
Optomechanical coupling in a one-dimensional optical lattice

J. K. Asbóth,1,2 H. Ritsch,1 and P. Domokos2

1Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
2Research Institute of Solid State Physics and Optics, Hungarian Academy of Sciences, H-1525 Budapest P.O. Box 49, Hungary

�Received 16 January 2008; published 30 June 2008�

In a recent paper �J. K. Asboth et al., Phys. Rev. Lett. 98, 203008 �2007�� we have shown that traveling
density wavelike collective oscillations can arise in an asymmetrically pumped optical lattice, and by increas-
ing the lattice size or pump asymmetry, these waves can destabilize the structure even in the overdamped limit.
The long-range interaction giving rise to collective motion stems from the back-action of the atoms on the field
creating the lattice. In this paper we present a detailed description of these phenomena. We derive the force on
a disk-shaped cloud of trapped particles including the back-action on the trapping light, and analyze its relation
to the standard perturbative approach giving the “dipole force” and “radiation pressure.” We calculate the
self-consistent lattice constant for both red and blue detuned lattices and find that it decreases—by the same
amount in the two cases—as the pump asymmetry is increased. We present the detailed derivation of the lattice
vibration eigenmodes using the transfer matrix method, which reveals that the instability is enhanced reso-
nantly at certain settings of the asymmetry.
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INTRODUCTION

Optical lattices �OL� are perfectly periodic arrays of par-
ticles trapped by the standing wave interference pattern of
several laser beams �1,2�. OL’s are created in one, two, or
three dimensions, in various shapes and sizes. Whereas in the
1990s occupancies of about 1% were realistic, OL’s can now
be loaded from Bose-Einstein condensates and filling factors
of up to 5 can be achieved �3�. OL’s have important applica-
tions as model systems for solid state physics �4�, for quan-
tum information science �5�, or metrology �6�.

Optical lattices are generally produced using extremely
far detuned lasers: detunings of about 107 times the atomic
transition linewidth are not uncommon. On the one hand, this
ensures that the dipole force dominates the scattering force,
and the particles are only slightly heated by the light used to
trap them. On the other hand, in this regime the particles do
not affect the propagation of light very much, and thus opti-
cal back-action is avoided. The advantage is that this way
light is a tool to produce an inert potential. However, in
related systems, it is the optical back-action that gives rise to
useful or interesting phenomena such as cavity-induced cool-
ing of atoms �7,8� or cooling of micromirrors �9–11�.

So far, the only back-action effect seen in optical lattices
is a tiny but observable reduction of the lattice constant with
respect to the naive expectation �in a one-dimensional OL,
this would be half of the wavelength of the trap laser d= �

2 �.
This has been predicted �12�, and subsequently demonstrated
�13�, by Birkl et al., and unambiguously observed in an ex-
periment of Weidemüller et al. �14�. This phenomenon can
be simply understood as a consequence of the fact that the
effective wavelength of light is reduced as it has to pass
through the thin cloud of trapped particles �12�.

A generic physical effect due to the back-action is that the
trap light mediates an interaction between the particles,
which can affect the equilibrium configuration and open the
possibility of collective motion. In many experimental setups
this interaction is negligible, and therefore it has largely been

overlooked to this day. An exception is when the trap light is
spatially confined in a high-Q optical resonator �15,16�,
where this interaction creates correlations between the mo-
tion of trapped atoms �17�, and can lead to the formation of
ordered structures in real space �self-organization �18–20��
or in momentum space �correlated atomic recoil laser
�21–24��. Another important exception is the phenomenon of
“optical binding,” discovered in 1989 by Burns, Fournier,
and Golovchenko �25�, which has very recently attracted the
attention of several groups �26–30�. The description of this
phenomenon is rather involved, including the solution of
multiple scattering in a two- or three-dimensional situation,
and thus, analytical results are rarely found �an exception is
Ref. �31��.

In this paper we study the radiative atom-atom interaction
due to optomechanical coupling in the simplest possible
case, a one-dimensional optical lattice in free space. Using
the framework of Deutsch et al. �12� as a starting point, the
trapped clouds of atoms will be identified with single scat-
tering centers, i.e., beam splitters in one dimension. We de-
rive the optical force on such a beam splitter and generalize
the standard “radiation pressure” and “dipole force” �32�.
These latter can be considered as perturbative approxima-
tions to our exact result, in which the back-action of the
scatterer on the optical field is neglected. The exact result
accounting for back-action can be interpreted by means of a
simple physical picture, in terms of multiple reflection within
the beam splitter.

The modification of the optical force, due to back action,
on a single atom cloud is small. However, we have found
that tuning a hitherto neglected parameter of an optical lat-
tice its consequences can become striking. This parameter,
the “asymmetry,” is the relative power of the pump beams
constituting the trap. For symmetric OL’s—created by two
counterpropagating beams with the same intensity—the
back-action-induced interaction leads to the reduction of the
lattice constant d mentioned above, and we predict that it
also causes the center-of-mass oscillations to soften. In
asymmetric lattices, the reduction of the lattice constant d is
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enhanced �in some cases by several orders of magnitude�,
and arises even for blue detuning, where the first intuition
would suggest that d increases. However, this equilibrium
phenomenon is masked by dynamic effects. The interaction
induced by back-action leads to a dynamic instability of op-
tical lattices, which happens already at moderate pump
asymmetries. Small lattice fluctuations give rise to an expo-
nentially increasing density wave propagating along the di-
rection of the weaker beam, which ultimately leads to a de-
struction of the lattice: the particles will all be pushed away
by the stronger beam. Viscous friction can prevent this insta-
bility, but even with an arbitrary amount of friction �over-
damped limit� there is a critical asymmetry beyond which the
OL becomes unstable. Curiously, the propagating density
waves arise in the overdamped limit as well, in spite of the
fact that the dynamics is first order. We study these effects
numerically and analytically, providing an analytical charac-
terization of the density waves and closed formulas for the
critical asymmetries.

This article is organized as follows. We first introduce the
model of Deutsch et al. �12� we use to compute the back-
action of trapped particles on the trapping field, in Sec. I.
Then we derive simple closed formulas for the optical forces
on trapped atom clouds, using the Maxwell stress tensor, in
Sec. II. We calculate the equilibrium optical lattice configu-
ration revealing that the lattice constant is reduced if the
pump asymmetry is increased in Sec. III. This effect, how-
ever, is masked by the dynamics of the lattice, which we
explore using numerical simulation in Sec. IV. We character-
ize the vibrational modes of the lattice by a full analytical
solution of the dynamics close to equilibrium in Sec. V. Al-
though the analytical calculations are for a perfect lattice, the
main features of the dynamics persist even in the presence of
noise, as we illustrate in Sec. VI. We address some of the
experimental issues and give estimations for the real-life val-
ues of the physical quantities involved in Sec. VII. Finally,
we give an outlook and show how some of the features of
dynamics arise in related systems in our conclusions.

I. THE LIGHT IN AN OPTICAL LATTICE

We consider a one-dimensional dipole trap constituted by
two counterpropagating laser beams of equal polarization
and frequency, coming from the same “master laser,” and
thus phase stabilized with respect to each other. The trans-
verse profile �y and z dependence� of the electric fields is
assumed to be Gaussian, with beam diameter much larger
than the wavelength w��. Thus the intensity maxima and
minima are both thin disks. Suppressing the vector indices,
in the usual complex notation we write the electric field in-
cident from the left as E�x , t�=E0eikx−i�t and from the right
E�x , t�=E1e−ikx−i�t. In the following, for brevity we drop the
trivial phase factors e−i�t. Although the two incident plane
waves have the same frequency, their intensities Ij�x�
= 1

2�0c�Ej�x��2, for j=1,2, can be different—for definiteness,
we choose I1� I0. We quantify this intensity imbalance using
two alternative dimensionless quantities, the normalized dif-
ference of the intensities, the pump asymmetry

A =
I1 − I0

�I0I1

� 0 �1�

and the pump power ratio

P =
I1

I0
=

�E1�2

�E0�2
=

1

4
�A + �4 + A2�2 � 1. �2�

For almost symmetric pumping �A�1�, the two are related
by P=1+A, whereas for highly asymmetric pumping �A
�1�, roughly P=A2.

The trap is used to hold particles, which can be �ultra�cold
atoms or submicron size plastic beads, with diameter much
smaller than the wavelength. For simplicity we assume linear
polarizability of these particles �the dipole transitions are not
saturated�. The particles can be “high-field seekers”: cold
atoms, with the trapping light red detuned with respect to the
characteristic frequency �A of the atomic resonance, or sub-
micron plastic beads, where the index of refraction of the
surrounding medium is lower than that of the trapped par-
ticles. In this case, the particles accumulate around the inten-
sity antinodes. Alternatively, they can be “low-field seekers”:
for cold atoms, this corresponds to blue detuning of the lat-
tice lasers �	�A for microscopic particles it means that they
are surrounded by a medium with an index of refraction ex-
ceeding their own. In that case, the particles are expelled
from regions where the intensity is high: if some external
trap mechanism prevents their escaping the beam in the
transverse y and z directions, they will gather around the
nodes of the trapping field. In either case, we assume that the
particles are cold enough and the laser beams intensive
enough so that they are deeply trapped, and thus form a stack
of pancake-shaped clouds. Within a single cloud, we average
over transverse motion of particles, thus each cloud is repre-
sented by an infinitely thin plane of linearly polarizable ma-
terial. The limits of validity of these simplifying assumptions
are discussed briefly in Sec. VII.

The strength of interaction of a cloud of trapped particles
with the laser depends on the linear polarizability 
 of the
particles �a complex quantity�, and on their areal density

� =
N�

�2 =
�number of particles in a cloud�

�cloud cross section�
, �3�

with N� denoting the number of atoms in a part of the cloud
with area �2. Together these give the dimensionless complex
coupling constant �, the �areal density of the� polarizability
of a cloud

� = k�



2�0
. �4�

The real part Re � describes dispersive atom-light interac-
tions. It is positive for red detuning �of the trap laser with
respect to the atomic resonance�, negative for blue detuning.
The imaginary part Im � which is always positive, corre-
sponds to dissipation. For a detailed discussion of how � is
related to the parameters of the trapped atoms or microbeads
and the laser, see Sec. VII.

As is well known, the polarizability � is proportional to
the optical forces that trap the particles in the lattice, which
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we are going to discuss in the next section. However, it also
gives the magnitude of the back-action of the cloud on the
trapping light. Following Deutsch et al. �12�, we take this
effect into account by calculating the propagation of the trap
light via the scalar Helmholtz equation, with the N clouds
represented by Dirac-
 distributions of linearly polarizable
material

��x
2 + k2�E�x� = − 2kE�x��

j=1

N

�
�x − xj� . �5�

If the dissipative part of the light-matter interaction �sponta-
neous emission� can be neglected, ��R, the Helmholtz Eq.
�5� for propagation of light is identical to the Kronig-Penney
model in solid state physics for the propagation of electrons.
Even with dissipation, for general ��C, the solution of Eq.
�5� between two clouds is a superposition of plane waves

E�xj−1 	 x 	 xj� = Aje
−ik�x−xj� + Bje

ik�x−xj�

= Cj−1e−ik�x−xj−1� + Dj−1eik�x−xj−1�. �6�

Integrating Eq. �5� over xj, for j=1, . . . ,N, reveals that the
scatterers constitute boundary conditions for the field:

E�x = xj − 0� = E�x = xj + 0� , �7a�

�xE�x = xj − 0� = �xE�x = xj + 0� + 2k�E�xj� . �7b�

Substituting the modal decomposition �6�, the boundary con-
ditions give simple algebraic relations between the mode am-
plitudes to the left and to the right of each atom cloud. These
have the form of beam splitter �BS� relations

Aj = rBj + tCj , �8a�

Dj = tBj + rCj , �8b�

with reflection and transmission coefficients �12�

r =
i�

1 − i�
, t =

1

1 − i�
, whereby � = − i

r

t
. �9�

We note that a general linear optics four-port can be de-
scribed by four independent real parameters, whereas here
we have only two: the real and imaginary parts of �. The
reason is that we require that the electric field be continuous
at the position of the BS �infinitely thin beam splitter�:

A + B = C + D , �10�

which leads directly to r+1= t. As a result of interference the
electric field is reduced at the position of the BS with respect
to its expected value based on the incoming amplitudes B
and C: A+B=C+D= t�B+C�. As discussed in the following
section, this leads to a reduction of the “dipole force” and
“radiation pressure.” The imaginary part of � describes dis-
sipation

�A�2 + �D�2 = �B�2 + �C�2 − 2 Im ��t�B + C��2 �11�

and

�r�2 + �t�2 = 1 − 2�t�2 Im � . �12�

For purely dispersive interaction ��R photon number is
conserved �r�2+ �t�2=1 and time inversion invariance is ex-
pressed by r�t+ t�r=0. In that case, the reflection and trans-
mission coefficients are r= i sin �0ei�0 and t=cos �0ei�0, with
�0=tan−1 �.

