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The fully relativistic theory of the Zeeman splitting of the �1s�22s hyperfine-structure levels in lithiumlike
ions with Z=6–32 is considered for the magnetic field magnitude in the range from 1 to 10 T. The second-
order corrections to the Breit-Rabi formula are calculated and discussed including the one-electron contribu-
tions as well as the interelectronic-interaction effects of order 1 /Z. The 1 /Z corrections are evaluated within a
rigorous QED approach. These corrections are combined with other interelectronic-interaction, QED, nuclear
recoil, and nuclear size corrections to obtain high-precision theoretical values for the Zeeman splitting in
Li-like ions with nonzero nuclear spin. The results can be used for a precise determination of nuclear magnetic
moments from g-factor experiments.
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I. INTRODUCTION

High-precision measurements of the g factor of low-Z
H-like ions �1–3� have triggered theoretical investigations of
this effect �4–22�. Besides a new possibility for tests of the
magnetic sector of quantum electrodynamics �QED�, these
investigations have already provided a new determination of
the electron mass �see Refs. �3,23�, and references therein�.
Extensions of these experiments to systems with higher
nuclear charge number Z and to ions with nonzero nuclear
spin would also provide the basis for new determinations of
the fine-structure constant �8,24,25�, the nuclear magnetic
moments �24�, and the nuclear charge radii.

Extending theoretical description from an H-like to a Li-
like ion, one encounters a serious complication due to the
presence of additional electrons. A number of relativistic cal-
culations of the g factor of Li-like ions were carried out
previously �26–30�. However, to reach the accuracy compa-
rable to the one for H-like ions, a systematic quantum elec-
trodynamic �QED� treatment is required �16,31–35�.

For both H- and Li-like heavy ions with nonzero nuclear
spin the ground-state Zeeman splitting caused by the mag-
netic field in the range from 1 to 10 T is much smaller than
the hyperfine splitting. Therefore, the consideration can be
reduced to the g factor �19,35�. However, for H-like ions
with Z=1–20, which are under current experimental inves-
tigations at Mainz University, the Zeeman splitting is com-
parable with the hyperfine splitting if the magnitude of the
homogeneous magnetic field does not exceed 10 T. This de-
mands constructing the perturbation theory for degenerate
states. To a good accuracy, the well-known Breit-Rabi for-
mula �36–39� gives the solution of the problem. However,
the current experimental precision clearly shows the neces-
sity for an improvement of the Breit-Rabi formula for H-like
ions �21�.

In the present paper, we consider the Breit-Rabi formula
for the 2s hyperfine-structure levels in lithiumlike ions.
Evaluations of the coefficients of this formula should include
corrections depending on the nuclear g factor. Besides a
simple one-electron lowest-order nuclear-spin-dependent
contribution, one should also calculate the second-order cor-

rections caused by the hyperfine interaction and the interac-
tion with the external magnetic field, taking into account the
presence of the closed �1s�2 electron shell. We perform such
calculations in the range Z=6–32, where the 2s hyperfine-
structure �HFS� splitting can be comparable with the Zeeman
splitting if the magnitude of the homogeneous magnetic field
is in the range under consideration. The calculations are
based on perturbation theory in the parameter 1 /Z within a
rigorous QED approach. The contributions of zeroth and first
orders in 1 /Z are taken into account for the magnetic-dipole
correction and the contribution of zeroth order is taken into
consideration for the electric-quadrupole correction. Also,
the B2-dependent correction is calculated, including the con-
tributions of zeroth and first orders in 1 /Z. The obtained
results are combined with other corrections to get accurate
theoretical predictions for the Breit-Rabi formula coefficients
for lithiumlike ions with nonzero nuclear spin. These predic-
tions will be important for experimental investigations that
are anticipated in the near future at University of Mainz and
GSI �40�.

The calculations of the interelectronic-interaction correc-
tions to the Zeeman splitting are the most labor-intensive
part of the present paper. Nevertheless, to make the paper
consistent and self-contained, in Sec. II some basic formulas
for the one-electron case, which were mentioned by us in
Ref. �21�, are given.

Relativistic units ��=c=1� and the Heaviside charge unit
��=e2 /4� ,e�0� are used in the paper. In some important
cases, the final formulas contain � and c explicitly to be
applicable for arbitrary system of units.

II. BREIT-RABI FORMULA IN THE LOWEST-ORDER
ONE-ELECTRON APPROXIMATION

We consider a lithiumlike ion with nonzero nuclear spin I
in a state of the valence electron with the total electron an-
gular momentum j=1 /2. For such a state there are only two
HFS levels E�F�=En�+�HFS�F� with the total atomic angular
momentum F= I�1 /2. Here
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En� =
	 + nr

N
me �1�

is the one-electron energy of the valence electron Dirac state
in the Coulomb field of the nucleus, �HFS�F� is the hyperfine-
structure shift from this state, n is the principal quantum
number, l= j�

1
2 defines the parity of the state, nr=n− ��� is

the radial quantum number, 	=��2− ��Z�2, N
=�nr

2+2nr	+�2, and me is the electron mass. The ion is

placed in a homogeneous magnetic field B� directed along the
z axis. In case 
Emag�
EHFS, where1 
Emag=E
− �E�I−1 /2�+E�I+1 /2�� / 2 is the Zeeman splitting and

EHFS=E�I+1 /2�−E�I−1 /2�, we must take into account
mixing the HFS sublevels with the same MF, where MF=
−F ,−F+1, . . . ,F−1,F is the z projection of the total angular
momentum. In what follows, we restrict our consideration to
the ground state of the valence electron. One can obtain the
Breit-Rabi formula �see, e.g., Refs. �21,36–39�� for the Zee-
man splitting with the same MF=−I+1 /2, . . . , I−1 /2,


Emag�x� = 
EHFS
�2s� �a1MFx �

1

2
�1 +

4MF

2I + 1
c1x + c2x2	 ,

�2�

where x=�0B /
EHFS
�2s� , �0= �e�� / �2mec� is the Bohr magne-

ton,

a1 = − gI�, �3�

c1 = gj + gI�, �4�

c2 = �gj + gI��
2. �5�

gj is the ground-state bound-electron g factor of the lithium-
like ion,

gj = gD + 
gint + 
gQED + 
grec
�e� + 
gNS + 
gNP, �6�

gD is the one-electron Dirac value for a point-charge nucleus,

gD =
2��2 + 2	 + 1�

3
= 2 −

��Z�2

6
+ ¯ , �7�

	=�1− ��Z�2, 
gint is the interelectronic-interaction correc-
tion, 
gQED is the QED correction, 
grec

