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We design a model of correlated hopping for bosonic atoms in optical lattices. Such a model exhibits three
kinds of phases: a Mott insulator, a charge density wave, and a pair quasicondensate. One possible implemen-
tation of the model is based on two-state atoms embedded in an optical superlattice and having state-dependent
interactions. Contrary to other models of pairing, correlated hopping is not a perturbative effect and should be
observable in generalizations of current experiments.
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I. INTRODUCTION

Since the achievement of Bose-Einstein condensation in
alkali atoms �1–3�, we have witnessed two major break-
throughs in the many-body physics of cold atoms. One is the
realization of Cooper pairing and the BCS to BEC transition
with fermions �4–6�. The other one is the implementation of
lattice Hamiltonians using neutral atoms in optical lattices
�7,8�. Supported by this success, many theoretical papers
suggest using cold atoms with two goals: the quantum simu-
lation of well-known Hamiltonians such as Hubbard models
�8� and spin lattices �9�, and the quest for new physics such
as bosonic quantum Hall effect �10,11� and lattice gauge
theories �12,13�. In this work we aim at the latter, introduc-
ing a robust mechanism of pairing that works for bosonic
atoms, opens theoretical challenges and is suited for the re-
cent experiments in optical superlattices �14,15�.

Pairing is a central concept in strongly correlated states.
In particular, it is the essence of ordinary BCS superconduc-
tivity. In BCS theory, an attractive interaction mediated by a
phonon bath is the basis by which electrons merge into
bosonic pairs that conduct electricity without friction. Simi-
lar phenomena appear in the BCS pairing of fermionic at-
oms, where the natural attraction is enhanced by Feshbach
resonances �4–6�.

Another, less known mechanism for pairing is correlated
hopping. It appears naturally in fermionic tight-binding mod-
els �16–22� and in quantum magnetism �23�, consisting on
the motion of particles being influenced by the environment.
This is normally reflected by terms of the form niaj

†ak ap-
pearing in the Hamiltonian. Correlated hopping could lead to
the formation of bound electron pairs �19,20� and it has been
put forward as an explanation for high-Tc superconductivity
�24,25�.

We will introduce a mechanism for pairing, which is
based on collisions that induce transport. As illustrated in
Fig. 1�a�, when atoms collide they can mutate their internal
state. If the atoms are placed in a state-dependent optical
lattice, whenever such a collision happens, the pair of atoms
must tunnel to a different site associated to their new state
�Fig. 1�b��. For deep enough lattices, as in the Mott insulator
experiments �7�, this coordinated jump of pairs of particles
will be the dominant process and the atoms will become a
superfluid of pairs.

The structure of this paper is as follows. Section II intro-
duces the model in two possible setups, one with cold atoms
in a deep optical superlattice and the other with deep ordi-
nary lattices. We show how collisions combined with state-
dependent lattices lead to a strong correlated tunneling, as
described before. The outcome is an effective Hamiltonian
which can be related to the experimental parameters. The
details of the derivation can be found in the Appendix. In
Sec. III we then draw a realistic phase diagram using both
Gutzwiller �26� and matrix product states �MPS� �27� varia-
tional methods. Both procedures essentially identify three
kinds of phases: a charge-density wave �CDW�, a Mott insu-

FIG. 1. �Color online� �a� Two atoms in state �+ � collide and
change into state �−�. �b� When trapped in a state-dependent optical
lattice, changing the state implies also jumping between lattice
sites. We plot some forbidden �dashed� and allowed �solid� pro-
cesses. Only pairs of atoms can hop between lattices. �c� In order to
maximize the overlap between atoms in different states and thus the
strength of correlated hopping, in this paper we consider two state-
dependent superlattices. �d� The physical implementation of �c� is
based on two-states atoms �� �� �↑ �� �↓ � confined in an optical
lattice of strength V0 and coupled by an oscillating Raman field, of
strength ��V0.
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lator �MI�, and a pair condensate or pair superfluid �PSF�. In
Sec. IV we consider first various experimental procedures to
detect the different insulating and superfluid orders, and fin-
ish with a discussion on the atomic species and the currently
accessible range of parameters.

II. THE MODEL

A. Superlattice model

In this section, we introduce a possible physical imple-
mentation of correlated hopping using the setup from Fig.
1�c�. Bosonic atoms in two internal states are trapped in one-
dimensional �1D� state-dependent superlattices that spatially
overlap. Such superlattices can be created by combining a
2D lattice that tightly confines the atoms along two perpen-
dicular directions Y and Z, with an adjustable 1D lattice and
a suitable Raman coupling along X, as described in Fig. 1�d�,
in the Appendix and in Ref. �28�.