The transfer matrix method

Since a single atom cloud is modeled as a beam splitter,
an optical lattice consisting of several �hundreds of� such
clouds can be represented by cascaded BS’s, as illustrated in
Fig. 1. The beam splitter relations and those for free propa-
gation of light give 4N linear equations for the 4N mode
amplitudes Aj ,Bj ,Cj ,Dj , j=1, . . . ,N, where E0=B1 and E1
=CN are the incident electric fields. The most straightforward
way to obtain the simultaneous solution of all of these equa-
tions is via the transfer matrix �TM� method, as used, e.g., in
Ref. �12�.

The essence of the TM method, as illustrated in Fig. 2, is
that instead of relating the outgoing modes to the incoming
ones, we relate the modes to the left of an optical element to
the modes to the right of it. For a linear system the relation-
ship will be linear, and thus is given by a matrix; in our case,
its size is 2�2. The advantage of the approach is that it is

min
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FIG. 1. �Color online� A dipole trap created by two lasers of
equal frequency but unequal power. The intensity �in light red�,
mirrored for better visibility, ranges between Imin= 1

2�0c��E0�
− �E1��2 and Imax= 1

2�0c��E0�+ �E1��2. Trapped particles form disk-
shaped clouds �in dark blue�, and are modeled as beam splitters.
Due to the pump asymmetry, the electric field has no nodes. Back
action of trapped particles distorts the field and reduces the lattice
constant.
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FIG. 2. �Color online� The transfer matrix relates the mode am-
plitudes to the left of an optical element to the mode amplitudes to
the right of it. As an illustration, we give the transfer matrix of a
beam splitter.
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very easy to scale up a system: the TM of a composite �cas-
caded� system is just the matrix product of the TM’s of its
components.

For a single atom cloud, the BS relations �8a� and �8b�
give

MBS =
1

t
�t2 − r2 r

− r 1
	 = �1 + i� i�

− i� 1 − i�
	

= 1 + i�� 1 1

− 1 − 1
	 = 1 + i�B ,

�13�

with the parametrization �9� for r and t, and the matrix B
defined by the last equality. This can be contrasted with the
TM for the corresponding incoherent scattering process,
where for the intensities A, B, C, and D we have A=RB
+TC and D=RC+TB, with R ,T�0,R+T=1:

MSC =
1

T
�T2 − R2 R

− R 1
	 = �1 − � �

− � 1 + �
	 = 1 − �B†,

�14�

where �=R /T. Now B= �1;−1�† � �1;1� is the dyadic product
of two orthogonal vectors, and thus B2=B†2=0. It follows
directly that MSC���MSC����=MSC��+��� and
MBS���MBS����=MBS��+���: two subsequent scattering pro-
cesses can be represented by a single process, and the param-
eters �, respectively, �, are additive. For incoherent scattering
processes this relation is used to show that � is proportional
to the resistivity. For coherent scattering, however, no simple
conclusions involving the “reflectivity” of a cascade of BS’s
can be drawn. The complication is that whereas the intensi-
ties do not change during free propagation, the amplitudes
acquire phases, and in coherent processes these phases play a
role. Thus it is vitally important to include the propagation of
light with wave vector k between BS’s over length d into the
transfer matrix of a unit of an optical lattice

M = MBSP�d� = MBS�eikd 0

0 e−ikd 	
= ��1 + i��eikd i�e−ikd

− i�eikd �1 − i��e−ikd 	 . �15�

Due to the nontrivial propagation there is now no simple
additive parameter.

We can rewrite the transfer matrix M into a form useful
for analytical calculations, and giving the TM of a regular
optical lattice instantly. For this, first note an important prop-
erty of the TM of a beam splitter: reflection symmetry along
x. By “reflection” we here refer to the exchange of the am-
plitudes of the left- and right-propagating components,
which for the formal vector composed of the field amplitudes
can be realized by multiplication by a matrix

�D

C
	 = ��C

D
	 ; � = �0 1

1 0
	 �reflection along x� .

�16�

As this is a reflection, �−1=�. For a beam splitter, reflection
along x corresponds to the simultaneous swapping of the
amplitudes A↔D and B↔C. By Eq. �7a� and �7b�, this is a
symmetry of the BS relations

�A

B
	 = MBS�C

D
	 ⇔ �D

C
	 = MBS�B

A
	 , �17�

regardless of whether the BS is purely dispersive ��R or
there is some dissipation ��C. Using the more concise for-
malism introduced above, we have

�MBS� = MBS
−1 �reflection symmetry of a BS� . �18�

Reflection symmetry also holds for free propagation
�P�d��=P�−d� and, therefore, also for P�d /2�MBSP�d /2�.
Due to reflection symmetry then, the product of the eigen-
values of P�d /2�MBSP�d /2� has to be 1. Since this TM has
the same spectrum as M=MBSP�d�, the same holds for M:
det M=1, and its eigenvalues can be written as m�=e�i�,
where � is a complex number �33�. The characteristic equa-
tion of M is m�

2 −tr Mm�+1=0, whose solution supplies us
with the formula for �:

cos � =
1

2
tr M = cos kd − � sin kd . �19�

We can use this result to rewrite the transfer matrix M:

M = cos � + i�� cos kd + sin kd �e−ikd

− �eikd − � cos kd − sin kd
	

= cos � + iA sin � , �20�

where the last equation defines the matrix A. Now obviously
tr A=0, and its eigenvectors u and w are the same as those
of M, the corresponding eigenvalues have to be �1 �to have
m�=e�i��. Therefore A2=1, and thus, as noted in Ref. �12�,
M=ei�A. For the TM of equidistant lattices, we then simply
have MN=eiN�A=cos�N��+ iA sin�N��. Thus, � /d is
analogous to the Bloch quasimomentum, and Eq. �19� is the
transcendental equation giving the dispersion relation of
Bloch states.

II. DIPOLE FORCE

We have described how to calculate the amplitudes of the
modes inside a 1D system of optical scatterers. We now ad-
dress the question of how to specify the equilibrium posi-
tions of these scatterers, more generally, what the optical
forces on them are. The first issue is important since in stan-
dard textbooks the optical forces are usually derived from the
dipole coupling Hamiltonian, and therefore it is tempting to
identify the zero-temperature equilibrium configuration of a
system with the one minimizing the dipole potential �e.g.,
Refs. �34–36��. However, as discussed in Ref. �37�, this ap-
proach is flawed, and in the regime where the atomic back-
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action is substantial, it can lead to nonphysical results. In-
stead of deriving the potential, we have to derive the force on
the trapped particles.

The optical force on a body is the rate of the extraction of
momentum from the electromagnetic field due to the pres-
ence of the body. To quantify this, we can enclose the body
in a fictitious “box” and integrate the momentum flux �the
Maxwell stress tensor� on the boundary of this box, as, e.g.,
in Ref. �38�. For the planar atom clouds in our 1D model this
is very easily done. For a selected atom cloud, we take the
surface around it to consist of two planes orthogonal to the x
axis, between the atom cloud and the two neighboring
clouds. As the electromagnetic wave is transverse, both the E
and B vectors lie in the planes, and the only part of the stress
tensor contributing to the integral is the term with the energy
density. For the plane waves of Eq. �6� this results in a
simple formula for the areal density F of the optical force
�the force divided by the transverse area, with dimensions of
pressure� on a cloud

F =
�0

2
��A�2 + �B�2 − �C�2 − �D�2� . �21�

Although the simple formula �21� for the force is very prac-
tical for both numerical and analytical work, we can gain
more insight into the physics it represents by rewriting it to
show its position dependence explicitly. Taking incident field
amplitudes B�x�=E0eikx and C�x�=E1e−ikx, the BS relations
of Sec. I supply us with the outgoing amplitudes A�x� and
D�x�, which can be substituted into Eq. �21� to give

F�x� = 2
I0 − I1

c

Im �

�1 − i��2
− 4

�I0I1

c

Re �

�1 − i��2
sin�2kx + ��

+ 2
I0 − I1

c

���2

�1 − i��2
, �22�

where �=arg B�x=0�−arg C�x=0� is the relative phase of
the two incident trapping beams at x=0. For low density or
weak polarizability ����1, the force is typically dominated
by the first two terms. To first order in �, these arise from the
standard microscopic light-induced forces �32� acting on
each scatterer independently. To apply the model of Ref.
�32�, we assume large detuning from the atomic resonances
and low saturation of the dipoles �linear regime�. Then if we
neglect the back-action of the particles on the light, each of
them experiences the electric field E�x�=E0eikx+E1e−ikx, and
we can directly apply the formulas from Ref. �32� giving the
“dissipative” and “reactive” part of the mechanical effects of
light. This reproduces the first two terms of Eq. �22�, apart
from the factors of �1− i��−2. Thus the formula �22� for the
force can be seen as a generalization of the standard theory
for light-induced forces to the regime where it is not enough
to account for the effect of the dipoles on the electric field
only perturbatively. Alternatively, if the individual dipoles
interact weakly with the field—which is the standard case for
trapped ultracold atoms—Eq. �22� can be derived from the
microscopic forces, and thus embodies the effects of multiple
scattering within the cloud, similarly to the Lorentz-Lorenz
formula. We present this derivation in Appendix A.

The first term of Eq. �22� embodies a part of “radiation
pressure” arising due to absorption of light in the cloud. It is
proportional to the difference of the incident photon fluxes,
and always gives a force pointing toward the weaker source
�39�. The second term, using the terminology of Ref. �32�, is
up to the factor of �1− i��−2 the density of the reactive or
“dipole” force, also referred to as “gradient force.” It arises
due to the interference of reflected and transmitted light, i.e.,
absorption of photons from one trap beam and stimulated
emission into the other one. As expected, for Re ��0, the
gradient force attracts particle clouds toward areas of high
intensity, for Re �	0, it expels the clouds from such re-
gions. The third term can be rewritten as c−1�2�r�2I0
−2�r�2I1�, revealing that it is due to the incoherent reflection
of the photons off the atom cloud, i.e., taking reflection into
account without the effects of interference �which are sup-
plied by the second term�. This third term is proportional to
the square of the polarizability ���2 and thus is usually negli-
gible for single atoms. However, in dense atom clouds, it can
be of the order of, or much larger than, the first two terms.