�e� is the nuclear recoil
correction to the bound-electron g factor, 
gNS is the nuclear
size correction, 
gNP is the nuclear polarization correction,
gI� is the nuclear g factor expressed in the Bohr magnetons,

gI� =
me

mp
�gI + 
grec

�n�� , �8�

mp is the proton mass, gI=� / ��NI�, �= 
II��z�II� is the
nuclear magnetic moment, �z is the z projection of the
nuclear magnetic moment operator �� acting in the space of

nuclear wave functions �IMI� with the total angular momen-
tum I and its projection MI, �N= �e�� / �2mpc� is the nuclear
magneton, and 
grec

�n� is the recoil correction to the bound-
nucleus g factor. Since in all of the cases under consideration
below 
grec

�n� is smaller than 10−11 �12� this correction can be
neglected, and we actually have the following in Eq. �8�:
gI�= �me /mp�gI. For F= I+ 1

2 and MF= � �I+ 1
2 � one obtains in

the first order of perturbation theory,


Emag�x� = 
EHFS
�2s� �1

2
� d1x	 , �9�

where

d1 =
1

2
gj − IgI� �10�

and the minus and plus signs refer to MF=−�I+ 1
2 � and MF

= I+ 1
2 , respectively.

For Li-like ions with I=1 /2 the Breit-Rabi formula takes
the form


Emag�x� = �

EHFS

�2s�

2
�1 + c2x2 �11�

for MF=0 and the effect is described by Eq. �9� with d1

= 1
2 �gj −gI�� for MF= �1.
In case 
Emag�
EHFS

�2s� we can express the linear-
dependent part of the Zeeman splitting in terms of the atomic
g factor,


Emag = �

EHFS

�2s�

2
+ g�F��0BMF, �12�

where, to the lowest-order approximation �see, e.g., Ref.
�38��,

g�F� = gDYel�F� −
me

mp
gIYnuc

����F� , �13�

Yel�F� =
F�F + 1� + 3/4 − I�I + 1�

2F�F + 1�

= �−
1

2I + 1
for F = I −

1

2
,

1

2I + 1
for F = I +

1

2
,
 �14�

Ynuc
����F� =

F�F + 1� + I�I + 1� − 3/4
2F�F + 1�

= �
2�I + 1�
2I + 1

for F = I −
1

2
,

2I

2I + 1
for F = I +

1

2
.
 �15�

The total one-electron 2s g-factor value of a Li-like ion with
nonzero nuclear spin can be written as

1In the present paper, the energy of a Zeeman sublevel 
Emag is
counted with respect to the mean energy �E�I−1 /2�+E�I
+1 /2�� /2 of the hyperfine-structure doublet �38,39�. To count the
energy from the hyperfine centroid of the doublet �36,37�, one
should use the relation 
Emag

hc =
Emag− �
EHFS /2�2I+1��.
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g�F� = �gD + 
gint + 
gQED + 
grec
�e� + 
gNS + 
gNP�Yel�F�

−
me

mp
�gI + 
grec

�n��Ynuc
����F� + 
gHFS

�2s� �F� , �16�

where the HFS correction 
gHFS
�2s� �F�=
gHFS���

�2s� �F�
+
gHFS�Q�

�2s� �F� �35� is briefly discussed below.

III. HYPERFINE-INTERACTION CORRECTIONS TO THE
GROUND-STATE g FACTOR

Let us start our consideration of the HFS correction to the
ground-state g factor of a Li-like ion with the one-electron
approximation. In this approximation, the interaction of the
ion with the magnetic field can be represented as

VB� = V
B�
�e�

+ V
B�
�n�

. �17�

Here V
B�
�e�

describes the interaction of the valence 2s electron
with the homogeneous magnetic field,

V
B�
�e�

= − e��� · A� � =
�e�
2

��� · �B� � r��� , �18�

where the vector �� incorporates the Dirac � matrices, and

V
B�
�n�

= − ��� · B� � �19�

describes the interaction of the nuclear magnetic moment ��

with B� . The hyperfine-interaction operator is given by the
sum

VHFS = VHFS
��� + VHFS

�Q� , �20�

where VHFS
��� and VHFS

�Q� are the magnetic-dipole and electric-
quadrupole hyperfine-interaction operators, respectively. In
the point-dipole approximation,

VHFS
��� =

�e�
4�

��� · ��� � r���
r3 , �21�

and, in the point-quadrupole approximation,

VHFS
�Q� = − � �

m=−2

m=2

Q2m�2m
� �n�� . �22�

Here Q2m=�i=1
Z ri

2C2m�n� i� is the operator of the electric-
quadrupole moment of the nucleus, �2m=C2m�n�� /r3 is an op-
erator that acts on electron variables, n� =r� /r, n� i=r�i /ri, r� is the
position vector of the electron, r�i is the position vector of the
ith proton in the nucleus, Clm=�4� / �2l+1�Ylm, and Ylm is a
spherical harmonic. It must be stressed that the electric-
quadrupole interaction should be taken into account only for
ions with I�1 /2.

An unperturbed atomic eigenstate that corresponds to
given values of F and MF is a linear combination of products
of electron and nuclear wave functions,

�nljIFMF� = �
mj,MI

CjmjIMI

FMF �nljmj��IMI� . �23�

Here CjmjIMI

FMF are the Clebsch-Gordan coefficients, �nljmj� are
the unperturbed one-electron wave functions, which are four-

component eigenvectors of the Dirac equation for the Cou-
lomb field, with the total angular momentum j and its pro-
jection mj.

In the one-electron approximation, the magnetic-dipole
and electric-quadrupole hyperfine-interaction corrections to
the ground-state g factor of the Li-like ion are given by


gHFS��,Q�
one−el�2s� =

2

�0BMF
�

mjMI

�
mj�MI�

C1/2mjIMI

FMF C1/2mj�IMI�
FMF

�
IMI� �
n

��n��v� 
v�V
B�
�e��n�
n�VHFS

��,Q��v��

�v − �n
�IMI�� ,

�24�

where �v�= �201
2mj� and �v��= �201

2mj�� are the 2s states of the
valence electron with the angular momentum projections mj
and mj�, respectively, �n���nljmj�, �v=E2,−1, and �n�En�.
The summation in Eq. �24� runs over discrete as well as
continuum states. The corresponding diagrams are presented
in Fig. 1.

