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We investigate the control of a three-level quantum system by laser fields assisted by von Neumann mea-
surements. We consider a system which is not completely controllable by unitary evolution but which becomes
controllable if particular measurements are used. The optimal control is defined from a cost functional which
takes into account the measurements. The cost corresponds either to the minimization of the duration of the
control or to the minimization of the energy of the laser field. Using the Pontryagin maximum principle, we
determine the optimal control which steers the system from a given initial state toward a desired target state.
This allows one to determine which observable has to be chosen for the measurement and the time at which the
measurement has to be performed.

DOI: 10.1103/PhysRevA.77.063420 PACS number�s�: 32.80.Qk, 03.65.Yz, 78.20.Bh

I. INTRODUCTION

Geometric control theory has a long history dating back to
the 17th century and the Euler-Lagrange equation, which
leads to the classical calculus of variations. The interest for
this theory has been renewed since the complete proof of the
Pontryagin maximum principle �PMP� in the late 1950s
�1–3�. This theorem is, for example, the main tool allowing
us to determine an optimal laser field which achieves the
objective of the control and which minimizes a given cost
functional as the energy of the pulse or its duration �3–5�.
The PMP has been applied for controlling both classical and
quantum dynamics. For quantum systems with multiple de-
grees of freedom, the optimal equations are generally solved
by purely numerical techniques such as the monotonically
convergent algorithms �6–8�. These approaches have been
largely explored for molecular systems �9–14�. More geo-
metrical aspects of the control can be formulated only for
simple quantum systems having, for instance, few levels. In
recent years, a large amount of works dealing with the geo-
metric control of closed quantum systems has been published
�15–24�. Recently, these tools have also been applied to dis-
sipative quantum systems, which present the difficulty to
have a pure drift term due to dissipation �25,26�. Finally, we
point out that all these geometrical tools allow us to answer
some physical questions such as the fact that optimality im-
plies resonance �27� or the benefit that can be gained from
dissipation �25,26�.

The aim of this paper is to study another aspect of geo-
metric control of quantum systems, i.e., the control by laser
fields assisted by von Neumann measurements �VNMs� �28�.
The VNMs can be classified into two types: the instanta-
neous measurements and the continuous ones. Among in-
stantaneous measurements, we also distinguish the selective
ones where the state after the measurement is known �with a
given probability� and the nonselective ones where this state
is unknown �29�. In this paper, we will only consider selec-
tive instantaneous measurements. The question of measure-

ment driven quantum evolution has already been discussed
in a series of works mainly from a numerical point of view
�29–34�, either with or without a laser field assisting the
control. In particular, it has been shown that the measure-
ment process can modify the characteristics of the optimal
laser field. We propose in this work to revisit this problem by
using the PMP and a more geometrical point of view. For
that purpose, we consider a very simple problem, the control
of a three-level system. The interaction with the laser field
consists of a dipolar interaction with constant dipolar terms
coupling only neighboring states. It is known that this type of
system is not completely controllable by unitary evolution,
the dynamical Lie algebra being so�3� �35�. This point can be
understood more geometrically as follows. We show in this
paper that the dynamics evolves on the manifold S2�S2. A
quantum state is described by one point on each sphere. The
radius of each sphere depends on the state we consider. The
simplest case corresponds to the case where one radius is
equal to 1 and the other to 0. We can then assume that the
quantum state only belongs to one sphere since the dynamics
on the other sphere is trivial. In this case, if only unitary
controls are used then the state will remain on this sphere
and the system will not be controllable. The question of con-
trollability of quantum systems subject to VNMs has been
analyzed in Ref. �36�. It has been shown that systems which
are not completely controllable with a so�N� dynamical Lie
algebra become controllable by the action of particular
VNMs. Note, however, that a judicious choice of the mea-
sured observable in relation with the target state has to be
made. In the context of our problem, this remark can be
expressed as follows. We consider an initial state and a target
state belonging to two different spheres �in the sense detailed
above�, respectively Si and Sf, and we choose an observable
Q whose measure allows passage from Si to Sf. This is pos-
sible if all the eigenvectors of Q belong to Sf. We thus see
that the introduction of measurements allows us to create a
path from the initial state to the target state but does not say
nothing about the way to reach it. More precisely, we can ask
several questions on this control: Which observable Q to use,
at which time to perform the measurement, and which con-
trol fields to use. To answer these questions, we define a cost
functional taking into account the VNMs and we introduce*dominique.sugny@u-bourgogne.fr
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the PMP to determine the optimal laser field. We assume that
according to the result of the measurement, the operator can
modify the laser field applied to the system.

