value of V,
(V,/J~20) at which the coherence peak in the momentum
distribution gets drastically suppressed, marking the frag-
mentation of the system into droplets.

Increasing the value of U/J to 10, the system at V,=0 has
a significantly lower coherence than in the case U/J=5. In-
terestingly the application of the QP potential appears to in-
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I{q)

FIG. 22. (Color online) Noise correlations for the Bose-Hubbard
model in a QP potential; model parameters as in Fig. 21.

crease the coherence in the system, as shown in Fig. 23, an
effect due to the simple fact that MI regions are destabilized
by the application of the QP potential because they obviously
do not display the right filling to minimize the potential en-
ergy. A similar effect of destabilization of the MI by an ex-
ternally applied potential has been previously observed both
in the case of a periodic potential [33,50] and in the case of
a random one [51]. A further increase in the QP lattice leads
to a similar crossover toward a deep incommensurate insu-
lating state, as seen above for the case U/J=5. The second-
order coherence shown in Fig. 24 also reveals a nonmono-
tonic behavior of the ¢g=0 peak, where a suppression of
momentum fluctuations is observed together with the en-
hancement of the k=0 peak. Satellite peaks at k;,. and 2k;,.
appear for large V, as in the case of a lower U/J ratio, but it
is interesting to notice that the momentum structure of 1(g) is
significantly less pronounced than in the case of U/J=5; in
particular, the height of the satellite peaks has decreased with
respect to that of the central one. To further illustrate this
trend we have performed an exact calculation of I(g) in the
Fock-state limit J— 0, whose results are shown in Fig. 24
and where it appears that in this limit the g-dependent struc-

FIG. 23. (Color online) Momentum distribution for the Bose-
Hubbard model in a QP potential with U=10J; other parameters as
in Fig. 21.
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I{q)

I{q)

FIG. 24. (Color online) Upper panel: noise correlations for the
Bose-Hubbard model in a QP potential with U=10J; other param-
eter as in Fig. 23. Lower panel: noise correlations for the classical
limit of the above model, J=0. Here V), is in units of U/10.

ture of I(g) is even weaker than in the finite-J case. Hence
we can conclude that quantum fluctuations generally en-
hance the nontrivial g-dependent part of the I(g) signal with
respect to the g=0 peak.

In conclusion, we observe that the first- and second-order
coherence provide full information about the diagonal and
off-diagonal correlations in the system, and they clearly re-
veal the crossover (or finite-size transition) from a superfluid
state to an incommensurate insulating state upon increasing
the QP potential. The detection of the possibly unconven-
tional nature of the insulating state—namely, the presence
(albeit local) of BG regions—is nonetheless beyond the
scope of these observables, and quantities that directly probe
the low-energy particle-hole excitations are required, ideally
the local compressibility as discussed in Sec. VI. Future
work will present an experimental strategy to directly ad-
dress this issue [52].

VIII. VALIDITY OF THE BOSE-HUBBARD MODEL IN AN
INCOMMENSURATE POTENTIAL

Throughout the previous sections we have worked under
the assumption that an incommensurate optical superlattice,
realized in the experiments [10] by superimposing a primary
and a secondary standing wave with incommensurate wave-

PHYSICAL REVIEW A 77, 063605 (2008)

length relation, can be fully described by a simple incom-
mensurate cosine potential added to the Bose-Hubbard
Hamiltonian, as in Eq. (1). This means that the only effect of
the secondary optical lattice is assumed to be a shift of the
local energy of the Wannier functions associated with the
lowest Hubbard band of the primary lattice. Yet the fre-
quency inside each potential well of the superlattice changes
in general with respect to that of the single-color lattice and,
most importantly, the relative distances between consecutive
wells are also shifted [53]. These effects modify in principle
the shape of the Wannier functions, leading to a modulation
of the U parameter, and the overlap between the Wannier
functions associated with two adjacent sites, leading to a
modulation of the J parameter.