The total hyperfine-interaction correction to the ground-
state g factor of the Li-like ion is given by


gHFS
�2s� = 
gHFS���

�2s� + 
gHFS�Q�
�2s� �25�

with


gHFS���
�2s� = �2Z

1

12

�

�N

me

mp

1

I
Ynuc

����F��S2��Z� +
1

Z
B���Z�

+
1

Z2C���Z� + ¯	 �26�

and


gHFS�Q�
�2s� = �4Z3 23

2160
Q�mec

�
	2

Ynuc
�Q��F��T2��Z� +

1

Z
BQ��Z�

+
1

Z2CQ��Z� + ¯	 . �27�

Here the angular factor is

�

�

W

V �B

2f ×

FIG. 1. The second-order diagrams contributing to S2
�t���Z�,

T2
�t���Z� �if f =1 and W=VHFS

��� or W=VHFS
�Q� �, and U2

�t���Z� �if f = 1
2

and W=V
B�
�e��.
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Ynuc
�Q��F� = �−

�I + 1��2I + 3�
I�2I − 1��2I + 1�

for F = I −
1

2
,

1

2I + 1
for F = I +

1

2
,
 �28�

and Q=2
II�Q20�II� is the electric-quadrupole moment of the
nucleus. The functions

S2��Z� =
12

�2Z
me

mp
gIYnuc

����F�

gHFS���

one−el�2s� �29�

and

T2��Z� =
2160

23�4Z3Q�mec

�
	2

Ynuc
�Q��F�


gHFS�Q�
one−el�2s� �30�

determine the one-electron contributions, which are dis-
cussed in detail in Ref. �19�. For the point-charge nucleus,
the functions S2��Z� and T2��Z� are �19,35�

S2��Z� =
8

3N
� 1

N + 2
�N +

10�N + 1�
3N

	
+

��Z�2

	�	 + 1�� 2�N + 1�
3 − 4��Z�2 + 1	 −

1

	
�

= 1 +
229

144
��Z�2 + ¯ �31�

and

T2��Z�

=
192��N + 	 + 1��18 + 24	 − 12N + 8	N2� + 15�1 + 	��

23	N3�15 − 16��Z�2��N + 	 + 1�2

= 1 +
427

276
��Z�2 + ¯ , �32�

where N=�2�1+	�.
The interelectronic-interaction correction B���Z� can be

calculated within the rigorous QED approach �35�. The in-
teraction of the electrons with the Coulomb field of the
nucleus is included in the unperturbed Hamiltonian, i.e., the
Furry picture is used. The perturbation theory is formulated
with the technique of the two-time Green function �TTGF�
�41,42�. To simplify the calculations, the closed �1s�2 shell is
regarded as belonging to a redefined vacuum. With this
vacuum, the Fourier transform of TTGF can be introduced
by

G�E;x�� ;x��
�E − E�� =
1

2�i
�

−�

�

dx0dx�0 exp�iE�x�0 − iEx0�

�
0�1s�2�T��x�0,x�� ��†�x0,x���0�1s�2� ,

�33�

where ��x0 ,x�� is the electron-positron field operator in the
Heisenberg representation and T is the time-ordered product

operator. The energy shift of a state a can be expressed in
terms of the TTGF defined by

gaa�E� = 
ua�G�E��ua� � � dx�dx�� ua
†�x�� �G�E;x�� ;x��ua�x�� ,

�34�

where ua�x�� is the unperturbed Dirac wave function of the
state a. Using the Nagy and Kato technique �43�, one can
derive for the total energy shift 
Ea�Ea−Ea

�0� �41,42�,


Ea =

1

2�i
�

�

dE
E
gaa�E�

1 +
1

2�i
�

�

dE
gaa�E�
, �35�

where 
E�E−Ea
�0�, 
gaa�E��gaa�E�−gaa

�0��E�, and gaa
�0��E�

= �E−Ea
�0��−1. The integrals in the complex E plane are taken

along the contour � which surrounds the pole of gaa�E� cor-
responding to the level a and keeps outside all other singu-
larities. The contour � is oriented counterclockwise.

To first three orders of the perturbation theory, the energy
shift is given by


Ea
�1� =

1

2�i
�

�

dE
E
gaa
�1��E� , �36�


Ea
�2� =

1

2�i
�

�

dE
E
gaa
�2��E� − � 1

2�i
�

�

dE
E
gaa
�1��E�	

�� 1

2�i
�

�

dE
gaa
�1��E�	 , �37�


Ea
�3� =

1

2�i
�

�

dE
E
gaa
�3��E� − � 1

2�i
�

�

dE
E
gaa
�2��E�	

�� 1

2�i
�

�

dE
gaa
�1��E�	 − � 1

2�i
�

�

dE
E
gaa
�1��E�	

�� 1

2�i
�

�

dE
gaa
�2��E�	 + � 1

2�i
�

�

dE
E
gaa
�1��E�	

�

�

��
����

Cint

1s

�
C ′

�
�

�
�

�
�

�
�

�C

� �
+mc2

−mc2

FIG. 2. C is the original contour of the integration over the
electron energy variable in the formalism with the standard vacuum.
C� is the integration contour for the vacuum with the �1s�2 shell
included. The integral along the contour Cint=C�−C describes the
interaction of the valent electron with the �1s�2-shell electrons.
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�� 1

2�i
�

�

dE
gaa
�1��E�	2

. �38�

The redefinition of the vacuum changes i0 to −i0 in the elec-
tron propagator denominators corresponding to the closed
�1s�2 shell. In other words, it means replacing the standard
Feynman contour of integration over the electron energy C
with a new contour C� �Fig. 2�. The second-order contribu-
tion is defined by the diagrams presented in Fig. 1. Its evalu-
ation according to Eq. �37� yields formula �24�. In the for-
malism under consideration, the lowest-order interelectronic-
interaction and the radiative corrections to Eq. �24� are
described by the third-order diagrams presented in Fig. 3
and, according to Eq. �38�, by some products of the low-
order diagrams depicted in Figs. 4 and 5. According to Fig.
2, to separate the interelectronic-interaction corrections, the
contour C� must be divided into two parts, C and Cint. The
integral along the standard Feynman contour C gives the
one-electron radiative correction. The integral along the con-
tour Cint describes the interaction of the valence electron
with the closed shell electrons. Formula �38� allows one to
evaluate the interelectronic-interaction correction B���Z�
�35�. The results of this evaluation will be presented in the
next section together with other related corrections to the
Breit-Rabi formula.