We will assume that the potential barrier between super-
lattice sites is very large and prevents tunneling, but inside a
superlattice cell the hopping amplitude J will be large com-
pared to the on-site interactions. This implies that we can use
a tight-binding approximation for the field operators �8�

�+�x� = �
i

a2i+W�x − 2il�, �−�x� = �
i

a2i−W�x − �2i + 1�l� .

�1�

Here, ak� denotes bosonic annihilation operators for particles
in states �+� or �−� with a spatial wave function W�x� given
by the ground state of a particle in a superlattice cell. Note
that the superlattice has a period 2l and that the underlying
sublattice has period l and Wannier wave functions w�x�,
such that W�x���w�x�+w�x− l�� /	2.

We will now suggest one possible mechanism to engineer
state-changing collisions. The idea begins by noticing that
the trapped states are actually dressed states

�� = ��↑ � �↓�/	2 �2�

built from two collisionally stable internal states of the atom.
One will normally find that the contact interaction between
the atoms is diagonal in the undressed basis

Hint = �
�,�=↑,↓

g��

2

 ��

†�x���
†�x����x����x�dx . �3�

Such states also have in general both state-independent g0
and state-dependent contact interactions �g1 ,g2�

g↑↑ = g0 + g2, g↓↓ = g0 − g2, g↑↓ = g↓↑ = g0 + g1. �4�

Since the atoms are tightly confined along two directions,
these constants are proportional to the effective one-
dimensional scattering lengths.

To better understand the effect of our double hopping
term, we will focus on g2=0, a situation that can be found in
rubidium �29�. When we replace the expansions �2� into Eq.
�3�, we obtain terms such as g1�−

†2�+
2 inducing the processes

from Fig. 1�a�. As shown in the Appendix, once we collect
all terms that involve Wannier wave functions separated by

no more than a superlattice period, the outcome is a Hubbard
model with correlated hopping

H = �
i,j=i+1

�U:�ni + nj�2: + Vninj − tci
†2cj

2 − tcj
†2ci

2� . �5�

Here, we have renumbered the bosonic operators c2k=ak+,
c2k+1=ak−, and ni=ci

†ci, with the natural zigzag order from
Fig. 1�c�. The colons �:A:� denote normal order of creation
and annihilation operators. Finally, we have introduced two
nearest neighbor interactions U and V and a correlated hop-
ping amplitude t

U =
2U0 + U1

16
, V = −

U1

8
, t =

U1

16
, �6�

which are functions of the interaction constants

Ui � gi
 dx�w�x��4 for i = 0,1,2. �7�

Out of the terms in Eq. �5�, the correlated tunneling t favors
the creation of delocalized states of pairs of atoms ��pair�
�ici

†2�0�. The nearest-neighbor interactions, on the other
hand, either favor clustering V�0 or restrict the density pre-
venting collapse U�0. From these competing effects we ex-
pect a qualitative picture consisting on a quantum phase tran-
sition from a superfluid of paired particles in the
noninteracting case to an insulator of incoherent bosons for
large U ,V. Finally, note that our Hamiltonian contains no
single-particle hopping for the reasons stated at the begin-
ning of this section.

B. Alternative setup

Correlated hopping also appears in a much weaker form
in the setup from Fig. 1�b�. There, two lattices trap atoms in
different states and are shifted by half a period or 	 /4 rela-
tive to each other. As before, the trapped states and the in-
teraction are described in different basis. One can expand the
interacting Hamiltonian in terms of Wannier functions to-
gether with operators defining the trapped states. This leads
to Eq. �5� with

U =
2U0 + U1

8
, V = −

2�1 − ��U0 + U1

2
, t = �

U1

4
. �8�

Here, U0 and U1 are the on-site interactions in the atomic
basis and the factor

� =
 �w�x��2�w�x − 	/4��2dx/
 �w�x��4dx 
 1, �9�

computed using the Wannier functions w�x�, measures the
relative strength of interaction between different lattices with
respect to those on the same lattice site.

III. PHASE DIAGRAMS

In order to study the many-body physics of our model, we
have used the Gutzwiller ansatz, which is a variational
method based on the product state �26�
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��GW� = �
i

�
n

1
	n!

fnci
†n�0� . �10�

Minimizing the expectation value of the free energy F : =H
−�N with respect to the variables fn under the constraint of
a fixed norm ��fn�2=1, one obtains the phase diagram in the
phase space of interaction and chemical potential
�U1 ,U0 ,��. For the sake of simplicity, we have used U1
: =1 as unit of energy everywhere.