Here we recall the well-known derivation [22] of the
Bose-Hubbard model from the most general second-
quantized Hamiltonian of a set of interacting bosons in an
external potential, which reads

H = f &’r (//T(r)<— %Vz + Vopl(r)> ir)

+38 f dr " (D) (r) plr) lr) (20)

where ¢ and ' are bosonic field operators, g=4mah*/m
with m the mass of the bosons and a, the s-wave scattering
length, and V,,,(x) is the optical potential applied to the at-
oms. Following the experimental setup of Fallani er al. [10],
hereafter we assume that V,,,, can be written as

Vopt(r) = VH(-x) +V, (y.2), (21)

1
V. (y,2) =5, [cos’(k;y) + cos?(ky2) JE, + Emwi[(y -y0)*+(z

-29)°], (22a)

1
V(x) = 51 cos’(k;x)E, + s, cos>(kox + $)E, + Emwf(x - xp)°.
(22b)

V| creates a strong optical-lattice potential with wave vector
ky=2/N\ in the y and z directions, defining tubes along the
x direction, plus an overall parabolic confinement with fre-
quency w . Hereafter we consider a strong transverse optical
lattice, s, =40, as obtained in recent experiments [10,24],
which allows us to neglect the intertube hopping and to con-
sider single tubes independently. The optical potential along
the x direction features two optical lattices with incommen-
surate wave vectors k;=2m/\; and k,=27/\,, plus a para-
bolic confinement with frequency w,. For definiteness we
take A;=830 nm, \,=1076 nm, and mwﬁ/Z:0.00lZE, as in
Ref. [10]. s;, 55, and s, are dimensionless amplitudes, and
E,=(fk,)?/2m is the recoil energy (associated with the pri-
mary lattice).

We then decompose the bosonic field operators onto an
orthonormal basis of single particle wave functions localized
around the minima of the optical potential in each tube:
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9r) = 2w W) Wi2)b,, (23)

where i runs over the minima. Neglecting the overlap be-
tween localized wave functions on nonadjacent minima, the
Hamiltonian parameters of a general one-dimensional Bose-
Hubbard Hamiltonian

U.
H= 2 |:(Ji,i+lbib;+1 + hC) + ?lni(n[ - 1) + Vini:| (24)
can be obtained as usual, with parameters

. (]
Jii1 = f dx Wi+1(x)|:_ max Vu(x)}wi(x), (25)

Y (6)

Ui=gf dx|Wi(X)|4J d}’|Wi()’)|4J dZ|Wi(Z)

V= f dx|wi(x)|2\4|(x). (27)

The W,;’s are the Wannier functions associated with the low-
est band of the periodic potential in the y and z directions,
which can be conveniently approximated by Gaussians in the
limit of a deep optical lattice. Along the x direction Bloch’s
theorem does not apply due to the incommensuration be-
tween the two optical-lattice components, so that Wannier
functions cannot be properly defined. Hence we take the w;
to be the ground state of the potential obtained by a polyno-
mial expansion (up to sixth order) of V|(x) around the ith
minimum and the so-obtained set of localized functions is
further Gram-Schmidt orthogonalized. In absence of the \,
optical lattice, this approach provides hopping amplitudes
Ji i1 in good agreement with the estimate coming from the
solution of the Mathieu equation [54] and it improves sig-
nificantly over a simple Gaussian approximation for the w;’s
(see Fig. 25). In the case of the full incommensurate super-
lattice, this approach shows a significant site dependence of
the hopping amplitudes J; ;,;, with differences between dif-
ferent pairs of sites that can reach one order of magnitude for
intense secondary lattices. This is due to a significant shift in
the positions of the minima of the incommensurate optical
superlattice with respect to the monochromatic lattice and to
the exponential sensitivity of the hopping amplitude to such
shifts. An example of the site dependence of the hopping
amplitudes for an intense secondary lattice is shown in Fig.
26, together with the local energies V;. In particular, it is
evident that the modulation of the local chemical potential
and of the local hopping are strongly correlated; namely, the
amplitude of the hopping is maximum where the local en-
ergy V; is also maximum. Hence the modulated hopping
competes in principle with the localization effects induced by
the QP V;’s, given that the local kinetic energy is minimized
in proximity of the potential maxima. Yet, looking at the
magnitude of the hopping modulation with respect to the
dominant local potential modulation, it is clear that one can
still confidently rely on the simple Hamiltonian (1) to capture
the dominant low-energy features of the Hamiltonian (20).
Figure 27 shows the relative fluctuations 6J/J,, associated
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FIG. 25. Hopping amplitude J as a function of the lattice poten-
tial depth s; for a monochromatic optical lattice (both quantities are
expressed in units of the recoil energy E,). We show the estimate of
J obtained_through the solution of the Mathieu equation [54],
JIE,=(4/ \s“;’)s?/ * exp(=2\'s,), through the calculation of the overlap
integral Eq. (25) via sixth-order expansion of the optical potential
(see text), and through the simple Gaussian approximation for the
Wannier functions, J/E,=(m2/4—1)s, exp[—(m2/4)\s,].