The paper is organized as follows. In Sec. II, we introduce
the model system and the different approximations used.
Section III details the geometrical aspect of the control and
the way the VNM acts. We formulate in Sec. IV the PMP
with a cost functional suited to the control. The cost corre-
sponds either to the minimization of the duration of the con-
trol or to the minimization of the energy of the laser field �the
duration of the control being fixed�. In Sec. V, we solve the
PMP and we determine the optimal controls. Conclusion and
prospective views are given in Sec. VI. Some technical cal-
culations on the Grusin model �3,26,37� are reported in the
Appendix.

II. THE MODEL SYSTEM

We consider a three-level quantum system whose dynam-
ics is governed by the Schrödinger equation. The system is
described by a pure state ���t�� belonging to a three-
dimensional Hilbert space H. The time evolution of ���t�� is
given by

i
�

�t
���t�� = �H0 + E1�t�H1 + E2�t�H2����t�� , �1�

where H0 is the field-free Hamiltonian defined in matrix
form as

�− E0 0 0

0 0 0

0 0 E0
� . �2�

H1 and H2 read in the eigenbasis of H0 as

H1 = d�0 1 0

1 0 1

0 1 0
�, H2 = d� 0 i 0

− i 0 i

0 − i 0
� , �3�

where d is a real constant. Equation �1� is written in units
such that �=1. A basis of H is given by the eigenvectors �1�,
�2�, and �3� of H0. E1�t� and E2�t� are two real components of
the electric field along two orthogonal directions of polariza-
tion. E1�t� and E2�t� are assumed to be in resonance with the
frequency E0. It has been shown that optimality implies reso-
nance for three-level systems �27�. In the RWA approxima-
tion, the equation for the time evolution of ���t�� can be
written as

i
�

�t
���t�� = � 0 ueiE0t 0

u�e−iE0t E0 ueiE0t

0 u�e−iE0t 2E0
����t�� , �4�

where u is the complex Rabi frequency. In the interaction
representation, Eq. �4� becomes

i
�

�t
���t�� = � 0 u1 + iu2 0

u1 − iu2 0 u1 + iu2

0 u1 − iu2 0
����t�� , �5�

where u1 and u2 are, respectively, the real and imaginary
parts of the complex Rabi frequency. We keep the same no-
tation for the state ���t�� after this transformation. The inter-
action representation means here that we have performed the
unitary transformation U to the state ���t��:

U = �1 0 0

0 e−iE0t 0

0 0 e−2iE0t� . �6�

Note that this transformation allows us to eliminate the drift
term due to the field-free Hamiltonian H0 �15�.

We denote by c1, c2, and c3 the complex coefficients of
the state ���t�� in the basis 	�1� , �2� , �3�
. We introduce the
real coefficients xi �i� 	1,2 , . . .6
� defined by

c1 = x1 + ix2, c2 = x3 + ix4, c3 = x5 + ix6. �7�

Let x be the six-dimensional vector of coordinates xi. Equa-
tion �6� reads in a more compact form as

ẋ = u1F1 + u2F2, �8�

where F1 and F2 are the vector fields

F1 =�
x4

− x3

x2 + x6

− x1 − x5

x4

− x3

� , F2 =�
x3

x4

x5 − x1

x6 − x2

− x3

− x4

� . �9�

The dynamics takes place on a five dimensional sphere S5

since �i=1
6 xi

2=1.

III. GEOMETRICAL DESCRIPTION OF THE CONTROL

We begin this section by analyzing the controllability of
the process. In matrix form, this can be done by computing
the dynamical Lie algebra L generated by iH0, iH1, and iH2.
A standard calculation shows that L=so�3� and that the sys-
tem is not completely controllable �35�. We recall that a pos-
sible characterization of a matrix A with complex entries
belonging to so�3� �38� is

A � so�3� ⇔ �A = − A†

AJ + JA = 0,
 �10�

where J is the matrix

�0 0 1

0 − 1 0

1 0 0
� . �11�

The noncomplete controllability of the system can be under-
stood more geometrically as follows. We define new coordi-
nates Xi by
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X1 =
1
�2

�x1 − x5�, X2 =
1
�2

�x1 + x5� ,

X3 = x3, X4 = x4, X5 =
1
�2

�x2 + x6�, X6 =
1
�2

�x2 − x6� .