For a single trapped cloud, we can always construct a
potential by simply integrating the force �22�: V�x�=
−
0

xF�x��dx�. As this can be useful to understand the possi-
bilities of trapping with two beams of different intensities,
we plot it, along with some of its naïve approximations, for a
specific example in Fig. 3. However, as soon as two or more
clouds are trapped by the same field, their back-action on the
field creates an effective interaction between them, and this
potential cannot directly be applied. One might expect that a
potential can be constructed that takes the interaction into
account as well �as for atoms trapped in a high-Q cavity
�17��, but, as we find later, in Sec. V, this turns out not to be
the case. In an asymmetric dipole trap, no potential can be
constructed that supplies the dynamics of several trapped
clouds.

Clearly the force �22� describes a sequence of �asymmet-
ric� potential wells in one dimension if the intensity differ-
ence of the beams is so small that the dipole force �second
term� dominates the scattering forces �first and last terms�. A
cloud can be trapped at the origin, x=0, if

sin � = −
1

2
A

���2 + Im �

Re �
, cos �=��1 −

A
Amax

,

�23�

where � is “+” for red detuning ��0 and “−” for blue
detuning �	0 and

Amax = 2� Re �

���2 + Im �
� �24�

is the maximum of the asymmetry for trapping along x; for
A�Amax there are no traps. Thus a BS which is illuminated
by mutually coherent laser beams from the two sides can be
at equilibrium even if the lasers have unequal intensities, but
only if A	Amax �see Ref. �40� for a similar analysis of the
gradient force counteracting the dissipative force�. In the
purely dispersive case, i.e., if the imaginary part of � can be
neglected �Im �� �Re ��2�, the relation �24� assumes the
simple form
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�A 	 2, Amax = 2/�, �max = 2/A . �25�

This criterion can be intuitively understood in the following
way. If �E0�2	 �E1�2, more photons are incident on the right of
the BS than the left, giving a force on it. If enough light is
transmitted ��t�� 1

2 �r�A�, and the interference is favorable
�depending on the position of the BS�, the imbalance in the
outgoing number of photons is enough to counteract this
force, leading to a steady state.

Equilibrium of a single cloud

The simple and very sugggestive formula �21� for the me-
chanical effects of light can be used to make statements
about objects which are only acted on by optical forces and
are at equilibrium. Since the force �21� has to vanish,

�A�2 + �B�2 = �C�2 + �D�2 �force vanishes� . �26�

Furthermore, due to the possibility of dissipation inside the
object, we have

�A�2 + �D�2 � �B�2 + �C�2 �dissipation� �27�

Together, these relations give

�A� � �C� and �B� � �D� , �28�

with equality if Im �=0. When passing through the object,
both beams lose in intensity, this loss is proportional to Im �.
For purely dispersive interaction ���R�, the intensities of
the beams are unchanged.

Although in this one-dimensional setting the presence of
an optically trapped purely dispersive BS cannot be inferred
by observing the intensities of the transmitted light, the BS
does alter the phases of the fields. Consider a single trapped
pancake-shape atom cloud modeled as infinitely thin sheet of
nondissipative polarizable material. At equilibrium, arg�A
+B�=arg�C+D� leads via Eq. �28� to arg A+arg C=arg B
+arg D. For the two relative phases �=arg D−arg C and
�=arg B−arg C we then find, using �A+B�= �C+D�:

sin �� = −
1

2
�A, cos ��=�

1

2
�4 − �2A2, �29�

sin �� =
��4 + A2 � ��4 − �2A2

2�1 + �2�
,

cos �� =
− �2�4 + A2 � �4 − �2A2

2�1 + �2�
. �30�

Here, the “�” refers to “+” �“−”� being stable and “−” �“+”�
being unstable equilibrium for red �blue� detuning. Clearly,
Eq. �29� is just Eq. �23� rewritten for ��R. The angle �
shows the effect of the “back-action” force directly: for sym-
metric pumping and red �blue� detuning, it is zero �−��, and
if I1 is increased with respect to I0, it increases too, showing
that the atom cloud has been pushed by the “back-action”
force. Since both the trap depth and this “push” are indepen-
dent of the sign of �, we have ��� ,A�−��� ,A=0�
=��−� ,A�−��−� ,A=0�. It is not so intuitive, but follows
directly from Eq. �30� that the change in � due to asymmetry
is also insensitive to the sign of the detuning: ��� ,A�
−��� ,A=0�=��−� ,A�−��−� ,A=0�.

Finally we can calculate the phase slip �� of the intensity
function at the position of the BS:

2/��0c� � Ileft�x� = �A�x� + B�x��2

= �C�2 + �B�2 + 2�BC�cos�2kx − �� ,

�31�

2/��0c� � Iright�x� = �C�x� + D�x��2

= �C�2 + �B�2 + 2�BC�cos�2kx + �� .

�32�

We can read off ��=2�.

III. SELF-CONSISTENT LATTICE CONSTANT

The result of Eq. �28� obtained in the previous section
implies that in any one-dimensional structure held together
by monochromatic light, with no other types of �external or
interaction� forces present except for those from the purely
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� � � � 	 � � � 
 � � � � � � 	 � � � � �

FIG. 3. �Color online� Potential of the force for a single trapped
cloud, with polarizability �=0.5+0.025i, incident intensities I1

=4I0. Dotted �blue� line: potential obtained by integrating the sum
of the microscopic forces, the “dipole force,” and the “radiation
pressure” �32� on the particles in the cloud, neglecting the change of
the mode amplitudes due to the atoms. The depth of the resulting
sinusoidal potential is V1=4 Re ��I0I1 /�, slightly decreased �in-
creased� to the left �right� by � Im ��I1− I0� /�. Slashed �green�
line: potential obtained by including the factors of �1− i��2, account-
ing for the decrease of the intensity inside the clouds �similarly to
the Lorentz-Lorenz formula�. For these parameters this amounts to
a reduction of the potential depth by 20%. Continuous �red� line:
the correct potential, defined as V�x�=−
0

xF�x��dx� with the force
calculated via the Maxwell stress tensor, Eq. �22�. In addition to the
decrease of the potential depth, this correctly accounts for the me-
chanical effects of reflected light, including the third term of Eq.
�22�. This decreases �increases� the potential height to the left
�right� by approximately ��r�2�I1− I0� /�.
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dispersive dipole interaction with the trap light, the light per-
meates the structure unattanuated. This is a generalization of
the finding of Deutsch et al. �12�, who have shown that light
permeates a regular lattice unattanuated. In formulas, at equi-
librium

�A1� � �A2� � ¯ � �AN� � �CN� = �C� , �33�

�B� = �B1� � �B2� � ¯ � �BN� � �DN� , �34�

with equality if and only if �1 , . . . ,�N�R. Although one
might expect that due to disorder, light would be localized in
a 1D lattice, this is not so if it is the light which creates the
lattice itself is considered. The random variation of the cou-
pling constants � causes a random variation of the lattice
constant, the two types of disorder are obviously correlated.
For the propagation of the light creating the lattice, either of
these noises alone would localize light, but they combine to
ensure that the trap light is not localized at all.

Now consider the steady state of N�1 identical, purely
dispersive trapped clouds, with �1= . . . =�N=�	2 /A. Since
at every cloud �Cj /Bj�− �Bj /Cj�=A, the phase slips are all
equal: �1= . . . =�N=�. Thus the equilibrium configuration is
an equidistant lattice xj =xj

�0�=x1
�0�+ �j−1�d. The lattice con-

stant d is clearly independent of N, and from ��=2�, we
find explicitly

red detuning, � � 0: d��,A� =
�

2
�1 −

���,A�
�

	 ,

kd = � − � , �35a�

blue detuning, � 	 0: d��,A� =
�

2
����,A�

�
�, kd = − � .

�35b�

For symmetric pumping A=0, we recover the results of
Deutsch et al. �12�: for blue detuning d��	0,A=0�=� /2,
whereas for red detuning we have d���0,A=0�=dsymm���
= �

2 �1−2 tan−1��� /��. For a given �, increasing the pump
asymmetry A causes the phase shift � to increase, and d to
be reduced; this extra reduction turns out to be exactly the
same for both red and blue detuning. Contraction of a blue
detuned lattice is somewhat counterintuitive. Naively one
could expect the wavelength of the trap light to be increased
due to the trapped particles as it happens if the particle po-
sitions are random. For symmetric pumping, as noted in Ref.
�12�, the equilibrium positions of the particles are exactly at
the antinodes, where they do not interact with the field, and
thus do not affect the wavelength. For asymmetric pumping,
we find that near the intensity minima the atoms decrease the
effective wavelength, as illustrated in Fig. 4. Near the inten-
sity maxima however, their effect is to increase the wave-
length by such a large amount that for randomly positioned
atoms the expected effective increase of the light passing
through the gas is recovered.

The reduction of the lattice constant resulting from the
pump asymmetry is shown in Fig. 5 �thick red lines�. For
A�2 /�, the inequality �25� is violated, the stronger beam
pushes all the particles away: thus the thick �red� lines in the
figure all terminate at A=2 /�. For red detuning, the lattice
constant at this critical asymmetry is, remarkably, exactly
half of its value at symmetric pumping: d���0,A=2 /��

(f)

(e)

(d)(a)

(b)

(c)

0

0

0

no trapped atoms

4I
0 0.5λ λ 1.5λ 2λ 2.5λ 3λ

Symmetric trap (I0=I1 =I) Asymmetric trap (I1 =4 I0; I0 + I1 =2 I)

(∆ > 0)

(∆ < 0)

0

0 0.5λ λ 1.5λ 2λ 2.5λ 3λ

0

0

4I

4I

blue detuned lattice

Imax

Imin

Imax

Imin

Imax

Imin

red detuned lattice

FIG. 4. �Color online� Back action of trapped particles �e.g., atoms� on the intensity of light constituting an optical dipole trap. Top line:
the empty trap, created by two counter-propagating beams with equal �a� or unequal �d� intensity. In the asymmetric trap, the intensity ranges
between Imin= ��I1−�I0�2 and Imax= ��I1+�I0�2. The total power is the same for both traps �I0+ I1=2I�. Middle line: blue detuning. For
symmetric pumping �b�, the trapped atoms sit in the dark and have no effect on the lattice. For asymmetric pumping �e�, destructive
interference between the trap beams cannot be perfect, and thus the atoms are polarized. As a result, the trap contracts. Bottom line: red
detuning. The lattice constant is reduced in both symmetric �c� and asymmetric �f� trap, but this reduction is enhanced by the asymmetry.
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= 1
2dsymm���, a decreasing function of �. For blue detuning,

the critical lattice constant d��	0,A=2 /�� increases with
increasing �.

IV. DYNAMICS OF THE LATTICE

We have found the interesting phenomenon that back-
action related effects can be enhanced by using an optical
lattice where the trapping beams have unequal intensities.
The next step is to investigate this situation in a computer
simulation.

Numerical simulation, overdamped dynamics

Numerical simulation of the dynamics of the optical lat-
tice is quite straightforward. Given the positions and veloci-
ties of the N atom clouds, the electric fields to the right and
to the left of any cloud can be computed by the transfer
matrix Method, as outlined in Sec. I. Having obtained the
mode amplitudes, the optical force on all clouds is given by
Eq. �21�. The dynamics of the lattice is then given by a set of
second-order ordinary differential equations

mẍj = − �xj + Fj�x1, . . . ,xN� for j = 1, . . . ,N . �36�

In addition to the optical forces, we have also included vis-
cous friction with coefficient � �related to the single-particle

friction coefficient �A by �=��A� to the system: this should
stabilize the optical lattice. In experiments with cold atoms
in vacuum, this can correspond to some laser cooling mecha-
nism, whereas for plastic beads immersed in water, � fol-
lows from the Stokes law.