with the modulation of J; ;,; around the average value J,, and
their amplitude &/ compared with the energy scale of the
potential created by the secondary lattice, s,E,. Although the
relative fluctuations can be extremely large and far exceed
100%, the energy range spanned by those fluctuations be-
comes negligible with respect to the energy scale of the po-
tential, and hence the modulation of the hopping is not ex-
pected to alter significantly the behavior of the system for
strong secondary lattices. As for the site dependence of the
interaction U;, we find that it reaches ~10% for the strongest
secondary lattice considered in Fig. 27, so we discard it for
simplicity in the following.

To quantitatively verify that the hopping modulation does
not significantly affect the physics of the system, we have
studied the first- and second-order coherence of the system
with the full ab initio Hamiltonian (24) and compared the
results to the case in which we neglect the hopping modula-
tion: namely, Eq. (24) with J;;,;=J=const. The results are
shown in Fig. 28 for the momentum distribution and in Fig.
29 for the noise correlations. We observe that taking into
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FIG. 26. (Color online) Site-dependent hopping amplitude J; ;|
and local potential V; for the generalized Bose-Hubbard model, Eq.
(24), derived from the microscopic Hamiltonian for bosons in an
incommensurate optical superlattices. Here s;=8, s,=3, and
maw;/2=0.0012E,.

063605-17



TOMMASO ROSCILDE

FIG. 27. Upper panel: relative fluctuations of the effective hop-
ping amplitude J; ;,; for bosons in an incommensurate superlattices,
as a function of the intensities s; and s, of the two superimposed
standing waves. Lower panel: ratio of the hopping amplitude fluc-
tuations over the potential energy of the secondary standing wave.

account the hopping modulation does not alter the most sig-
nificant qualitative features of these observables. As for the
momentum distribution, we observe that the hopping modu-
lation leads to a stronger suppression of coherence for strong
QP potentials; in the case of noise correlations, we see that
the modulation of the hopping amplitude leads to a reduction
of the signal at the incommensurate momentum g=*k;,. and
even more significantly of the one at g=2k;,., with respect to
the central peak at g=0. For the first observation, a possible
explanation is that the hopping modulation strongly sup-
presses hopping in the minima of the potential and hence the
residual coherence of the particles trapped in those minima.
As for the second observation, a reduction of the signal in
the noise correlations is also compatible with a reduction of
quantum fluctuations inside the potential wells, as observed
in Sec. VII when taking the classical limit J—0 (see Fig.
24).

IX. SUMMARY AND CONCLUSIONS

In summary, we have presented an extensive numerical
study of the physics of interacting lattice bosons in a quasi-
periodic (QP) potential, in direct connection with recent ex-
periments on cold bosons in incommensurate optical super-
lattices [10].

We have investigated the exactly solvable limit of hard-
core repulsive bosons, where the system can be mapped onto
noninteracting fermions, so that the well-known physics

PHYSICAL REVIEW A 77, 063605 (2008)

FIG. 28. (Color online) Upper panel: momentum distribution of
N=100 bosons in an incommensurate superlattice with s;=8 and
variable s, (s, =40E,, a,=100aq as in ¥’Rb with ay=Bohr radius
and other parameters as in Fig. 26), calculated for the generalized
Bose-Hubbard Hamiltonian (24). Lower panel: same quantity for
the model, Eq. (24), without accounting for the hopping modula-
tion, J; ;;;=J=const. For both panels L=180.