�12�

For any choice of the controls u1 and u2 in Eq. �8�, only the
coordinates 	X1 ,X3 ,X5
 and 	X2 ,X4 ,X6
 are coupled between
each other. In addition, they fulfill the following relations:

X1
2 + X3

2 + X5
2 = Ri

2, X2
2 + X4

2 + X6
2 = Rf

2, �13�

where Ri and Rf are two real constants such that Ri
2+Rf

2=1.
The system thus evolves on two spheres that we denote Si
and Sf. The radii Ri and Rf of the two spheres are determined
from the initial state of the system and are constant for uni-
tary evolution. To simplify the geometrical description of the
control, we consider in this paper that one radius is equal to
1 and the other to 0. In this case, we can assume that the state
belongs only to one sphere since the dynamics on the other
sphere is trivial. Using this description, one deduces that if
the system is initially on one of the two spheres then it will
remain on this sphere by unitary evolution and it will not
reach a state belonging, for instance, to the other sphere. The
description of the control is more difficult if the two radii are
different from zero. In particular, due to the symmetry of Eq.
�8�, the optimal trajectories on the two spheres are the same
and cannot be controlled independently.

We now describe the control assisted by measurements.
As explained above, we assume that the initial and the target
states belong, respectively, to Si and Sf. We can choose, for
instance, ��i�= �2� and �� f�= 1

�2
��1�+ �3��. For the measure-

ment process, the idea is to determine an observable Q for
which the system passes from Si to Sf after a measurement.
This is possible if all the eigenvectors of Q belong to Sf and
form a basis of H. A possible choice is given by the vectors

��1� =
1
�2

��1� + �3��, ��2� = i�2�, ��3� =
i

�2
��1� − �3�� .

�14�

The corresponding observable Q is equal to Q
=�i=1

3 qi��i���i� where the qi’s are real numbers. Let ���
=�i=1

3 ai��i� be the state of the system at time t. Then after the
measurement, this state becomes ��i� �i� 	1,2 ,3
� with the
probability �ai�2. Since all the eigenvectors of Q belong to Sf,
the sphere of the target state, one sees that, whatever the
result of the measurement, the target state can now be
reached by unitary evolution. Note also that the control by
laser field on the sphere Sf will depend on the result of the
measurement. As mentioned in the Introduction, we assume
that the operator knows this result and can modify the con-
trol field according to the result of the measurement.

IV. PONTRYAGIN MAXIMUM PRINCIPLE AND COST
FUNCTIONAL

We analyze the optimal control of this three-level system
either with the constraint of minimizing the duration of the

control or the energy of the laser field. The solutions of these
two problems are intrinsically related �15�. We recall that this
is not the case when the system has a purely drift term which
can be due to dissipation �25,26�.

We denote by U�R2 the manifold of admissible control
fields. For the time minimum cost, we have the condition
u1

2+u2
2�1 on the control field, whereas there is no restriction

on laser fields if the cost minimizes the energy. The total
duration T of the control is fixed for the energy cost problem.

We begin by the standard formulation of the Pontryagin
maximum principle, i.e., without measurement. The Pontrya-
gin maximum principle �1,2,4� is formulated from the
pseudo-Hamiltonian HP which can be written as follows:

Hp = p · �u1F1 + u2F2� + p0f0�u1,u2� , �15�

where p�R6 is the adjoint state and p0 is a negative constant
such that p and p0 are not simultaneously zero. f0 is a func-
tion of u1 and u2 whose integral over time gives the associ-
ated cost C. We have

CE = �
0

T

f0„u1�t�,u2�t�…dt = �
0

T

�u1
2�t� + u2

2�t��dt �16�

for the energy minimization problem and

CT = �
0

T

dt = T �17�

for the time-minimum optimal control. The Pontryagin maxi-
mum principle states that the coordinates of the extremal
vector state x and of the corresponding adjoint state p fulfill
the Hamiltonian’s equations associated to a Hamiltonian H,

ẋ =
�H

�p
, ṗ = −

�H

�x
, �18�

defined as

H�x,p� = Max	u1,u2
�UHP�x,p,u1,u2� . �19�

The optimal controls are given explicitly by

u1
E = P1, u2

E = P2 �20�

and

u1
T = P1/�P1

2 + P2
2, u2

T = P2/�P1
2 + P2

2, �21�

where P1=p ·F1 and P2=p ·F2 �3�. The E and T labels cor-
respond, respectively, to the energy and the time cost cases.

We assume now that a measurement is performed at a
time t� �0,T�. The definition of the cost given below can be
extended straightforwardly to the case of several measure-
ments. Let Q=�i=1

3 q1��i���i� be the observable associated to
the measurement. We denote by ���t�� the state of the system
at time t at which the measurement is performed. Since
	�i
�i=1,. . .,3� is a basis of H, ���t�� can be written as

���t�� = �
i

ai�t���i� . �22�

Let C0�t� be the cost corresponding to the optimal path from
��i� to ���t��. Note that C0 is equal to zero if t=0. We also
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introduce the costs Ci, �i=1, . . . ,3� which are respectively
associated to the optimal passage from ��i� to �� f�. The total
cost of the control C�t� is then defined by

C�t� = C0�t� + �
i=1

3

�ai�t��2Ci. �23�

The choice of C�t� is related to the fact that the operator
knows the result of the measurement and can modify the
electric field accordingly. �i=1

3 �ai�t��2Ci can be viewed as an
average of the three costs Ci. From the cost C�t�, the goal is
then to determine the control fields, the observable Q and the
time t at which the measurement is performed to minimize
C�t�. We will solve this problem by using twice the Pontrya-
gin maximum principle: once on Si and once on Sf. Indeed,
for a fixed observable Q, it is clear that the trajectories which
minimize C correspond to the concatenation of extremal tra-
jectories on Si and Sf. We solve this optimal control problem
in Sec. V for particular examples. The general solution is
very complex and can only be determined numerically.