IV. CORRECTIONS TO THE BREIT-RABI FORMULA FOR
THE GROUND STATE

Now we assume that the Zeeman splitting 
Emag of the 2s
HFS levels F= I−1 /2 and F�= I+1 /2 is much smaller than
the distance to other levels but is comparable with 
EHFS

�2s� .
The unperturbed eigenstates form a two-dimensional sub-
space �= ��1�0�� , �2�0���, where �1�0��= �201

2 IFMF� , �2�0��
= �201

2 IF�MF�. Employing the perturbation theory for degen-
erate states �42� with energy �v we denote the projector on �
by

P�0� = �
i=1

2

�i�0��
i�0�� . �39�

We project the Green function G�E� on the subspace �,

g�E� = P�0�G�E�P�0�, �40�

where, as in Eq. �34�, the integration over the electron coor-
dinates is implicit. In this case we can choose a contour � in
the complex E plane in a way that it surrounds all g�E� poles,
which correspond to the states under consideration, and
keeps outside all other singularities of g�E�. As in the case of
a single level, to the zeroth-order approximation one easily
finds

� � � �� � � ���
��

	



	
� � � �� � � ���

��




� � � �� � � ���
��



	

(
+ +

)
× 2f

W

V �B

(a)

�

�

�
�

�
�
�� ��

	



�

�

�
�

�
�
�� ��

	




�

�

�
�

�
�
�� ��



	

(
+ +

)
× 2f (b)

� � � �� � ��
�� 	




� � � �� � ��
�� 


	
� � � �� � ��

��
	




(
+ +

)
× 2f (c)

�

�

�
�

�
�
���� 	




�

�

�
�

�
�
���� 


	

�

�

�
�

�
�
����

	



(
+ +

)
× 2f (d)

FIG. 3. The third-order diagrams contributing
to S2

�t���Z� �if f =1 and W=VHFS
��� � and U2

�t���Z� �if
f = 1

2 and W=V
B�
�e�� being combined with products

of the lower-order diagrams presented in Figs. 4
and 5.

�V
(µ)
HFS �V �B � � � �� � � ���

	
 �

�

�
�

�
�
�� ��

FIG. 4. The first-order diagrams contributing
to S2

�t���Z� and U2
�t���Z� being multiplied by the

second-order diagrams presented in Fig. 5.
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g�0��E� = �
i=1

2 �i�0��
i�0��
E − Ei

�0� . �41�

We introduce the operators K and P by

K �
1

2�i
�

�

dEEg�E� , �42�

P �
1

2�i
�

�

dEg�E� . �43�

As it is shown in Ref. �42�, the energy levels are determined
from the equation

det�H − E� = 0, �44�

where

H = P−1/2KP−1/2. �45�

The operators K and P are constructed by formulas �42� and
�43�,

K = K�0� + K�1� + K�2� + K�3� + ¯ , �46�

P = P�0� + P�1� + P�2� + P�3� + ¯ , �47�

where the superscript indicates the order of the perturbation
theory in a small parameter. The operator H is

H = H�0� + H�1� + H�2� + H�3� + ¯ , �48�

where

H�0� = K�0�, �49�

H�1� = K�1� −
1

2
P�1�K�0� −

1

2
K�0�P�1�, �50�

H�2� = K�2� −
1

2
P�2�K�0� −

1

2
K�0�P�2� −

1

2
P�1�K�1� −

1

2
K�1�P�1�

+
3

8
P�1�P�1�K�0� +

3

8
K�0�P�1�P�1� +

1

4
P�1�K�0�P�1�, �51�

H�3� = K�3� −
1

2
P�3�K�0� −

1

2
K�0�P�3� −

1

2
P�1�K�2� −

1

2
K�2�P�1� −

1

2
P�2�K�1� −

1

2
K�1�P�2� +

3

8
P�1�P�2�K�0� +

3

8
K�0�P�1�P�2�

+
3

8
P�2�P�1�K�0� +

3

8
K�0�P�2�P�1� +

1

4
P�1�K�0�P�2� +

1

4
P�2�K�0�P�1� +

3

8
P�1�P�1�K�1� +

3

8
K�1�P�1�P�1� +

1

4
P�1�K�1�P�1�

FIG. 5. The second-order diagrams contributing to S2
�t���Z� and U2

�t���Z� being multiplied by the first-order diagrams presented
in Fig. 4.
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−
5

16
P�1�P�1�P�1�K�0� −

5

16
K�0�P�1�P�1�P�1� −

3

16
P�1�P�1�K�0�P�1� −

3

16
P�1�K�0�P�1�P�1�. �52�

Taking into account only the relevant contributions of kind ��� /�N�B and ��B�B, where � comes from the interelectronic
interaction, we obtain for the third-order term in Eq. �48�,

Hjk
�3� =

1

2�i
�

�

dE
E
gjk
�3��E� −

1

2�
l=1

2 �� 1

2�i
�

�

dE
gjl
�1��E�	� 1

2�i
�

�

dE
E
glk
�2��E�	 + � 1

2�i
�

�

dE
E
gjl
�2��E�	

�� 1

2�i
�

�

dE
glk
�1��E�	� −

1

2�
l=1

2 �� 1

2�i
�

�

dE
gjl
�2��E�	� 1

2�i
�

�

dE
E
glk
�1��E�	 + � 1

2�i
�

�

dE
E
gjl
�1��E�	

�� 1

2�i
�

�

dE
glk
�2��E�	� , �53�

where 
E�E−�v, j ,k=1,2.
Keeping only the three lowest-order terms in B, we get the following equation for the perturbed energies:

�h0�F� + h1�F�B + h2�F�B2 − E h̃1�F,F��B + h̃2�F,F��B2

h̃1�F�,F�B + h̃2�F�,F�B2 h0�F�� + h1�F��B + h2�F��B2 − E
� = 0. �54�

Here F= I− 1
2 , F�= I+ 1

2 ,

h0�k� = E�k� �55�

is the energy of the HFS level,

h1�k� =
1

B
�
E�B� �

�1� �k,k� + 
E���
�2� �k,k� + 
E�Q�

�2� �k,k� + 
E���
�3� �k,k� + 
E�Q�

�3� �k,k�� + �
gint + 
gQED + 
grec
�e� + 
gNS

+ 
gNP�Yel�k��0MF − 
grec
�n�Ynuc

����k��NMF = g�k��0MF, �56�

h2�k� =
1

B2 �
E�B� �
�2� �k,k� + 
E�B� �

�3� �k,k�� , �57�

h̃1�j,k� =
1

B
�
E�B� �

�1� �j,k� + 
E���
�2� �j,k� + 
E�Q�

�2� �j,k�

+ 
E���
�3� �j,k� + 
E�Q�

�3� �j,k�� + �
int + 
QED + 
rec
�e� + 
NS + 
NP��0 − 
rec

�n��N, �58�

h̃2�j,k� =
1

B2 �
E�B� �
�2� �j,k� + 
E�B� �

�3� �j,k�� , �59�

where j ,k=F ,F�. 
int, 
QED, 
rec
�e�, 
NS, and 
NP are the interelectronic-interaction, QED, nuclear recoil, nuclear size, and

nuclear polarization corrections. They are similar to the corresponding corrections to h1�k� but have a different angular factor
as well as 
rec