Before discussing the simulation results, we digress on
the time scales in this dynamical system and introduce the
overdamped limit. Without damping, the characteristic time
scale of the cloud dynamics is given by the oscillation period
of deeply trapped clouds. From formula �22� for the force, it
can be seen that for small displacements �x���, trapped
clouds experience a harmonic restoring force F=zsinglex,
where

zsingle = − �
�cos ��
�1 − i��2

with � = 8
k

c
�Re ���I0I1, �37�

and cos � is given by Eq. �29�. Thus the oscillation fre-
quency of a single trapped cloud is

�single = �osc

��cos ��
�1 − i��

with �osc =��

m
. �38�

For low asymmetries, A�Amax, where �cos ���1, and weak
coupling, ����1, whereby �t�2�1, we have �single��osc, and
the characteristic time scale of undamped cloud motion is the
oscillation period of a single trapped cloud

�osc = 2��m

�
. �39�

Due to the viscous friction, the velocity relaxes toward the
value F /� exponentially in time scale

�vel =
m

�
, �40�

as can be seen by setting F to a constant in Eq. �36�. For
small damping, this time scale exceeds �osc by far ��vel
��osc�, and we expect the system to perform many oscilla-
tions before the mechanical energy is totally dissipated. On
the other hand, if �vel��osc, the system is overdamped: the
clouds reach the velocity F /� in the short time scale of �vel,
and then, on longer time scales, their motion can be de-
scribed by the first-order equation obtained by dropping the
inertial term of Eq. �36�:

�ẋj = + Fj�x1, . . . ,xN� for j = 1, . . . ,N . �41�

For harmonically trapped clouds, using Eqs. �22�, �37�, and
�41�, we can expect them to relax to the equilibrium posi-
tions at the bottom of their respective traps exponentially
during time

�d =
�

�
. �42�
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FIG. 5. �Color online� The lattice constant as a function of the
asymmetry is shown in thick �red� curves for red detuning in �a� and
blue detuning in �b�. Shaded �green� areas indicate regions of sta-
bility for N�1000 �darkest shade�, N�100, N�10, and N�2
�lightest shade�. The white area is unstable, see Eq. �25�. The �or-
ange� circle in �a� marks the parameter regime of Figs. 9 and 10.

ASBÓTH, RITSCH, AND DOMOKOS PHYSICAL REVIEW A 77, 063424 �2008�

063424-8



For consistency, we can check if during time �vel the varia-
tion of the force, dF=v�vel�dF /dx� is really small for v
=F /� and F=−�x. From dF=F�m /�2�F we obtain the
condition that we are in the overdamped limit if

�m � �2; equivalently �vel � �d or �osc � �d.

�43�

The last condition is equivalent to the first two because �osc
=2���vel�d. In fact, for plastic beads trapped in water, the
experiments are typically in this overdamped regime �see
Sec. VII for more details�.

For the moment, we consider the dynamics of perfectly
identical and purely dispersive clouds ��1=�2= . . . =�N�R�

with no dynamical noise. This first step toward understand-
ing the dynamics of real optical lattices already provides im-
portant surprises. In any realistic simulation, absorption and
noise also have to be considered. Inclusion of absorption
amounts to setting Im ��0. To include dynamical noise,
Langevin terms need to be added to Eq. �36� and �41�. To
account for the uncertainty in the number of particles per
cloud, we have to have �1��2� , . . . , ��N. We address these
questions later, in Sec. VI.

We explore the dynamics of optical lattices by slightly
perturbing the equilibrium and using numerical simulation to
find how the system reacts. Specifically, we fix the cloud
polarizabilities �, the pump asymmetry A, and set up a lat-
tice configuration

FIG. 6. �Color online� Numerical simulation of the dynamics of an optical lattice of N=100 clouds with polarizability �=0.1 each, with
symmetric pumping I0= I1, after initial excitation �random displacement from the equilibrium with maximum magnitude �initial=5�10−4�
and random velocity of maximum magnitude �osc�initial�. No friction forces are assumed ��=0�. Color coding stands for position distortions
� in �a�, excess intensity I�x�− �I0+ I1� in �b�, and excess pump asymmetry Ileft�x� / Iright�x�− I1 / I0 in �c�.
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xj
�0� = x1

�0� + �j − 1�d, such that Fj�x1
�0�, . . . ,xN

�0�� = 0,

for every j = 1, . . . ,N . �44�

The lattice constant d depends on the choice of parameters �
and A according to Eqs. �35a� and �35b�, and the position
x1

�0� is fixed by the relative phases of the pump beams. Next
we add a small perturbation to this lattice, in the form of a
random configurational noise. We denote the position of each
cloud with respect to its equilibrium position by � j, such that

xj�t� = xj
�0� + � j�t� , �45�

and the initial displacement � j�t=0� is a uniformly distrib-
uted random variable between −�initial and +�initial, with spe-
cifically �initial=5�10−4�. We also start the clouds with ran-

dom velocities uniformly distributed between −�osc�initial and
�osc�initial.

In optical lattices with symmetric pumping �an example
shown in Fig. 6�, the atom clouds oscillate almost indepen-
dently, and roughly with the expected time scale of �osc �as
seen in Fig. 6�a��. However, instead of centering on �=0,
these oscillations are uniformly displaced, and this displace-
ment itself varies with time in an oscillating fashion. Thus,
the center-of-mass oscillations of the whole lattice have a
longer time scale, in the example shown in Fig. 6, this is
roughly 10�osc. The total intensity inside the structure is not
homogeneous: the random displacements create some “cavi-
ties” where some extra light is trapped, or from where extra
light can be expelled. As the atom clouds oscillate, so does
the intensity, around the average value of I0+ I1 roughly with

FIG. 7. �Color online� Numerical simulation of the dynamics of an optical lattice of N=100 clouds with polarizability �=0.1 each, with
symmetric pumping I0= I1, after initial excitation �random displacement from the equilibrium with maximum magnitude �initial=5�10−4��.
The overdamped limit is assumed ��2��m�. Color coding stands for position distortions � in �a�, excess intensity �I�x�− �I0+ I1�� in �b�, and
excess pump asymmetry �Ileft�x� / Iright�x�− I1 / I0� in �c�.
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the frequency �osc. The local pump power ratio, the ratio of
left–to right–propagating intensities, however, is roughly in-
dependent of position in the lattice, and oscillates at the same
rate as the center-of-mass, at �osc. This produces a signal—
the variation of the transmitted intensities—that could be
used for detection of the “slow” center-of-mass oscillations.
This is the signal that would be expected for a single beam
splitter oscillating at the slow frequency 10�osc, resulting
from the change of the phases acquired by the beams until
they reach the beam splitter.

Friction damps the oscillations of the atom clouds, and in
the overdamped limit—an example shown in Fig. 7—as ex-
pected, instead of oscillations we only see the damping of the
initial noise. The center-of-mass relaxes on a longer time

scale here too, but much longer: in Fig. 7, this time scale is
roughly 100�d.

This picture is drastically changed in the presence of
pump asymmetry. In the example shown in Fig. 8, we set
I1=1.42I0. Initially, in the first 10�osc, the qualitative features
familiar from the symmetric pumping case can be observed,
the only difference being that the local pump power ratio
now depends on x, as seen in Fig. 8�c�. Thereafter, however,
the oscillations of neighboring atom clouds appear to phase
lock, and thus a density wave appears in the system, propa-
gating in the direction opposite to the stronger laser beam,
crossing the whole lattice once every �osc. This wave deter-
mines all of the three plotted properties, and is amplified in
time. In fact, this amplification is exponential, and after

FIG. 8. �Color online� Numerical simulation of the dynamics of an optical lattice of N=100 clouds with polarizability �=0.1 each, with
asymmetric pumping I1=1.42I0 after initial excitation �random displacement from the equilibrium with maximum magnitude �initial=5
�10−4� and random velocity of maximum magnitude �osc�initial�. No friction forces are assumed ��=0�. Color coding stands for position
distortions � in �a�, excess intensity �I�x�− �I0+ I1�� in �b�, and excess pump asymmetry �Ileft�x� / Iright�x�− I1 / I0� in �c�.
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roughly another 10�osc the amplitudes of the cloud oscilla-
tions are so large that some clouds merge, and, eventually,
the whole lattice is pushed away by the stronger beam.

The overdamped limit of the dynamics in an asymmetric
trap reveals even more surprises. Starting the simulation with
the same realization of noise as in Fig. 7, but a larger pump
asymmetry, I1=1.87I0, we observe �see Fig. 9� that most of
the initial excitation is damped out as before. However, the
same phase-locked oscillations as seen for the undamped
case appear here, and the clouds oscillate in spite of over-
damping. The amplitude of oscillations is larger for larger x,
i.e., it increases toward the source of the stronger pump. The
oscillations are all damped with the same time scale of—for

these parameters—roughly 22�d, and on a longer time scale
of roughly 100�d the center-of-mass relaxes as well. Increas-
ing the asymmetry further, to I1=1.88I0, leads to an instabil-
ity very similar to that occurring in the undamped case. As
seen in Fig. 10�a�, after a few �d most of the initial excitation
dies out, except for the displacement of the center-of-mass
and for the density wave with wavelength equal to the sys-
tem size. Now, however, this wave is amplified, and between
15 and 20�d the dynamics of the lattice is changed. The
lattice breaks into two blocks, each of them with roughly the
original lattice constant d, the one to the left is displaced
toward the right, the one to the right displaced toward the
left. As shown in Fig. 11, in both slabs the average lattice

FIG. 9. �Color online� Numerical simulation of the dynamics of an optical lattice of N=100 clouds with polarizability �=0.1 each, with
asymmetric pumping I1=1.87I0, after initial excitation �random displacement from the equilibrium with maximum magnitude �initial=5
�10−4��. The overdamped limit is assumed ��2��m�. Color coding stands for position distortions � in �a�, excess intensity �I�x�− �I0

+ I1�� in �b�, and excess pump asymmetry �Ileft�x� / Iright�x�− I1 / I0� in �c�. In �a�, for better readability, for t�10� /� some contour lines are
shown, from top to bottom: �=−0.04�initial �dash-dotted�, �=−0.05�initial �dash-dot-dotted�, �=−0.06�initial �short dashed�, and �
=−0.06�initial �long dashed�.
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constant is slightly above the expected value based on Eqs.
�35a� and �35b�. At their boundary, which in this run happens
to be around x=30�, the lattice constant is reduced, and, as
shown in Fig. 10�b�, the intensity is reduced as well. Thus
optical forces push the two blocks toward each other. Later,
at about t�45�d, the blocks meet, and at their boundary two
atom clouds merge �this is not shown in the figure�. Subse-
quently, other clouds merge as well and eventually �after
thousands of � /�� the whole structure will be pushed away
by the stronger beam. Note that I1 / I0�1.87 corresponds to
A�0.64 and therefore the Figs. 9 and 10 are both in the
parameter regime denoted by the �orange� circle in Fig. 5.

After giving a taste of the dynamics in the undamped and
overdamped limit, we now summarize some of the qualita-
tive observations based on the simulations of the full equa-

tions of motion �36�. For symmetric lattices, both the oscil-
lation and the damping time scales of the center-of-mass of
the structure are longer than those of the motion of the indi-
vidual clouds. At small asymmetries, due to damping, the
system still settles down to an equilibrium, which can be a
regular optical lattice. For asymmetries exceeding a critical
value A�Acrit, but easily satisfying A	2 /�, however, the
steady state optical lattice configuration is never attained.
Clouds merge and, in typical runs, eventually the whole
structure is pushed away by the stronger beam. Increasing
the friction � can help to stabilize the system, i.e., increase
Acrit. However, friction only helps up to a limit: there is a
value of the asymmetry A�, such that if A�A�, even the
overdamped dynamics fails to converge to the optical
lattice—and, typically, for this second limit we also have

FIG. 10. �Color online� Numerical simulation of the dynamics of an optical lattice of N=100 clouds with polarizability �=0.1 each, with
asymmetric pumping I1=1.88I0, after initial excitation �random displacement from the equilibrium with maximum magnitude �initial=5
�10−4��. The overdamped limit is assumed ��2��m�. Color coding stands for position distortions � in �a�, excess intensity �I�x�− �I0

+ I1�� in �b�, and excess pump asymmetry �Ileft�x� / Iright�x�− I1 / I0� in �c�.
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A��2 /�. Curiously, although oscillations die out faster and
faster if the damping coefficient � is increased, they do not
disappear as �→�. We have oscillations even in the over-
damped limit. As intuitively expected, both Acrit and A� are
smaller if the clouds have larger polarizability �. Quite sur-
prisingly, however, Acrit and A� depend on the number of
clouds N in the structure: both Acrit�� ,� ,N� and A��� ,N�
decrease with increasing N. Thus, an asymmetric trap can
only support a finite number of atom clouds with polarizabil-
ity �: even though an equilibrium optical lattice configuration
with any N exists, this configuration is unstable for N
�Ncrit�� ,� ,A�.