[13,16] of one-dimensional particles in an incommensurate
superlattice directly applies to the many-body system. There
the emergence of gaps in the single-particle spectrum trans-
lates into the appearance of a gapped incommensurate band-
insulator phase in the many-body phase diagram, together
with the gapless Bose glass (BG) phase. This picture sur-
vives also in the more realistic case of soft-core interactions,
for which the intricate phase diagram is mapped out in the
case of a strong QP potential (equaling in strength the inter-
particle repulsion). In particular, making use of a generalized
atomic-limit approach, the appearance of gaps in the many-
body spectrum is quantitatively ascribed to quantum finite-
size effects, due to the finiteness of the potential wells in the
QP potential.

We have furthermore discussed the behavior of the system
in a QP potential plus a parabolic trap, as required for a
meaningful comparison to the experiments. The concept of a
local phase, which is at the heart of the local-density ap-
proximation, applies successfully to a system without
(pseudo)disordered potentials exhibiting homogeneous MI
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I(q)

FIG. 29. (Color online) Upper panel: noise correlations for
bosons in an incommensurate superlattice, same parameters as in
Fig. 28 (upper panel). Lower panel: same quantity for the model,
Eq. (24), without accounting for the hopping modulation.

and SF phases, but this concept fails to apply to the case of a
BG, whose fundamental signature, a finite local compress-
ibility, comes from localized gapless excitations which most
likely do not appear in a single realization of the trapped
system. A finite local compressibility can only be attained on
average over the various local potential realizations (namely,
over different spatial phase shifts). Nonetheless, the LDA
picture for a local BG phase might be too restrictive; namely,
nontrivial low-energy particle-hole excitations might appear
in the trap which are not present in the bulk system, due to
accidental quasidegeneracies of particle and hole states be-
tween different regions of the trap.

The above results show that the behavior of the Bose-
Hubbard model in a QP potential is more complex than that
of more widely investigated dirty-boson systems [4,5] and
that in this respect a QP potential applied to the Bose-
Hubbard model cannot be ascribed to the family of short-
range correlated disorder potentials, given that correlations
in such a potential are actually long ranged. Both at the
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single-particle level and at the many-body level a QP poten-
tial leads to a behavior which is intermediate between that of
a system in a random potential and that in a commensurate
periodic potential: indeed, the potential’s spatial features, al-
beit aperiodic, have a definite upper bound in length scale,
which introduces in turn a characteristic energy scale in the
system. Such an energy scale shows up in the opening of
gaps at incompressible regions of the phase diagram.

If a second QP potential at a different frequency is super-
imposed onto the first one, preliminary results show that the
picture of a short-range correlated random potential is recov-
ered, as the resulting physics of the Bose-Hubbard model in
such a potential appears to mimic that of the same model in
a truly random potential. In the presence of parabolic con-
finement, we have moreover shown that a two-color QP po-
tential can realize a BG phase all over the trap on average
over spatial phase fluctuations of the two potential compo-
nents. Hence the gap between the single-color QP potential
and an ideal (white-spectrum) random potential can be pos-
sibly bridged by enriching the QP potential with uniquely
one more color. This conclusion has immediate practical
consequences for the ongoing effort of realizing analog
quantum simulators of correlated systems in a random envi-
ronment within an optical-lattice setup, because the experi-
mental requirement to bridge the gap between pseudodisor-
der and true disorder could be in practice the addition of one
or a few extra laser standing waves.

A final, delicate aspect is the identification of an experi-
mental signature for the occurrence of a BG insulating phase.
This issue appears unresolved by the currently accessible
observables—e.g., through time-of-flight measurements.
This is intrinsically due to the fact that a BG is not charac-
terized by correlations, which are generally akin to those of
more conventional insulators, but by the spatial and energetic
structure of excitations. A method to resolve the nature of
these excitations, based on measuring the system’s response
upon variations of the trapping frequency, will be presented
in a forthcoming publication [52].
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