�n�. Here both 
grec
�n� and 
rec

�n� can be neglected as it was mentioned in Sec. II. It should be noted that we have also
neglected here terms describing virtual transitions into excited nuclear states via the direct interaction of the nucleus with the
magnetic field �22�. The energy shifts are


E�B� �
�1� �j,k� = �

mjMI

�
mj�MI�

C1/2mjIMI

jMF C1/2mj�IMI�
kMF 
IMI�
v�VB� �v���IMI�� , �60�


E��,Q,B� �
�2� �j,k� = �

mjMI

�
mj�MI�

C1/2mjIMI

jMF C1/2mj�IMI�
kMF 
IMI�I�,Q,B�

�2� �IMI�� , �61�


E��,Q,B� �
�3� �j,k� = �

mjMI

�
mj�MI�

C1/2mjIMI

jMF C1/2mj�IMI�
kMF 
IMI�I�,Q,B�

�3a�
+ I

�,Q,B�
�3b�

+ I
�,Q,B�
�3c�

+ I
�,Q,B�
�3d� �IMI� , �62�

where
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I
�,Q,B�
�2�

= 2f �
n

��n��v� 
v�V
B�
�e��n�
n�W�v��

�v − �n
, �63�

I
�,Q,B�
�3a�

= f �
�c=E1,−1

� �
n1,n2

��n1
��v,�n2

��v�
2

��v − �n1
���v − �n2

�
�
v�V

B�
�e��n1�
n1�W�n2�
n2c�I�0��v�c� + 
v�V

B�
�e��n1�
n1c�I�0��n2c�
n2�W�v��

+ 
v�W�n1�
n1�V
B�
�e��n2�
n2c�I�0��v�c�� − �

�ṽ=�v

�
n

��n��v�
2

��v − �n�2 �
v�V
B�
�e��n�
n�W�ṽ�

�
ṽc�I�0��v�c� + 
v�V
B�
�e��n�
nc�I�0��ṽc�
ṽ�W�v�� + 
v�V

B�
�e��ṽ�
ṽ�W�n�
nc�I�0��v�c��� , �64�

I
�,Q,B�
�3b�

= − f �
�c=E1,−1

� �
n1,n2

��n1
��v,�n2

��v�
2

��v − �n1
���v − �n2

�
�
v�V

B�
�e��n1�
n1�W�n2�
n2c�I����cv�� + 
v�V

B�
�e��n1�
n1c�I����cn2�
n2�W�v��

+ 
v�W�n1�
n1�V
B�
�e��n2�
n2c�I����cv��� − �

�ṽ=�v

�
n

��n��v�
2

��v − �n�2 �
v�V
B�
�e��n�
n�W�ṽ�
ṽc�I����cv�� + 
v�V

B�
�e��n�
nc�I����cṽ�

�
ṽ�W�v�� + 
v�V
B�
�e��ṽ�
ṽ�W�n�
nc�I����cv��� + �

�ṽ=�v

�
n

��n��v�
2

�v − �n
�
v�V

B�
�e��n�
n�W�ṽ�
ṽc�I�����cv�� + 
v�V

B�
�e��n�
nc�I����

��cṽ�
ṽ�W�v�� + 
v�V
B�
�e��ṽ�
ṽ�W�n�
nc�I�����cv��� + �

�ṽ=�v

�
�v̆=�v


v�V
B�
�e��ṽ�
ṽc�I�����cv̆�
v̆�W�v��	 , �65�

I
�,Q,B�
�3c�

= f �
�c=E1,−1

� �
n1,n2

��n1
��v,�n2

��c�
2

��v − �n1
���c − �n2

�
�
v�V

B�
�e��n1�
c�W�n2�
n1n2�I�0��v�c� + 
v�V

B�
�e��n1�
n1c�I�0��v�n2�
n2�W�c�

+ 
v�W�n1�
c�V
B�
�e��n2�
n1n2�I�0��v�c� + 
v�W�n1�
n1c�I�0��v�n2�
n2�V

B�
�e��c�� + �

n1,n2

��n1
��c,�n2

��c�
2

��c − �n1
���c − �n2

�
�
c�V

B�
�e��n1�

�
n1�W�n2�
n2v�I�0��cv�� + 
c�V
B�
�e��n1�
n1v�I�0��n2v��
n2�W�c� + 
c�W�n1�
n1�V

B�
�e��n2�
n2v�I�0��cv���

− �
�c̃=E1,−1

�
n

��n��c�
2

��c − �n�2 �
c�V
B�
�e��n�
n�W�c̃�
c̃v�I�0��cv�� + 
c�V

B�
�e��n�
nv�I�0��c̃v��
c̃�W�c� + 
c�V

B�
�e��c̃�
c̃�W�n�
nv�I�0�

��cv���	 , �66�

I
�,Q,B�
�3d�

= − f �
�c=E1,−1

� �
n1,n2

��n1
��v,�n2

��c�
2

��v − �n1
���c − �n2

�
�
v�V

B�
�e��n1�
c�W�n2�
n1n2�I����cv�� + 
v�V

B�
�e��n1�
n1c�I����n2v��
n2�W�c�

+ 
v�W�n1�
c�V
B�
�e��n2�
n1n2�I����cv�� + 
v�W�n1�
n1c�I����n2v��
n2�V

B�
�e��c�� + �

n1,n2

��n1
��c,�n2

��c�
2

��c − �n1
���c − �n2

�
�
c�V

B�
�e�

��n1�
n1�W�n2�
n2v�I����v�c� + 
c�V
B�
�e��n1�
n1v�I����v�n2�
n2�W�c� + 
c�W�n1�
n1�V

B�
�e��n2�
n2v�I����v�c��

− �
�c̃=E1,−1

�
n

��n��c�
2

��c − �n�2 �
c�V
B�
�e��n�
n�W�c̃�
c̃v�I����v�c� + 
c�V

B�
�e��n�
nv�I����v�c̃�
c̃�W�c� + 
c�V

B�
�e��c̃�
c̃�W�n�
nv�I���

��v�c�� − �
�c̃=E1,−1

�
n

��n��c�
2

�c − �n
�
c�V

B�
�e��n�
n�W�c̃�
c̃v�I�����v�c� + 
c�V

B�
�e��n�
nv�I�����v�c̃�
c̃�W�c� + 
c�V

B�
�e��c̃�
c̃�W�n�
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�
nv�I�����v�c�� − �
�c̃=E1,−1