Due to the above listed curious effects, the asymmetry-
induced contraction of the optical lattice given by Eqs. �35a�
and �35b� and plotted in Fig. 5 would not occur in a real
experiment with extremely asymmetric dipole trap. Even

with an arbitrary amount of viscous friction, if A
�A��� ,N�, the lattice would become unstable and be de-
stroyed. This is already illustrated on Fig. 5, where the
�green� shaded areas limited by dashed lines are the param-
eter regimes where optical lattices of specific sizes can be
created �i.e., stabilized by viscous friction�, for various val-
ues of N. The boundary between the darkest and second
darkest areas �which is hardly resolved in Fig. 5�b�� corre-
sponds to the onset of the instability for N=1000; the two
subsequent boundaries are for N=100 and N=10. The last
dashed line, the one that separates the white area from the
one with the lightest shade, corresponds to �=2 /A, and is in
fact the limit of stability for an OL consisting of 2 clouds as
well as for a single cloud. These limits of stability are also
plotted directly as functions of � and A in Fig. 12, where the
color coding is the same as in Fig. 5, but data for larger
lattice sizes is also included �41�.

V. DYNAMICS NEAR EQUILIBRIUM:
ANALYTICAL RESULTS

We can gain an analytical understanding of the phenom-
ena listed above by studying the dynamics infinitesimally
close to an equilibrium configuration. There we can develop
the optical force on all of the clouds into a Taylor series, and
from the nonlinear Eq. �36� we obtain, using the notations
introduced in Eqs. �45� and �44�, the linearized form

m�̈ j = − ��̇ j + �
l=1

N

Djl�l, �46�

where the matrix D is defined by

Djl =
�

�xl
Fj�x1 = x1

�0�, . . . ,xN = xN
�0�� �47�

or, in a more suggestive way,

Djl = lim
�→0

1

�
Fj�xn = xn

�0� + 
ln�, n = 1, . . . ,N� . �48�

In Eq. �46� we have a set of N coupled linear differential
equations. The diagonal part of D describes the oscillations
of the clouds around their equilibrium positions. The off-
diagonal terms are responsible for coupling these oscilla-
tions: they contain the interaction mediated by the trapping
laser field. To understand the dynamics we need to find the
eigenvectors and eigenvalues of D. These will provide us
with the noninteracting vibrational modes: their spatial struc-
ture, their frequencies and their damping coefficients. We
detail the calculations below, broken down into several steps.
For these calculations, for simplicity we assume purely dis-
persive interaction ��R.

A. Eigenmodes of light in the lattice

To find the force on the jth cloud, given by Eq. �21�, we
have to obtain Aj, Bj, Cj, and Dj. The first step to their
calculation is to find the eigenvectors of the transfer matrix
of one unit of the lattice, M�k ,d� �see Sec. I�. We fix the
pump power ratio P, which gives the lattice constant d via
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Eqs. �35a� and �35b�, and set k=2� /�, i.e., we calculate the
transmission of the light constituting the periodic dipole trap.
The periodicity of the optical lattice suggests that one of the
eigenvectors is

u = eikdP�− d���P
ei� 	

= ��P
e−i�	 ; eigenvector of M, eigenvalue e+i�,

�49�

where the factor eikd was introduced for convenience, and we
used Eqs. �35a� and �35b�. We find that indeed ei�u
=MBSP�d�u, if �=�+�+kd, whereby, using Eqs. �29�,
�35a�, and �35b� we have for both red and blue detuning

sin � =
1

2
���A, cos � = −

1

2
�4 − �2A2. �50�

The other eigenvector can be found using Eq. �17�, the re-
flection symmetry of the BS: �P�d�u=MBS�ei�u
=ei�MBSP�d��P�−d��u�, and by the reflection symmetry of
free propagation �P�d�=P�−d�� we have

w = e−ikdP�− d��u

= � ei�

�P 	 ; eigenvector of M, eigenvalue e−i�,

�51�

corresponding to asymmetric pumping with I0� I1. As ex-
pected, for propagation of the trap beams we have ��R,
ensuring that these beams do indeed permeate the lattice un-
attenuated. Note that as M is not Hermitian, u and w do not
form an orthonormal basis: u†u=w†w=1+P and u†w
=2�Pei�.

B. Propagation of light in the perturbed lattice

We now compute the mode amplitudes Aj, Bj, Cj, Dj in-
side an optical lattice composed of purely dispersively scat-
tering identical clouds. At equilibrium, with �E1�2=P�E0�2,
we have an equidistant lattice with lattice constant given by
Eqs. �35a� and �35b�, and, as seen above,

�Aj

Bj
	 = MN−j+1�CN

DN
	 = MN−j+1E0u = E0ei�N−j+1��u ,

�52�

with the complex factor E0=E1e−ik�xN+d�P−1/2; note that �E0�
= �E0�.

Now if we perturb the optical lattice by displacing the lth
element by �, as in Eq. �48�, the transfer matrix of the whole
structure is changed, and this affects the outgoing modes. We
can then write the fields at the far left end of the structure in
terms of the fields at the far right end in the following way:

eiN�u +
�

k
�a�l�

0
	 = Ml−1P���MBSP�− ��P�d�MN−l

�
u +
�

k
� 0

b�l� 	� . �53�

The perturbations can be expanded in the basis given by the
eigenvectors u and w:

�a�l�

0
	 = au

�l�u + aw
�l�w, au

�l� = − �Pei�aw
�l�,

a�l� = − �P − 1�ei�aw
�l�, �54a�

�0

b
	 = bu

�l�u + bw
�l�w, bw

�l� = − �Pe−i�bu
�l�,

b�l� = − �P − 1�e−i�bu
�l�. �54b�

Note that to first order in �=� /k,

P��/k�MBSP�− �/k� = MBS − 2��� , �55�

with the matrix � corresponding to reflection about x as
defined in Eq. �16�. We can now gather the first-order terms
from Eq. �53�, and have

au
�l�u + aw

�l�w = MN�bu
�l�u + bw

�l�w� − 2��Ml−1�P�d�MN−lu

= bu
�l�eiN�u + bw

�l�e−iN�w + 2���e−i�ei�N−2l+1��w .

�56�

The u and w components of this equation, together with the
relations �54� give

aw
�l� = − 2���e−i�ei�2N−2l+1�� 1

Pe−iN� − eiN� , �57a�

bu
�l� = 2����Pei�N−2l+1�� 1

Pe−iN� − eiN� . �57b�

Note that each of these expressions contains the denominator
Pe−iN�−eiN�, which can give a resonant enhancement for
certain values of the asymmetry.

We can now proceed to calculate the mode amplitudes
inside the perturbed optical lattice using the transfer matri-
ces. For j� l, i.e., light to the right of the displaced cloud
�the stronger beam is the one incident from the right�, we
have

j � l: �Aj

Bj
	 = E0MN−j+1�u + �bu

�l��u − �Pe−i�w��

= E0ei�N−j+1��u + �E0bu
�l��ei�N−j+1��u

− e−i�N−j+1���Pe−i�w� . �58�

To first order in � we then have
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�Aj�2 + �Bj�2

�E0�2
= P + 1 + 2��P + 1�Re bu

�l�

− 4P� Re�bu
�l�e−2i�N−j+1��� . �59�

For j	 l, the transfer matrix of the displaced lth cloud also
enters the calculation:

�Aj

Bj
	 = E0�MN−j+1 − 2��Ml−j�P�d�MN−l�

��u + �bu
�l��u − �Pe−i�w��

= E0ei�N−j+1��u + �E0�bu
�l�ei�N−j+1��u

− bu
�l�e−i�N−j+1���Pe−i�w − 2�ei�N−2l+j��eikdw� .

�60�

In this case, to first order in � the sum of the intensities gives

�Aj�2 + �Bj�2

�E0�2
= P + 1 + 2��P + 1�Re bu

�l�

− 4P� Re�bu
�l�e−2i�N−j+1���

+ 8����P� Re ei�2j−2l−1��. �61�

C. Explicit form of D

Using the above formulas �59� and �61�, we can read off
the forces, and obtain

Djl =�
2� sin � Im

Pe2i�j−l��

P − ei2N� , j � l ,

− 2� sin � Im
P

P − ei2N� + � cos � , j = l ,

− 2� sin � Im
e2iN�e2i�j−l��

P − ei2N� , j 	 l ,
�

�62�

where � is given by Eq. �37�, and �osc by Eq. �38�. For
symmetric pumping we can take the limit �E1�→ �E0� of Eq.
�62�, and find quite simply �42�

Djl = − �
 jl + �
N�2

1 + N2�2 . �63�

D. Lattice vibration eigenmodes

For symmetric pumping, close to equilibrium, substitution
of Eq. �63� into Eq. �46� gives

Fj = − �
1

1 + N2�2� j + �
N�2

1 + N2�2�
l�j

��l − � j� . �64�

The clouds behave as uniformly coupled oscillators. The
coupling of the oscillators is independent of the distance j
− l of the sites, but does depend on the size N of the whole
structure. This coupling can be enhanced by increasing the
system size N, however, it reaches a maximum of ���� /2

when N���=1, and further increase of N results in a decrease
of the coupling roughly as 1 /N. It is quite clear that the
coupling does not affect the common mode �or center-of-
mass motion� of the lattice, i.e., when all of the clouds os-
cillate with the same phase. As seen from Eq. �64�, the
“spring constant” and the oscillation frequency, of this mode
are

z0 = − �
1

1 + N2�2 , �0 =
�osc

�1 + N2�2
. �65�

The spring constant z0 is lower in magnitude than the naive
expectation of zsingle=−� / �1+�2� from Eq. �37�, whereby the
oscillations of the center-of-mass are slower than naively ex-
pected. For all other modes of vibration, orthogonal to the
center-of-mass mode, however, the coupling increases the
frequencies. Using Eq. �63� it is directly seen that they are
degenerate, and have the spring constant and oscillation fre-
quency

z1 = z2 = . . . = zN = − �; �1 = �2 = . . . = �N = �osc

�66�

slightly larger in magnitude than the naive expectations zsingle
and �single. For the examples plotted in Figs. 6 and 7, N�
=10 resulted in the approximately tenfold slower oscillations
and 100 times slower damping of the center-of-mass, than of
the other modes.

For asymmetric pumping ��E1�� �E0��, the analysis of the
dynamics is considerably more involved. The main problem
is that the matrix D itself is not symmetric any more.
Thereby, the force Fj is not conservative, not even in the
infinitesimal neighborhood of the equilibrium configuration:
If it were, Fj =−� /�xjV�x1 . . .xN� would imply that D is a
Hessian matrix, symmetric by Young’s theorem. We remark
that asymmetric force matrices have been found in studies of
the stability of the two-dimensional equilibrium configura-
tions of optically trapped microspheres in a single plane
transverse to the standing wave �28�.