The results are shown in Fig. 2, where we plot the particle
number variance �n : =	�n2− n̄2� and what we identify as the
order parameter of the paired superfluid �c2�. From the zeros
of the density fluctuations we can recognize the Mott regions
with n̄=1, 2, and 3 particles per site. The boundary of the
region with n̄=1 can be estimated analytically using a
Gutzwiller state with nonzero components f0, f1, and f2,
which gives �p=

U0

2 and �h=U0+ 1
4 . These are the energies to

add a particle or to make a hole in this insulating lobe. If
���h, the Gutzwiller ansatz gives fractional densities but,
as we will see below, this is an artifact of the uniform trial
wave function. If ��p and U0�U1 /2, we obtain a region
of nonzero �c2�. We take this as a sign of a long-range co-
herence in the two-body density matrix which cannot be at-
tributed to an ordinary Bose-Einstein condensate, since the
same simulation gives �c�=0.

The Gutzwiller ansatz does not reproduce accurately nei-
ther the location of phase transitions nor the behavior of
correlators. For instance, C�

1 : = �ci
†ci+�� and C�

2 : = �ci
†2ci+�

2 �
computed with Eq. �10� are both uniform functions. In order
to study these properties, we have used the MPS method �27�
to estimate variationally the ground state of our model. The
MPS is a more complex wave function that, for large enough
computational resources and not too large systems, should
reproduce the correlations in the superfluid regime. Calcula-
tions with up to 40 sites reveal that matrices of size D=40
are enough to pinpoint the different phases.

As an example, in Fig. 3 we plot the averaged two-
particle correlator. Density and number variance profiles are
very similar to the Gutzwiller ones. We thus conclude that
n̄=1 and n̄=2 insulating regions still exist, with a similar
size and shape as in the Gutzwiller model. The biggest dif-
ference lays in the triangle 0����h. In this region of low
density, the bosons arrange forming a charge density wave: a
pattern alternating 0 and 1 atom per site. Above �p we find a
paired superfluid, as conjectured. In this phase, quasi-long-
range order is revealed by a slow decay of the off-diagonal
elements in the two-particle density matrix. As shown in Fig.

4, the single particle correlator C�
1 = �̄�,0 is only different

from zero at �=0, where it becomes the density. This could
have indicated the presence of a Mott phase, were it not for
the nonzero value of �n �Fig. 3�b�� and of the two-particle
correlator C�

2 that decays slowly at long distances. Due to the
size of our simulations, we have not been able yet to deter-
mine the behavior of C�

2 , but numerical fits of curves such as
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FIG. 2. �Color online� Ground-state properties estimated with
the Gutzwiller wave function �10�. Grayscale plots of �a� density
fluctuations �n and �b� pair condensate order parameter �c2�.
Dashed lines mark the analytical estimates, while solid lines delimit
regions of integer filling. All plots cover the same region
�U0 ,��� �0,5U1�� �0,10U1�.
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FIG. 3. �Color online� Ground-state properties estimated with
the MPS method. We plot the averaged two-particle correlator
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2 �. Solid lines delimit regions of in-
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the one in Fig. 4 suggest an algebraic decay C�
2 �−� with a

nonuniversal exponent around ��0.7 that depends both on
U0 and the chemical potential �.

IV. EXPERIMENTAL CONSIDERATIONS

A. State characterization

All the phases that appear in our setup can be recognized
experimentally. First of all, the MI and the CDW have both a
well defined number of particles per site and no coherence.
While their time of flight pictures will show no interference
fringes �7�, the noise correlation should exhibit peaks at dis-
crete momenta �30,31�. In addition, the CDW corresponds to
a setup where either n+ or n− are uniformly zero. Finally, the
insulator energy gap can be probed by static �7� or spectro-
scopic means �32�.

Regarding the pair superfluid, it is a perfect “conductor”
with a gapless excitation spectrum. It lacks single-particle
order C�

1 0 a.e. and will produce no interference fringes in
time of flight images. In order to measure C�

2 and detect the
pairing, we suggest to use photoassociation to build mol-
ecules out of pairs of atoms. Since the molecules will be
built on-site, the nonzero correlator C�

2 will translate into
long-range order for the resulting molecules. This order
should reveal as an interference pattern in time-of-flight im-
ages, slightly blurred by the phase fluctuations which are
inherent to 1D.