�
n

��n��v�
2

�v − �n
�
v�V

B�
�e��n�
nc�I�����c̃v��
c̃�W�c� + 
v�W�n�
nc�I�����c̃v��
c̃�V

B�
�e��c��

+ �
�ṽ=�v

�
n

��n��c�
2

�c − �n
�
v�V

B�
�e��ṽ�
ṽc�I�����nv��
n�W�c� + 
v�W�ṽ�
ṽc�I�����nv��
n�V

B�
�e��c�� − �

�ṽ=�v

�
�c̃=E1,−1

�
v�V
B�
�e��ṽ�

�
ṽc�I�����c̃v��
c̃�W�c� + 
v�W�ṽ�
ṽc�I�����c̃v��
c̃�V
B�
�e��c�� + �

�c̃=E1,−1

�
�c̆=E1,−1


c�V
B�
�e��c̃�
c̃v�I�����v�c̆�
c̆�W�c�	 . �67�

Here

f = �1 for W = VHFS
��� or W = VHFS

�Q� ,

1

2
for W = V

B�
�e�

, 
 �68�


n1n2�I����n3n4� � � dx�1dx�2un1

† �x�1�un2

† �x�2�I���un3
�x�1�un4

�x�2� ,

�69�

I��� = �
�1 − �� 1 · �� 2�cos��r12�

r12
, �70�

I���� =
dI���

d�
, I���� =

d2I���
d�2 , �71�

�=�v−E1,−1, and r12= �x�1−x�2�. As in the case of evaluation
of 
gHFS

�2s� considered above, the diagrams corresponding to
Eq. �61� are presented in Fig. 1 and the ones corresponding
to Eq. �62� are presented in Figs. 3–5. Separating the
interelectronic-interaction corrections is carried out accord-
ing to Fig. 2 just as it was done in Sec. III.

The calculation of h1�k� was discussed in detail in Ref.
�35�. We found that

h1�k�B

= MF�gjYel�k� − gI�Ynuc
����k� + �2Z

1

12
�gI�Ynuc

����k�

�S2
�t���Z�

+ ��Z�2 23

180
Q�mec

�
	2

Ynuc
�Q��k�T2

�t���Z����0B .

�72�

Calculating the other matrix elements, we obtain

h2�k�B2 =
14

��Z�2U2
�t���Z���0B�2/�mec

2� , �73�

h̃1�j,k�B =
1

2

��I + 1/2�2 − MF
2

I + 1/2 �gj + gI� − �2Z
1

12
�gI�S2

�t���Z�

+ ��Z�2 23

360
Q�mec

�
	22I + 3

2I
T2

�t���Z����0B ,

�74�

h̃2�j,k� = 0. �75�

Here the total functions are

U2
�t���Z� = U2��Z� +

1

Z
BB���Z� +

1

Z2CB���Z� + ¯ , �76�

S2
�t���Z� = S2��Z� +

1

Z
B���Z� +

1

Z2C���Z� + ¯ , �77�

T2
�t���Z� = T2��Z� +

1

Z
BQ��Z� +

1

Z2CQ��Z� + ¯ . �78�

It must be stressed that the contributions of order 1 /Z2 and
higher to these functions are not included in Eq. �54�. Their
evaluation would require consideration of some higher-order
terms in operator �48�. The expansions �77� and �78� are also
included in Eqs. �26� and �27� for the hyperfine-interaction
corrections. The function

U2��Z� =
��Z�2mec

2

14��0B�2 
E�B� �
�2� �F,F� �79�

determines the one-electron contribution. Calculations em-
ploying Eqs. �64�–�67� yield for the interelectronic-
interaction corrections BB���Z�, B���Z�, and BQ��Z�,

BB���Z� =
�2Z3mec

2

14��0B�2 
E�B� �
�3� �F,F� , �80�

B���Z� =
12

�2 me

mp
gIYnuc

����F�


E���
�3� �F,F�

�0BMF
, �81�
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BQ��Z� =
2160

23�4Z2Q�mec

�
	2

Ynuc
�Q��F�


E�Q�
�3� �F,F�

�0BMF
. �82�

It must be noted that, because of the smallness of the contri-
bution determined by BQ��Z�, only BB���Z� and B���Z� were
evaluated in the present paper. For checking purposes the
calculation of these functions was performed in both Feyn-
man and Coulomb gauges. The results of both calculations
coincide with each other.

Solving Eq. �54�, we can finally derive for MF=−I
+1 /2, . . . , I−1 /2,


Emag�x� = 
EHFS
�2s� �a1�1 + �1�MFx + �2


EHFS
�2s�

mec
2 x2

�
1

2
�1 +

4MF

2I + 1
c1�1 + 
1�x + c2�1 + 
2 + MF

2
3�x2	 ,

�83�

where

�1 = −
1

2gI�
�
gHFS

�2s� �F� + 
gHFS
�2s� �F + 1�� = − �2Z

1

12�S2
�t���Z�

− ��Z�2 23Q

120gI�
�mec

�
	2 1

I�2I − 1�
T2

�t���Z�� , �84�

�2 =
14

��Z�2U2
�t���Z� , �85�


1 =
2I + 1

2�gj + gI��
�
gHFS

�2s� �F + 1� − 
gHFS
�2s� �F��

= − �2Z
1

12�gj + gI��
�gI�S2

�t���Z�

− ��Z�2 23

360
Q�mec

�
	24I2 + 4I + 3

I�2I − 1�
T2

�t���Z�� , �86�


2 = − �2Z
1

6�gj + gI��
�gI�S2

�t���Z�

+ ��Z�2 23

360
Q�mec

�
	22I + 3

2I
T2

�t���Z�� , �87�


3 =
1

gj + gI�
�4Z3 23

360
Q�mec

�
	2 1

I�2I − 1�
T2

�t���Z� . �88�

For F�= I+ 1
2 and MF= � �I+ 1

2 �, in contrast to Eq. �9�, we
have


Emag�x� = 
EHFS
�2s� �1

2
� d1�1 + �1�x + �2


EHFS
�2s�

mec
2 x2	 ,

�89�

where

�1 = �2Z
1

6�gj − 2IgI��
�gI�IS2

�t���Z� + ��Z�2 23

360
Q�mec

�
	2

�T2
�t���Z�� , �90�

�2 = �2 =
14

��Z�2U2
�t���Z� , �91�

and the minus and plus signs correspond to MF=−�I+ 1
2 � and

MF= I+ 1
2 , respectively.