Although for asymmetric pumping D is not symmetric,
we can still look for the eigenmodes of lattice vibrations,
given by the eigenvectors of D. This task is involved, since
the eigenvalues and eigenvectors of a nonsymmetric real ma-
trix can be complex, not orthogonal to each other, and are in
general complicated to find. Note, however, an important
symmetry of the system close to equilibrium, revealed by Eq.
�62�: D is a Toeplitz matrix �i.e., Dj+1,l+1=Dj,l for every j , l
=1, . . . ,N−1�, and thus the coupling between two clouds
only depends on their distance l− j. If D was a circulant
matrix, i.e., it had the additional property that Dj,N=Dj+1,1
for every j=1, . . . ,N−1, its eigenvectors would be the Fou-
rier vectors �vb� j =eibj2�/N, for b=0, . . . ,N−1. Although D
does not have this property, a similar statement does hold for
it: Dj,N=PDj+1,1 for every j=1, . . . ,N−1. Thus we can look
for its eigenvectors in the following form:

�vb� j = �Pe2�ib� j/N, �67�

corresponding to density waves with complex wave num-
bers, the imaginary part the wave numbers given by 

=ln�P� / �Nd�. Direct application of Eq. �62� shows that these
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vb are indeed eigenvectors, and after some algebra the cor-
responding eigenvalues zb of D, with b=0, . . . ,N−1, are
found to be

zb = � cos �
1 +
�2�NPA2

��NPei�b/N − e−i�b/N�2�−1

. �68�

This can be contrasted with the naively expected zsingle
=� cos ��1+�2�−1, based on Eq. �38�.

As expected, the eigenmodes �67� of the lattice vibrations
are complex, except for b=0, which corresponds to a dis-
torted center-of-mass mode and, if N is even, b=N /2, the
density wave of highest wave number possible �� /d�. Both
of these modes are stable, as zN/2	z0	0, and damped if �
�0. Since D is real, all other modes form conjugate pairs:
zb=zN−b

� and vb=vN−b
� .

We now discuss the physical meaning of complex eigen-
modes and eigenfrequencies. Consider a pair of complex ei-
genvalues zb=zN−b

� with 0	b	N /2, and the corresponding
eigenvectors vb=vb

�. Both Re vb and Im vb describe density
waves of wave number kb=2�b / �Nd�, modulated so their
amplitude increases exponentially with rate 
= �ln P� / �Nd�
toward the source of the more intensive beam. Now since

D Re�vb� = Re�Dvb� = Re�zbvb� = Re zb Re vb − Im zb Im vb

and

D Im�vb� = Im�Dvb� = Im�zbvb� = Im zb Re vb + Re zb Im vb

, time evolution by Eq. �46� does not lead out of the subspace
of RN spanned by the modes Re vb and Im vb. For any su-
perposition

��t� = p�t�Re�vb� + q�t�Im�vb� = Re��p�t� − iq�t��vb� ,

�69�

with p�t� ,q�t��R, Eq. �46� can be rewritten as

mp̈ = − �ṗ + �Re zb�p + �Im zb�q , �70�

mq̈ = − �q̇ − �Im zb�p + �Re zb�q . �71�

A linear combination of these two differential equations
gives m�p− iq�··=−��p− iq�·+zb�p− iq�, a single complex ho-
mogeneous second-order linear differential equation, whose
general solution can be written down straight away:

p�t� − iq�t� = c+e��b
+−i�b

+�t + c−e��b
−−i�b

−�t. �72�

Here c�= p�− iq� are arbitrary constants and

��b
� − i�b

�� =
− � � ��2 + 4mzb

2m
, �73�

with �b
−	�b

+ to fix notation, which also means �b
−	0 and

�b
+�0. Substituting the solution �72� together with Eq. �67�

into Eq. �69�, we have � j�t�=��x= jd , t� for every j
=1, . . . ,N, with

��x,t� = Re�c+e�b
+te
xei�kbx−�b

+t�� + Re�c−e�b
−te
xei�kbx−�b

−t�� .

�74�

Thus a general solution of the dynamics �infinitesimally
close to equilibrium� in this subspace corresponds to two
superimposed density waves of wavelength Nd /b, one co-
propagating with the stronger beam ��b

−	0�, and one coun-
terpropagating ��b

+�0�. Their phase velocities are given by
Nd��b

�� / �2�b�. As �b
−	0 for any values of the variables, the

copropagating wave is exponentially damped with character-
istic time scale 1 / ��b

−�, but the counterpropagating wave can
be either damped or amplified. Thus, this pair of modes is
stable if �b

+	0, which corresponds to

m�Im zb�2 	 − �2 Re zb. �75�

An analogous criterion of stability has been derived for the
distortions of the equilibrium patterns of optically trapped
microspheres in a single plane transverse to the trap axis in
Ref. �28�.

For symmetric pumping A=0, the matrix D is symmetric,
the eigenmodes �67� are the Fourier components, and the
eigenvalues �68� are all real and negative, thus the lattice is
stable. As discussed a few paragraphs earlier, almost all
modes have the same frequency as a single trapped cloud
z1=z2= , . . . , =zN=−� except the center-of-mass mode with
z0=−� / �1+N2�2�. With the introduction of a pump asymme-
try A�0, the eigenmodes and eigenvalues �apart from b
=0, and b=N /2, if N is even� acquire imaginary parts, and as
A is further increased, the real parts of the eigenvalues turn
positive one by one. The first few eigenvalues are shown as
functions of A for two examples in Fig. 13. In the “strong
collective coupling” N��1 limit �Fig. 13�a��, we observe
clearly separated resonances. In this limit, whenever �−�
 � /N, we have �NP�1, and the denominator of Eq. �68� is
approximately 1−sin2 � /sin2��b /N�, which, with Eq. �50�,
places the resonance for mode b at A�Ab, where

Ab = b
2�

N�
. �76�

The simple relation A=2� / �N�� indeed fits the boundaries
between the shaded green areas of Figs. 5 and 12 almost
perfectly for A	1. Outside of the strong collective coupling
regime �Fig. 13�b��, the resonances are not well resolved. It
may even happen �as in the plotted example� that mode b
=2 becomes absolutely unstable �Re z2�0� at lower A than
mode b=1. This causes the “shoulder” in the N=10 instabil-
ity limit on Fig. 5, and on all of the slashed lines at around
A�10 on Fig. 12. In Figs. 13�c� and 13�d�, where the criti-
cal asymmetry is A=2 /�=20, we have �=� /2 and all ei-
genvalues are 0; for A�20 all modes are unstable. The in-
stability rate, i.e., the largest of the �b, is plotted for a wider
range of parameters in Fig. 14.

In the absence of damping �=0, Eq. �73� gives �b
�

= � Im�zb /m and �b
�= �Re�zb /m. With asymmetric pump-

ing the eigenvalues zb of all modes with b�0,N /2 are com-
plex, and thus an instability always ensues, but might be very
slow on the experimental time scale �discussed in Sec. VII�.
As shown by Eq. �75�, damping can restore the stability of
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the modes as long as the real parts of the eigenvalues are
negative. The bth mode is overdamped if �2� �zb�m, its dy-
namics is then effectively first-order �cf. Sec. IV�, and the
copropagating mode disappears �is damped out on a very
short time scale�. For the counterpropagating mode we then
have �b

+=−Im zb /�, and �b
+=Re zb /�. Even with arbitrarily

strong damping, the OL becomes unstable if Re zb�0, as
then �b

+�0 �and the right-hand side of Eq. �75� is negative�.
This “absolute instability” is used to define the shaded areas
in Figs. 5 and 12. The overdamped dynamics close to this
absolute instability limit is illustrated in Figs. 9 and 10,
which show the results of numerical integration of Eq. �41�
near this limit.

VI. STABILITY WITH RESPECT TO NOISE

For the simulation reported in Sec. IV as well as for the
analytical calculations we considered a perfectly regular lat-

tice made of purely dispersive and infinitely thin clouds with
deterministic dynamics. However, the phenomena we found
are fairly robust: these approximations can be somewhat re-
laxed without altering the qualitative picture. We do not go
into the details very much here but illustrate this statement
with examples from “noisy” simulations in Fig. 15. We simu-
late clouds of finite thickness by placing many �on average
10� infinitely thin sheets at a single site, the only interaction
between them being that mediated by the trap light. To simu-
late the density inhomogeneity of an optical lattice, the
sheets are distributed randomly �Poissonian distribution�, in
a way as to model a parabolic external confinement: p�x�
!exp��x−20��2 / �2� �15��2��. 1000 sheets of �=0.01+2i
�10−5 are distributed this way over 100 lattice sites, and so
an optical lattice of roughly 30 sites with ��0.3+6�10−4i
is formed, the polarizability decreasing smoothly toward the
edges. Furthermore, Dirac-
 correlated noise terms are added
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FIG. 13. �Color online� Damping rate �b
+ �thick� and frequency �b

+ �thin� of the first few eigenmodes b=0 �continuous light gray�, b
=1 �continuous purple�, b=2 �slashed blue�, b=3 �dotted green� of optical lattices in the overdamped �left column� and undamped �right
column� limit. In the overdamped case, these are directly given by the real and imaginary parts of the eigenvalues of the force matrix D:
�b

+�d=Re zb /� and �b
+�d=Im zb /�, whereas in the undamped case, by the square root of zb: �b

+ /�osc=Re�zb /� and �b
+ /�osc=Im�zb /�. In �a�

and �b�, a lattice of N=100 clouds of polarizability �=0.1 is taken, the same choice of parameters as used for the illustrations of the dynamics
in Figs. 6–10. As N�=10, this is in the strong collective coupling regime, clearly separated resonances are seen at the predicted positions.
In �c� and �d�, N=10 and �=0.1, and thus the collective coupling is weaker, the resonances overlap strongly. As A approaches 2 /�=20, the
trap depth decreases sharply, and for A�20 the curves do not continue as the dipole force is no longer able to hold the clouds against the
scattering force. In �e� and �f�, N=1000, and �=10−4 means that the collective coupling is weak, N��1. Although the resonances can still
be distinguished, they overlap almost completely, and the instability rate �, the maximum of the �b, is a smoothly increasing function of the
asymmetry.
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to the equations of motion, which, using the reduced units
�length in �, time in �osc �39�, electric field in E0�, read