B. Microscopic details

Here we discuss the requirements for an atomic specie to
produce correlated hopping in an optical lattice. First of all,
the pair binding energy is proportional to our unit of energy
U1 and it should be large and comparable to the on-site in-
teraction in a typical Mott insulator �7�, which is about 1
kHz. While these values are normally large enough for the
preparation of the ground state and the stability of the setup

under dephasing and decoherence, there are two potential
difficulties that one has to face.

The first problem is that the ratio of U1 /U0 may be small.
If this is the case, pairing will occur at large densities, mak-
ing the experiment more difficult. This ratio can be increased
using Feshbach resonances, as it has been done for the cur-
rently most promising atomic species 87Rb. Having g2=0,
the value of U1 /U0 has been enhanced up to 0.1–0.2 �29�. As
numerical simulations confirm, this would already gives rise
to pairing at densities between three and five particles per
site.

While the use of Feshbach resonances is normally associ-
ated to strong losses, one should investigate the use of
broader resonances not to dramatically increase g1, but to
moderately decrease the value of g0, which would have the
same effect. The second problem is that for species where g1
is large, one typically finds a large value of g2. Ongoing
work suggests that this is not really an obstacle, as having
both g↑↑�g↓↓ and g1�0 leads to a richer family of Hamil-
tonians, with terms such as nkck+1

† ck, known to produce pair-
ing in fermionic models and which also cooperates with the
correlated hopping in the bosonic case.

Finally, one does not need to restrict to only two degrees
of freedom a↑ and a↓. Working with spinor condensates that
have larger angular momenta, one already finds that state-
changing collisions appear naturally, because their interac-
tions can change the hyperfine state of the atoms while pre-
serving total angular momentum �33�. The combination of
these interactions with state-dependent lattices is expected to
produce models which go beyond the simple correlated hop-
ping introduced here.

V. CONCLUSIONS

Summing up, we have introduced a mechanism by which
bosonic atoms with repulsive interactions can exhibit corre-
lated hopping and pairing. The model �5� exhibits multiple
phases, the most relevant being a superfluid of paired bosons.
All phases are connected by second order quantum phase
transitions and can be produced and identified using varia-
tions of current experiments �14,15�.

The central idea of this paper is that state changing colli-
sions can be turned into correlated hopping. We would like to
emphasize that this is very general and thereby susceptible to
be implemented in many different ways. We have provided
enough evidence of this flexibility and, given the rapid in-
crease in the number of trapped atomic species, we expect
that in the near future better setups to test our proposals will
appear.
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APPENDIX: DETAILED DERIVATION OF THE MODEL
IN SUPERLATTICES

As discussed before, the main idea behind atomic corre-
lated hopping is to trap atoms whose interaction allows them
to change their state. In this section we provide the technical
details of one possible implementation of this idea using
state-dependent superlattices that trap dressed states �Figs.
1�c� and 1�d��.

1. Dressed states trapping

Our starting point is the setup in Fig. 1�d�, which was
introduced in Ref. �28�. It consists on an optical lattice trap-
ping atoms in states �↑ � and �↓ �, together with a Raman
coupling between these states. Mathematically, this configu-
ration is described by the single-particle Hamiltonian

Htrap = V0 sin�kx�2��↑��↑ � + �↓��↓ ��

+ � sin�kx���↑��↓ � + �↓��↑ �� , �A1�

which contains a trapping term, equal for both species, to-
gether with a coupling between different species. In this
model we have not included ac Stark shifts on the �↑ � and
�↓ � states. If the left and right moving laser beams of the
Raman configuration have different polarization, these shifts
can only be produced by taking and putting photons on the
same beam. Such Stark shifts must be uniform, proportional
to the identity �↑ ��↑�+ �↓ ��↓� and can, for our purposes, be
ignored.

By moving to the basis of dressed states �� �
= 1

	2
��↑ �� �↓ ��, we find that the trapping is effectively

equivalent to two superlattices with a relative displacement
as in Fig. 1�c�

Htrap = �V0 sin�kx�2 + � sin�kx��� + ��+ �

+ �V0 sin�kx�2 − � sin�kx���− ��− � . �A2�

Under appropriate circumstances, discussed in Ref. �28�, we
will find that each superlattice site has a unique ground state,
energetically well differentiated from the next excited state,
and which consists in a symmetric wave function spanning
both lattice wells. If this is the case and if all energy scales,
such as the interaction and the hopping, are small compared
to the separation between Bloch bands, we can expand the
field operators for the bosonic atoms using those localized
wave functions, as in Eq. �A3�. For convenience we will now
adopt the final zigzag ordering