If I=1 /2, the electrical quadrupole interaction vanishes
and one can easily obtain for MF=0,


Emag�x� = 
EHFS
�2s� ��2


EHFS
�2s�

mec
2 x2 �

1

2
�1 + c2�1 + 
2�x2	

�92�

with


2 = −
gI�

6�gj + gI��
�2ZS2

�t���Z� . �93�

For I=1 /2, MF= �1, the effect is described by Eq. �89� with

�1 =
gI�

12�gj − gI��
�2ZS2

�t���Z� . �94�

V. NUMERICAL RESULTS

In Table I, we present the numerical results for the func-
tions U2��Z�, BB���Z�, U2

�t���Z�, S2��Z�, B���Z�, S2
�t���Z�,

and T2��Z� �only for the isotopes with I�1 /2� defined by
Eqs. �79�, �80�, �76�, �29�, �81�, �77�, and �30�, respectively,
for the 2s state. All the values are calculated for the extended
nuclear charge distribution. The root-mean-square nuclear
charge radii 
r2�1/2 were taken from Ref. �44�. For those el-
ements for which no accurate experimental radii were avail-
able we employed the empirical expression �45�


r2�1/2 = 0.836A1/3 + 0.570��0.05� fm, �95�

where A is the nuclear mass expressed in a.m.u. The calcu-
lations were performed using the dual-kinetic-balance
�DKB� basis set method �46� with the basis functions con-
structed from B-splines �47,48�. The uncertainties of U2��Z�,
BB���Z�, S2��Z�, B���Z�, and T2��Z� were estimated by add-
ing quadratically two errors, one obtained by varying 
r2�1/2

within its uncertainty and the other obtained for Z=20−32
by changing the model of the nuclear-charge distribution
from the Fermi to the homogeneously charged sphere model.
The uncertainties of the total functions U2

�t���Z� and S2
�t���Z�

due to uncalculated second- and higher-order terms were es-
timated as the first-order correction ��BB���Z� /Z and
�B���Z� /Z, respectively� multiplied by the factor 2 /Z. The
uncertainty due to uncalculated first- and higher-order terms
in Eq. �78� was estimated in a similar way.

In Table II, we present the individual contributions to the
2s gj factor for some Li-like ions with I�0 in the range Z
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=6–32. The Dirac point-nucleus value is obtained by Eq.
�7�. The interelectronic-interaction �
gint�, QED �
gQED�,
nuclear-recoil �
grec

�e��, and nuclear-size �
gNS� corrections
are obtained as described in Refs. �32,33�. The nuclear-size
correction was evaluated for the homogeneously charged

sphere model if Z=6–16 and for the Fermi model if Z
=20–32. The nuclear polarization contribution to the 2s gj
factor of light Li-like ions can be neglected �17�. The
gj-factor values given in Table II are used for calculations of
the coefficients in the Breit-Rabi formula.

TABLE I. The numerical results for the extended-charge-nucleus values of functions U2
�t���Z�, S2

�t���Z�, and T2
�t���Z� �for the ions with

I�1 /2�. The values of 
r2�1/2 are taken from Ref. �44�.

Ion 13C3+ 17O5+ 21Ne7+ 25Mg9+ 33S13+ 43Ca17+ 53Cr21+

Z 6 8 10 12 16 20 24


r2�1/2 �fm� 2.461 2.695 2.967 3.028 3.251 3.493 3.659

U2��Z� 0.998574 0.997464 0.996038 0.994295 0.989858 0.984153 0.977179

BB���Z� 2.47400 2.47359 2.47305 2.47240 2.47070 2.46848 2.46568

U2
�t���Z� 1.41�14� 1.31�8� 1.24�5� 1.20�3� 1.144�19� 1.108�12� 1.080�9�

S2��Z� 1.00306 1.00545 1.00854 1.01235 1.02218 1.03513 1.05145

B���Z� −1.60040 −1.60757 −1.61684 −1.62825 −1.65769�1� −1.69639�1� −1.74505�2�
S2

�t���Z� 0.74�9� 0.80�5� 0.85�3� 0.88�2� 0.919�13� 0.950�8� 0.979�6�
T2��Z� 1.00448�2� 1.00710�2� 1.01051�3� 1.01927�4� 1.03083�7� 1.04531�10�
T2

�t���Z� 1.0�3� 1.0�2� 1.01�17� 1.02�13� 1.03�10� 1.05�9�
Ion 61Ni25+ 67Zn27+ 73Ge29+

Z 28 30 32


r2�1/2 �fm� 3.822 3.964 4.063

U2��Z� 0.968938 0.964342 0.959428

BB���Z� 2.46226 2.46030 2.45817

U2
�t���Z� 1.057�6� 1.046�5� 1.036�5�

S2��Z� 1.07146�1� 1.08296�1� 1.09555�2�
B���Z� −1.80458�3� −1.83874�3� −1.87609�4�
S2

�t���Z� 1.007�5� 1.022�4� 1.037�4�
T2��Z� 1.06287�11� 1.07277�14� 1.08359�13�
T2

�t���Z� 1.06�8� 1.07�7� 1.08�7�

TABLE II. The individual contributions to the ground-state gj factor of lithiumlike ions with nonzero nuclear spin and the nuclear charge
in the range Z=6−32. The values of 
r2�1/2 are the same as in Table I.

Ion 13C3+ 17O5+ 33S13+ 43Ca17+

gD 1.999680300 1.999431380 1.997718193 1.996426011


gint 0.000130758�19� 0.00017666�3� 0.00036124�9� 0.00045445�14�

gQED 0.002319417�6� 0.002319549�12� 0.00232070�6� 0.00232171�10�

grec

�e� 0.000000009 0.000000016 0.000000045�1� 0.000000057�2�

gNS 0.0 0.0 0.000000005 0.000000014

gj 2.00213048�2� 2.00192760�3� 2.00040018�11� 1.99920224�17�
Ion 53Cr21+ 73Ge29+

gD 1.994838064 1.990752307


gint 0.0005485�2� 0.0007397�4�

gQED 0.00232304�15� 0.0023270�2�

grec

�e� 0.000000069�4� 0.000000093�9�

gNS 0.000000035 0.000000160

gj 1.9977097�3� 1.9938193�4�

ZEEMAN EFFECT OF THE HYPERFINE-STRUCTURE … PHYSICAL REVIEW A 77, 063421 �2008�

063421-11



In Table III, the numerical results for the coefficients in
Eqs. �2�, �9�, �11�, �83�, �89�, and �92� are listed for some
Li-like isotopes in the interval Z=6–32.