ẋj�t + �t� = ẋj�t� + fCU
�1

� j
��Aj�2 + �Bj�2 − �Cj�2 − �Dj�2�

− �CUẋj�t�D��t" , �77�

with dimensionless constants fCU=� / �4�Re �1��P�, �CU
=�A���1�c�1/2 / �4mA�Re �1��PI0�1/2, and a choice of D0
=0.01, where " is a random noise variable of average zero
and variance of 1. Similarly, in the overdamped limit, where

the time unit is �d of Eq. �42�, we add the noise terms to
obtain

xj�t + �t� = xj�t� + fCU�
�1

� j
��Aj�2 + �Bj�2 − �Cj�2 − �Dj�2�

+ D��t" , �78�

where now fCU� = �16��Re �1��P�−1 and D0=0.01 as above.
As seen in Fig. 15, in the regime of large collective cou-

pling � j� j =10 the same qualitative features as observed on
Figs. 8–10 appear. In the undamped case �a�, the center-of-
mass oscillations are 10 times slower, and the other oscilla-
tions synchronize so that a density wave propagating toward
the source of the stronger laser beam arises, which crosses
the whole system in �osc. In the overdamped case, we also
find the same qualitative feature of synchronization of the
oscillations, and a sharp instability limit, although this occurs
at slightly higher pump asymmetry, and the propagation of
the wave is slower, than in the noiseless case �oscillation
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FIG. 14. �Color online� Exponential rate � of instability �the
largest of the �b� for an undamped optical lattice, for various set-
tings of the collective coupling as a function of the asymmetry �a�,
and for various settings of the asymmetry A as functions of the
collective coupling N� �b�. For these plots we set N=1000, but for
N�1, a change in N does not affect the curves except for the
termination point of the lines �which is at �A=2�. Note that �osc

itself depends on both the asymmetry A and the coupling constant
� �but not on the total number of occupied sites N� in a nontrivial
way. On both plots, the dotted line shows the growth rate if the
asymmetry is set near the first resonance, i.e., A=2� / �N��. The
ripples on the plots at large instability rates ��1 are caused by the
resonances illustrated in Fig. 13. For low instability rates �	0.1,
and weak total coupling N�	1, we find that for � varies smoothly
with N� and A. Under these conditions at low asymmetries A	1,
���osc�N��2A3 / �2��3 �analytical estimate�, whereas for large
asymmetries A�10, the data can be well fitted with �
�0.015�osc�N��2A1.7.
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FIG. 15. �Color online� Numerical simulation of the dynamics
of an optical lattice with noise. 1000 sheets of �=0.01 are distrib-
uted over 100 lattice sites according to a Gaussian centered on x
=20� of width 15�. Thus ��0.3 in the center of the structure, and
decreases to ��0 near the edges, with a Poissonian distribution of
�. At each site, Im �=2�10−3 Re �. Color coding stands for the
average displacement � of the sheets at each site is after initial
excitation �random independent displacement of each sheet from
equilibrium with maximum magnitude �initial=5�10−4� and ran-
dom velocity of maximum magnitude �osc�initial�. In �a�, no friction
forces are assumed ��=0�, and I1=1.39I0. In �b� and �c� the over-
damped limit is taken, with I1=1.902I0 and I1=1.904I0 respectively.
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time scale is roughly 2�d�. Due to the inhomogeneous den-
sity distribution the shape of the propagating density wave is
altered, but is still quite smooth as the long-range interaction
averages out the local noise.

VII. EXPERIMENTAL ISSUES

A. Cold atoms

For optical lattices consisting of ultracold atoms trapped
in vacuum it is cumbersome to produce viscous friction
forces. In the absence of friction our model predicts that any
asymmetry in the intensities of the trap beams should give
rise to a dynamic instability of the lattice. However, obser-
vation of this instability can be hampered by noise. Even if
all experimental precautions are made, one source of noise
cannot be canceled: absorption and spontaneous emission of
photons from the trapping lasers by the atoms. In the follow-
ing, we discuss what experimental parameters are necessary
for the dynamic instability to be substantially faster than the
heating due to absorption.

Most optical lattice experiments use alkali atoms, since
they have simple electronic level structure, with the trap la-
sers tuned near the D line. We use the notation of Ref. �32�,
the fields are assumed to be polarized along z, the quantiza-
tion axis for the atoms. The dipole transition matrix element
deg is related to the linewidth # and frequency �0 by

# =
�0

3

3��0$c3deg
2 . �79�

The Rabi frequency % gives the characteristic energy of the
dipole coupling

$%�r� = − deg�E�r�� . �80�

Note that the value of the Rabi frequency depends on the
position r of the atom. For red detuning, atoms will be near
antinodes, and we can take �E�r����E1�+ �E0�. For blue de-
tuning, cold atoms will initially be near the nodes �E�r�
���E1�− �E0���, however, if they are heated, the latter expres-
sion underestimates the electric field, for atoms with high
kinetic energies �E�r����E1�+ �E0� is more appropriate. Lin-
ear polarizability is only a good approximation if the atomic
transition is not saturated. This can be ensured by choosing
���� �%�: the upper-state population &ee then reads

&ee =
%2/4

�2 + �#/2�2 �
#/2
���

3�2�I0 + I1�
4�$����

Q , �81�

where the Q is a dimensionless correction factor accounting
for the effects of localization in the asymmetric trap

red detuning: Q = 1 +
2�P
P + 1

, �82a�

blue detuning, well trapped atoms: Q = 1 −
2�P
P + 1

,

�82b�

not well trapped atoms: Q = 1. �82c�

We require &ee	10−2, say. In the large detuning �����#�
and low saturation ��%�� ���� limit the complex polarizabil-
ity 
 of a single atom can be expressed as


 = −
deg

2

$

1

�
�1 + i

#/2
�− ��	 =

#/2
�− ��

3

4�2�0�3�1 + i
#/2

�− ��	 .

�83�

Thus the polarizability �divided by the transverse area� of an
atom cloud reads simply

� =
k�


2�0
=

#/2
�− ��

3N�

4�
�1 + i

#/2
�− ��	 . �84�

By virtue of Eq. �84�, the back-action of the atom clouds on
the field, i.e., �, can be enhanced by working at only moder-
ately large detuning �as opposed to the ��−107# of many
optical lattice experiments�.

The trap depth Udip of the dipole trap, for single atoms
moving independently, can be estimated by neglecting any
feedback effects on the field. The trap then has a U�x�
!cos2 kx form, with the trap depth given by

Udip =
1

4
�
����E0� + �E1��2 − ��E0� − �E1��2�

= �
E0E1� = 2$���&ee

2�P
Q�P + 1�

. �85�

The trapped atoms absorb part of the trapping laser beams,
and most of this absorbed power is reemitted as radiation
with frequency close to �, corresponding to spontaneous
emission, but some of it heats the motion of the atom. On
average, each absorbed and spontaneously emitted photon
increases the kinetic energy of the atom by an amount known
as the recoil energy

Erec = kBTrec =
$2k2

mA
. �86�

Since the rate of spontaneous emission of photons is dN /dt
=#&ee, the heating rate, or the rate of increase of kinetic
energy of the atoms, can be expressed as

Pheat = #&eeErec = #&ee
$2k2

mA
. �87�

Heating due to absorption leads first to a breakdown of the
Dirac-
 approximation used in our model �5�, and, more cru-
cially, on a longer time scale of theat, the atoms eventually
“evaporate” from the optical lattice. We can estimate the
time scale for heating of the atoms out from the trap by

theat =
Udip

Pheat
=

1

�

���
#/2

mAc2

$�

2�P
Q�P + 1�

. �88�

For 87Rb and 23Na, this is roughly theat�10−5��� / �# /2� s and
theat�1.6�10−6��� / �# /2� s, respectively.

The back-action-induced dynamic instabilities can only be
observed in an experiment if they are much faster than the
evaporation
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�theat � 1. �89�

As seen from Eqs. �37�, �68�, and �73� both �b
� and �b

� are
proportional to the oscillation frequency �osc of a single
atom cloud �which is the same as the oscillation frequency of
a single atom� in the trap is, which is

�osc =� 8k���
c�mA

�4 I0I1 =�2Udipk
2

mA

=� 2$#

mAc2� ���
#/2

�&ee�� 2�P
Q�P + 1�

. �90�

As shown in Fig. 14, the constant of proportionality depends
sensitively on the choice of asymmetry. Using the estimates
of the caption of Fig. 14, we find that the instability is faster
than dipole heating at low asymmetries A	1 if

1 � �theat

= 0.008�&ee�#/2
���

N2�3N�

4�
	2�#/2

�
�mAc2

$�
Q−3/2A3,

�91�

whereas for large asymmetries A�10 we have

1 � �theat

= 0.085�&ee�#/2
���

N2�3N�

4�
	2�#/2

�
�mAc2

$�
A−1.3.

�92�

Roughly for 87Rb, �osctheat�0.14���� / �# /2��3/2, whereas for
23Na, �osctheat�0.070���� / �# /2��3/2. Some concrete ex-
amples are given in Table I.

B. Plastic beads

Although the largest optical lattices to date consist of
trapped atoms, optical forces can be used to trap much bigger
objects as well. Since the earliest days of optical trapping
�40� a large amount of work has gone into trapping plastic
microspheres �or “beads”� of diameter comparable to, or
even larger than, the wavelength of the trap laser. It has been
realized as early as 1989 �25�, that the interference between
the incident and the scattered fields gives rise to an effective

interaction between microscopic beads, which later has been
shown to modify the structure of one-dimensional arrays of
trapped beads significantly �26,27,34�. Recently, research has
focused on the transverse motion of particles which are in the
same plane, trapped at an antinode of the standing-wave in-
terference pattern of two opposing laser beams; note that this
is the degree of freedom averaged out in our model. It has
been found in Ref. �28� that the beads can “crystallize” into
intricate periodic or quasiperiodic structures, and with the
addition of new beads some modes of motion of these struc-
tures can become unstable.

In most experiments with trapped microspheres, the size
of the beads is of the same order of magnitude as the wave-
length of the lasers. It is usually assumed that much smaller
beads, which are Rayleigh scatterers, do not have interesting
dynamics �28�. However, the type of instability explored in
this article could be studied with optically trapped beads of
very small size instead of cold atoms. The radius of the beads
should be small enough so that they can be taken as pointlike
scatterers. Such experiments could be hard to perform as
stronger Brownian motion makes trapping of very small
beads more difficult. However, due to the overdamped dy-
namics of these beads, the experimental signatures of opto-
mechanical coupling would be more straightforward to de-
tect.

VIII. CONCLUSIONS

We have considered the dynamics of a one-dimensional
optical lattice due to the nonlinearities caused by multiple
reflections of photons within the lattice. We adopted the
simple model where the trap beams are approximated as
plane waves, and all transverse dynamics is neglected �12�.
Here the atom clouds affect the fields as beam splitters with
dimensionless coupling constant �=−ir / t. We supplemented
this model by a derivation of the force on the trapped atom
clouds, based on the Maxwell stress tensor. We have shown
the corrections this force brings to the standard “radiation
pressure” and “dipole force.” These corrections are substan-
tial in the regime of strong coupling �dense atom clouds, �
�1�, and impose a limit on the asymmetry between the trap
beam intensities even for purely dispersive atom-light inter-
action. We then analyzed the dynamics of large lattices, in-
cluding the mechanical interaction between the trapped atom

TABLE I. Some experimental requirements and the relevant time scales for the instability, for an optical
lattice of N=500 disk-shaped clouds of areal density �=10 /�2 each �corresponding to a 3D lattice with
filling factor of 2.5�. The pump asymmetry is set at P=10, and laser power is chosen so that the population
of the upper level is &=10−3.

87Rb 23Na

� / �# /2� −104 −105 −104 −105

I0+ I1 0.21 kW /cm2 21 kW /cm2 0.79 kW /cm2 79 kW /cm2

� 2.39�10−4 2.39�10−5 2.39�10−4 2.39�10−5

theat 77 ms 770 ms 11 ms 116 ms

�osc 1.73 �s 0.547 �s 0.53 �s 0.17 �s

tinst=�−1 0.33 ms 10 ms 0.10 ms 3.2 ms
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clouds that is mediated by the trap light. Since the system is
one dimensional, the interaction does not decay with the dis-
tance of the atom clouds, and thus alters the dynamics more
and more substantially as the system size �number N of
clouds� is increased. For symmetric pumping, this leads to a
softening of the center-of-mass oscillations, and a slight
identical shift of all other modes of oscillation. For asymmet-
ric pumping, it gives rise to an instability of the lattice which
has the form of a density wave copropagating with the
weaker beam. In the limit of strong collective coupling �N�
�1� the propagation velocity and growth rate of these waves
can be resonantly enhanced at certain values of the pump
asymmetry A. Although viscous friction can restore the sta-
bility of the optical lattice, there is a critical asymmetry �de-
pending nontrivially on both N and ��, above which the den-
sity waves arise and eventually destroy the lattice even in the
overdamped limit.