�+�x� = �
i

c2i W�x − 2il�,

�−�x� = �
i

c2i+1 W�x − �2i + 1�l� , �A3�

in which the bosonic operator cj for even �odd� index j an-
nihilates an atom in state �+ � ��−�� in the jth superlattice cell.
We remind the reader that these bosonic modes are associ-

ated to localized wave functions W�x� which are themselves
a superposition of the Wannier functions w�x�� of the under-
lying lattice

W�x� �
1
	2

�w�x� + w�x − l�� . �A4�

2. State-changing collisions

We will now express the interaction �3� in the basis of
dressed states. We proceed using the change of variables in
Eq. �2� to find the expression of the densities

�↑�x� =
1

2
��+ + �− + �+

†�− + �−
†�+�,

�↓�x� =
1

2
��+ + �− − �+

†�− − �−
†�+� . �A5�

The first obvious conclusion is that the total density is
independent of the basis on which it is written

��x� = �↑�x� + �↓�x� = �+�x� + �−�x� . �A6�

Hence, the terms proportional to g0 are insensitive to the
state of the atoms.

On the other hand, the spin-dependent terms do not look
so simple. The g1 interaction, depends on the product of two
different densities

:�↑�↓: =
1

4
:��+ + �−�2:−

1

4
:��+

†�− + �−
†�+�2:

=
1

4
:��+ + �−�2:−

1

2
�+�− −

1

4
��+

†2�−
2 + H.c.�

=
1

4
:�+

2 + �−
2:−

1

4
��+

†2�−
2 + H.c.� �A7�

and gives rise processes that change the state of interacting
atoms from �−� to �+ � and vice versa �see Fig. 1�a��.

The term with g2 has a rather different form

:�↑�x�2 − �↓�x�2: = :��x���+
†�x��−�x� + H . c.�: , �A8�

and describes processes in which one atom changes its state
influenced by the surrounding environment. In the following
subsections we will see what happens to the interaction terms
�A6�–�A8�, when the atoms are confined in a lattice.

3. Final model

It is now time to put everything together. We will take the
tight-binding expansion of the field operators �A3� and use it
together with Eqs. �A6�–�A8� to expand the interaction
Hamiltonian �3�.

Along the derivation, one obtains many integrals of
ground state wave functions

Ck,m =
 �W�x − kl��2�W�x − ml��2dx . �A9�

We will only keep those coefficients with a separation
smaller than a superlattice period. Taking Eq. �A4�, the
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expression for the superlattice localized states, we can ap-
proximate such terms as follows:

Ck,k =
 �W�x��4dx �
1

2

 �w�x��4dx,

Ck,k�1 =
 �W�x��2�W�x − l��2dx �
1

4

 �w�x��4dx ,

�A10�

where w�x� are the Wannier wave functions of the underlying
sublattice. Using these tools, the spin-independent interac-
tion term becomes

g0

2

 d3x:��↑�x� + �↓�x��2: =

g0

2 �
k

N/2

:n2k
2 C2k,2k + n2k+1

2 C2k+1,2k+1

+ 2n2kn2k+1C2k,2k+1:

�
g0

4

 dx�w�x��4�

k

N

:nk
2 + nknk+1:.

�A11�

We will follow a similar procedure for the spin-dependent
parts. The equivalent of Eq. �A7� has the expected two-body
hopping terms

g1
 d3x:�↑�x��↓�x�: �
g1

8

 dx�w�x��4�

k

N

�:nk
2:−

ck+1
†2 ck

2 + ck
†2ck+1

2

2
� ,

�A12�

while Eq. �A8�, after a long calculation, simplifies to a
single-particle hopping assisted by the environment

g2

2

 d3x:�↑�x�2 − �↓�x�2: =

g2

8

 dx�w�x��4�

k

N

:nk

��ck
†ck−1 + ck

†ck+1 + H.c.�: .

�A13�

We have already introduced three constants �7� that rep-
resent the strength of the interactions in the underlying sub-
lattice. Using these expressions, our final Hamiltonian looks
as follows:

H =
2U0 + U1

8 �
k

:nk
2: +

U0

8 �
k

:nknk+1: −
U1

16 �
k

�ck+1
†2 ck

2

+ H . c.� −
U2

8 �
k

:�nk + nk+1��ck
†ck−1 + H . c.�: . �A14�

The final steps are to complete terms, replace the sum over k
with a sum over nearest neighbors, and to set U2=0. With
this, one arrives to the desired model �5� with the parametri-
zation already given in Eq. �6�.
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