VI. DISCUSSION

The energy difference between the ground-state hyperfine
splitting components in a lithiumlike ion can be written as
�49�


EHFS
�2s� =

1

6
���Z�3 �

�N

me

mp

2I + 1

2I
mec

2��A�2s���Z��1 − 
�2s���1

− ��2s�� + xrad
�2s�� +

1

Z
B�2s���Z� +

1

Z2C�2s���Z� + ¯	 ,

�96�

where

TABLE III. The numerical values of the coefficients in Eqs. �2�, �9�, �11�, �83�, �89�, and �92� for Li-like ions with Z=6–32. The values
of � /�N and Q are taken from Refs. �50,51�, respectively.

Ion 13C3+ 17O5+ 33S13+ 43Ca17+

I 1/2 5/2 3/2 7/2

� /�N 0.7024118�14� −1.89379�9� 0.6438212�14� −1.317643�7�
Q �barn� −0.02558�22� −0.0678�13� −0.0408�8�
a1 0.00041256�2� −0.0002337573�5� 0.0002050317�11�
�1 −0.0000284�18� −0.0000653�9� −0.0000843�7�
a1�1+�1� 0.00041254�2� −0.0002337421�6� 0.0002050144�11�
�2�=�2� 1.03�10��104 5.4�3��103 1.17�2��103 7.28�8��102

c1 2.00151505�4� 2.00063394�11� 1.99899721�17�

1 0.0000000059�4� −0.00000000763�11� 0.00000000864�7�
c1�1+
1� 2.00151506�4� 2.00063393�11� 1.99899722�17�
c2 4.01159069�8� 4.00606248�15� 4.0025362�4� 3.9959898�7�

2 −0.0000000151�18� 0.0000000117�7� −0.0000000152�2� 0.00000001730�15�

3 0.0 −0.00000000001 0.0

c2�1+
2� 4.01159062�8� 4.00606253�15� 4.0025361�4� 3.9959899�7�
c2
3 0.0 −0.00000000002�1� 0.0

d1 1.000682697�10� 1.00199519�5� 0.99984946�5� 1.00031873�9�
�1 0.0000000075�9� −0.0000000292�18� 0.0000000229�3� −0.0000000605�5�
d1�1+�1� 1.000682704�10� 1.00199516�5� 0.99984948�5� 1.00031867�9�

Ion 53Cr21+ 73Ge29+

I 3/2 9/2

� /�N −0.47454�3� −0.8794677�2�
Q �barn� −0.150�50� −0.196

a1 0.000172295�11� 0.00010643846�2�
�1 −0.0001041�6� −0.0001472�6�
a1�1+�1� 0.000172277�11� 0.00010642279�7�
�2�=�2� 4.93�4��102 2.660�13��102

c1 1.9975374�3� 1.9937129�4�

1 0.00000000893�5� 0.00000000776�3�
c1�1+
1� 1.9975374�3� 1.9937129�4�
c2 3.9901556�10� 3.9748910�17�

2 0.00000001803�11� 0.00000001582�6�

3 −0.00000000004�2� −0.00000000001

c2�1+
2� 3.9901557�10� 3.9748911�17�
c2
3 −0.00000000018�6� −0.00000000005

d1 0.99911329�13� 0.9973886�2�
�1 −00000002699�17� −0.0000000708�3�
d1�1+�1� 0.99911326�13� 0.9973886�2�
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A�2s���Z� =
2�2�1 + 	� + �2�1 + 	��

�1 + 	�2	�4	2 − 1�
= 1 +

17

8
��Z�2

+
449

128
��Z�4 + ¯ �97�

is the one-electron relativistic factor, 
�2s� is the nuclear
charge distribution correction, ��2s� is the nuclear magnetiza-
tion distribution correction �the Bohr-Weisskopf effect�,
xrad

�2s� is the QED correction, B�2s���Z� and C�2s���Z� deter-
mine the interelectronic-interaction corrections to the hyper-
fine structure. Therefore, the dimensionless variable
�x�=�0B / �
EHFS

�2s� � is of the order of
6�0B / ����Z�3�me /mp�mec

2�. For the magnetic fields with
B�1–10 T Li-like ions with Z=6–32 are of special inter-
est, since they meet the requirement �x��1. For this reason,
only such ions are presented in Tables I–III.

For ions with Z�32, the electric-quadrupole corrections
to the coefficients a1, c1, c2, and d1 are either equal to zero,
if I=1 /2, as in the case of 13C3+, or by a factor of 10−3–10−4

smaller than the magnetic-dipole ones. This is due to an ad-
ditional factor ��Z�2 in the electric-quadrupole contributions
compared to the magnetic-dipole ones in the equations for
the hyperfine-structure corrections to the Breit-Rabi formula
coefficients and small values of Q for low-Z ions.

As one can see from Table III, the corrections �1, 
1, 
2,

3, and �1 for Li-like ions are several times smaller as com-
pared to the corresponding ones for the 1s state of the same
H-like isotopes �21�. However, they provide more precise
determinations of the coefficients in the Breit-Rabi formula.

For B=1–10 T, an estimate of the terms of the third and
higher orders with respect to B in Eq. �54� shows that these

terms are negligibly small as compared to both magnetic-
dipole and electric-quadrupole corrections calculated above.
However, taking into account �2B2 and �2B2 is very impor-
tant in case Z=6–32. This is due to the fact that these terms
are comparable with the other corrections to the Breit-Rabi
formula considered and the less Z is, the more appreciable
the contributions from �2B2 and �2B2 become. One can see
that for Li-like ions these terms are 10–103 times larger as
compared to the case of the 1s state of the same H-like
isotopes �21�. In the second-order approximation �54� with
respect to B, formulas �2�, �11�, �83�, and �92� do not contain
B to a power higher than 2 under the square root. This is due
to the facts that h2�F�=h2�F�� and h̃2=0.

The Breit-Rabi formula for the 2s state includes 
EHFS
�2s� .

The value of � /�N is contained in the coefficients of the
formula and the corrections to them calculated above. The
uncertainties of the nuclear magnetic moments indicated in
Table III, as a rule, do not include errors due to unknown
chemical shifts which, in some cases, can contribute on the
level of a few tenths of a percent. Thus, carrying out the
experiments on the Zeeman splitting with the aforesaid ac-
curacy could provide the most precise determination of both

EHFS

�2s� and � /�N. The corrections to the Breit-Rabi formula
evaluated in this paper will be important for this determina-
tion.
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