The interaction due to multiple scattering is important for
microscopic particles, trapped by light, whose size is compa-
rable to the wavelength. In such systems effects similar to
those we describe here �nonconservative forces, oscillating
and unstable modes even in the overdamped limit� have al-
ready been predicted for the two-dimensional motion of
“photonic clusters” in a plane transverse to the trap beams
�28�. There, however, the situation is much more complex
due to the higher dimensionality and to the more complicated
scattering. In the Mie regime, multiple reflections within a
single bead lead to nontrivial modifications with respect to
the pointlike �Rayleigh� scatterer, and this is thought to be
essential: in Ref. �28�, it is stated that vibration frequencies
of photonic clusters of Rayleigh particles are always real.

In the one-dimensional OL studied in this paper, the
asymmetric pumping drives a net energy and momentum
flow through the system, relating it to crystals driven far
from equilibrium. Indeed, traveling density waves have been
predicted to arise in arrays of vortices in a type-II supercon-
ductor �43�, and have been experimentally observed and ana-
lyzed in a chain of water drops dragged by oil �44,45�. These
systems, and the one we study in this Article, share the com-
mon trait that the interaction between the components �aris-
ing from the Lorentz force in the first case, and from the
hydrodynamic interaction in the second� is not symmetric in
the sense of Newton’s third law. However, for the vortices
and the water droplets, this interaction has finite range, and
therefore leads to a well-defined dispersion relation in the
thermodynamic limit. In our one-dimensional system, how-
ever, as the interaction is infinite range, the thermodynamic
limit does not make sense. Thus there is no dispersion rela-
tion and we cannot speak of “phonons.”

In this paper we have revealed that tuning the pump
asymmetry opens the possibilities of using optical lattices as
a model system for driven crystals far from equilibrium, a
largely uncharted topic of physics. Although some of the
intriguing features of the dynamics, in particular, the reso-
nant enhancement of the instability, are specific to the optical
lattice, some of them are generic �traveling density waves,
complex wave vectors, etc.�. This shows a way, based on
optomechanical coupling, of using optical lattices to explore
a subject traditionally belonging to condensed matter phys-
ics.
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APPENDIX A: THE FORCE ON AN ATOM CLOUD:
DERIVATION BASED ON MULTIPLE SCATTERING

In Sec. II we have derived the optical force on an atom
cloud in an asymmetric dipole trap. We have shown that to
first order in the polarizability � of the cloud, the force can be
explained in terms of the standard theory of the mechanical
effects of light on atoms: it is the sum of the “radiation
pressure” and the “dipole force” on each particle due the
incident fields. However, the force depends nonlinearly on
the polarizability �. Inasmuch as this nonlinearity is due to
the large polarizability of the individual particles, our for-
mula �22� provides an extension of the standard formulas for
the optical forces. If, however, the polarizability of each par-
ticle is small, the force on the atom cloud can be derived
from the standard optical force. We provide this derivation
below.

According to the standard theory of optical forces on at-
oms �32�, in the regime of linear polarizability the force an
atom in a superposition of two counterpropagating standing
waves E�x�=Heikx+Ge−ikx reads

F =
k

2
��H�2 − �G�2�Im 
 − k Im GH� Re 
 , �A1�

=−
k

2
Re��2�Im GH�� + i��H�2 − �G�2��
� . �A2�

Here we have united the first term, the “radiation pressure,”
and the second term, the “dipole force,” in a complex quan-
tity. We would like to use this formula to find the total force
on a pancake-shaped thin atom cloud, with width l��, trans-
verse area w��2, and total polarizability �, in a trap with
electric field incident from the left, Beikx, and from the right,
Ce−ik�x−l�. For ��1, the back-action of the atoms on the light
field can be neglected in a zeroth approximation, and the
formula �A1� can be applied directly. This is equivalent to
calculating the optical force based on the Maxwell stress
tensor and taking into account the modification of the light
field due to the cloud only to first order in �. For � of the
order of 1 �or for very asymmetric pumping and Im �	�2�,
this approach constitutes a bad approximation: we need to go
on.

To proceed, we divide the atom cloud into a sequence of
slices such that the polarizability of each size is infinitesimal,

� = �
i=1

n

d� j, with �d� j� � 1 for every j = 1, . . . ,n .

�A3�

This is illustrated in Fig. 16. Since the whole cloud is as-
sumed to be much thinner than �, we neglect the phases
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picked up be the light during propagation between the slices.
As shown in Sec. I, for such infinitesimally closely spaced
beam splitters the polarizability parameter � is additive,
hence the requirement �A3�. Now each slice only effects the
electric field perturbatively ��r j�= �d� j� / �1− id� j��1�, and
thus the field at the jth slice is to a good approximation the
superposition of just two plane waves E�x−xj�=Gje

ik�x−xj�

+Hje
−ik�x−xj�, with xj denoting the position of the slice. We

can find the amplitudes Gj and Hj simply using the additivity
of �:

�Hj

Gj
	 = ��1 + i��� i��

− i�� �1 − i���
	�C

D
	, with �� = �

l=j+1

n

d�l.

�A4�

Multiplying this force by the areal atom density of the jth
slice, � j = �d� j /���N� /�2�, we obtain the areal density of the
force on the jth slice:

dFj = − �0 Re��2�Im GjHj
�� + i��Hj�2 − �Gj�2��d� j� .

�A5�

The force on the whole cloud is the sum of the forces on the
individual slices, which in the limit of infinitesimal slices
becomes a complex integral

F = �
j

dFj =� dF

= �0 Re�
0

�

�− 2 Im DC� − i��D�2 − �C�2� + 2�D

+ C�2����d��, �A6�

using Eq. �A4� to express Gj and Hj. Since the integrand is
linear in ��, the integral is easily evaluated to give

F = �0��D�2 − �C�2�Im � − 2�0�Im DC��Re � + �0�D + C�2���2.

�A7�

Here, formally, the first term is exactly the “radiation pres-
sure,” the second, the “dipole force” summed over all the
particles due to an electric field Deikx+C−ikx, and all the non-
linear “multiple scattering” corrections are in the third term.
Bear in mind, however, that some of the nonlinearity is “hid-
den” in D, which is related to the incident amplitude B non-
linearly in �:

D =
1

1 − i�
�i�C + B� . �A8�

Substitution of this relation into Eq. �A7� yields

F = 2
I0 − I1

c

Im �

�1 − i��2
− 4

�I0I1

c

Re �

�1 − i��2
sin�2kx + ��

+ 2
I0 − I1

c

���2

�1 − i��2
, �A9�

with the incident intensities I0= 1
2�0c�B�2 and I1= 1

2�0c�C�2,
and the relative phase �=arg B−arg C. This is identical to
the formula �22� derived via the Maxwell stress tensor in
Sec. II.

APPENDIX B: SYMMETRICALLY PUMPED LATTICE

We have derived the analytical form of the force matrix D
in Sec. V, and we could describe the dynamics of a sym-
metrically pumped lattice simply by taking the limit A→0
of the formulas. This seems to make perfect sense, as the
final formulas, i.e., the force matrix D �62�, eigenmodes of
vibration vb �67�, and the corresponding eigenvalues zb �68�
have well defined limiting values for I1→ I0. However, it is
quite disturbing that the derivation of these formulas does
not work for I0= I1. If P=1, the two vectors u �49� and w
�51� are parallel and thus they do not subtend a basis �not
even a nonorthogonal one�. We therefore fill a gap in this
section by deriving the formulas for symmetric pumping.
Reassuringly, the same results are found as by directly taking
the limit.

In the symmetric pumping case the 2�2 transfer matrix
M only has one eigenvector u �=e−i�w�. This awkward situ-
ation arises because for symmetric pumping �=�, thus
tr M=2 �see Eq. �19��, and then the characteristic equation
has a the single eigenvalue 1 with a multiplicity of 2. Al-
though such matrices are not diagonalizable, their functions
can still be computed efficiently using the Jordan form. In-
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FIG. 16. �Color online� A single atom cloud, with �=0.5
+0.025i, and a slice �dark background�. The intensity of the electric
field �continuous red line� varies inside the atom cloud, and so does
the “radiation pressure” �dotted blue line� and “dipole force”
�slashed blue line�, the first and second terms of the force �A1� on a
single slice. The forces are plotted in units of �d�
=8��0 Re d��BC�, where n=200 slices were taken with coupling
constant d�1=d�2= ¯ =d�200=d�=� /200. The dipole trap is asym-
metric, with �C�=1.5�B�.
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stead of just referring the reader this general recipe, we here
give the detailed calculation.

Since we have a single eigenvector u, it is useful to take a
second vector z orthogonal to it

u =
1
�2

� 1

e−i� 	, z =
1
�2

� 1

− e−i� 	 . �B1�

Note that with these definitions u and z provide an orthonor-
mal basis. Substitution of � leads to

red detuning, � � 0: u =
e−i tan−1 �

�2�1 + �2�1 + i�

1 − i�
	 ,

z =
e−i tan−1 �

�2�1 + �2� 1 + i�

− 1 + i�
	 , �B2a�

blue detuning, � 	 0: u =
1
�2

� 1

− 1
	, z =

1
�2

�1

1
	 .

�B2b�

It can easily be checked by direct calculation that a decom-
position analogous to Eq. �20� can be given:

M = − 1 + 2i���u � z†, �B3�

and this can be used directly to show that for any n�N,

Mnu = �− 1�nu , �B4a�

Mnz = �− 1�nz + n�− 1�n−12i���u . �B4b�

Mirror reflection of u along x is now simpler then for the
asymmetric pumping case. We have

��P�d�u = − ���u . �B5�

Perturbation of the optical lattice �infinitesimal displacement
of the lth cloud by �→0� given in Eq. �53� still only affects
the outgoing modes, but now for a�l� and b�l� of Eq. �53� we
have

�a�l�

0
	 = au

�l�u + az
�l�z, au

�l� = az
�l� =

a
�2

, �B6a�

�0

b
	 = bu

�l�u + bz
�l�z, bu

�l� = − bz
�l� =

bei�

�2
. �B6b�

Using these decompositions, to first order in the small pa-
rameter �=k�, Eq. �53� can be written as

1
�2

a�l��u + z� =
b�l�ei�

�2
�− 1�N��1 + 2N���i�u − z� − 2�− 1�N���u .

�B7�

The u and z components of this equation together give

b�l� =
�2���e−i�

1 + N���i
�B8�

Having obtained b, we can use the transfer matrices to find
the mode amplitudes Aj and Bj inside the structure from right
to left successively:

j � l: �Aj

Bj
	 � E0MN−j+1
u + �

bei�

�2
�u − z��

= �− 1��N−j+1�E0�u + �
bei�

�2

���1 + �N − j + 1�2���i�u − z�	 . �B9�

Now due to u† ·z=0, it is easier to compute the sum of the
mode intensities to first order in �:

�Aj�2 + �Bj�2

�E0�2
= 1 + 2� Re

bei�

�2
�1 + �N − j + 1�2���i� ,

�B10�

j � l: �Aj

Bj
	 � E0�MN−j+1 − 2��Ml−j�P�d�MN−l�

�
u + �
bei�

�2
�u − z��

= �− 1��N−j+1�E0�u + �
bei�

�2

���1 + �N − j + 1�2���i�u − z� − 2����u	 .

�B11�

To first order in � we now have

�Aj�2 + �Bj�2

�E0�2
= 1 + 2� Re

bei�

�2
�1 + �N − j + 1�2���i� − 4���� .

�B12�

Having found the intensities, we now only need to subtract
them to find the force �21�:

Djl =
k

�
Fj =

�0

2 
2 Re�bei�

�2
2���i	 − 
lj4����2k�E0�2

= �� N�2

1 + N2�2 − 
lj	 �B13�

with �=8k���I0 /c=4k����0�E0�2 as in Eq. �37�. This is identi-
cal to Eq. �63�, found in Sec. V as the limit of the full result
Eq. �62� as �E1�→ �E0�.
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