V. OPTIMAL CONTROL

A. Preliminary

To describe the dynamics of the system on the two
spheres, we introduce two sets of spherical coordinates
��i ,�i� and �� f ,� f� such that

X1 = sin �i cos �i, X3 = cos �i, X5 = sin �i sin �i

�24�

and

X2 = sin � f cos � f, X4 = cos � f, X6 = sin � f sin � f .

�25�

Due to the hypothesis of Sec. III, the solution of the optimal
control problem corresponds to the one of the Grusin model
on the sphere �3,26,37�. The Grusin model is a standard
problem in optimal control and its solutions are recalled in
the Appendix. Note that this model appears naturally when
one considers a three-level system in quantum mechanics
�15�.

We consider four different qualitative cases of control. We
recall that the initial state and the target state belong, respec-
tively, to Si and Sf.

Case (a). Passage from X3=1 to X4=1, i.e., from the state
�2� to the state i�2� �modification of the phase of the state
�2��. The measurement operator is not fixed but allows pas-
sage from Si to Sf.

Case (b). Passage from X3=1 to X2=1. We assume that
the operator Q is of the form

Q =
i

�3
���1��1� + ��2��2� + 	�3��3�� , �26�

where �, �, and 	 are real constants.
Case (c). Passage from a state of Si to the state �� f

=
 /2,� f =�� where �� �0,2
�. The states associated to the
measurement are given by �� f =
 /4,� f =0�, �� f =3
 /4,� f

=0�, and �� f =
 /2,� f =
 /2�. The angle � is chosen such
that the cost to reach the target state from one of the three
states of the measured observable is the same. In this sym-
metric case, the optimal trajectory does not depend on the
initial state.

Case (d). Passage from ��i�= �1� to �� f�=ei
/4 /2�1�
+ i�2�2�+e−i
/4 /2�3�, i.e., �� f =
 /4,� f =
 /4�. The three
states associated to the measurement are �� f =0,� f =0�, �� f
=
 /2,� f =0�, and �� f =
 /2,� f =
 /2�.

B. Case (a)

We first solve the optimal control problem on Si starting
from X3=1. This initial point is characterized by �0=0. Us-
ing the results of the Appendix, one deduces that the ex-
tremal trajectories are associated to the value of the con-
served integral of motion j=0. The case �0=0 corresponds to
a degenerate case which is not well defined if j�0 �3,26�.
From Eqs. �A14�, it is then straightforward to see that the
optimal trajectories are lines of equation �i=const. The op-
timal synthesis, i.e., all the extremals starting from the initial
point, is represented in Fig. 1. Using Eqs. �A12�, one can
determine the corresponding control fields v1 and v2 which
are given by

v1 = 1, v2 = 0 �27�

for the time-minimum problem and by

v1 = �2hE, v2 = 0, �28�

where hE�0 for the energy minimization problem. Let
��i ,�i� be the coordinates of the final point on Si. For the

minimization of the time, since �̇=1, one deduces that CT,0
=�i. For the energy case, we have

CE,0 = �
0

T

2hEdt = 2hET . �29�

But since �i=�2hET, this leads to CE,0=�i
2 /T.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

θ

φ

FIG. 1. Optimal synthesis for an initial state such that �i�0�=0.
� and � are two angles in radians.
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To summarize, the preceding computation gives the cost
to reach a point of Si from X3=1. The next step is to apply a
measurement to the system. The measurement is associated
to the observable Q which reads

Q = ���1���1� + ���2���2� + 	��3���3� . �30�

We assume that the coordinates of the three states ��1�, ��2�,
and ��3� can be written, respectively, as ��m ,�m�, ��m
+
 /2,�m�, and �
 /2,�m−
 /2� where ��m ,�m� are coordi-
nates on Sf. If Ci denotes the cost to reach �� f� from ��i� then
one arrives after a simple computation at C1=�m �respec-
tively, C1=�m

2 /T�, C2=
 /2+�m �respectively, C2= �
 /2
+�m�2 /T� and C3=
 /2 �respectively, C3=
2 /4T� for the
time-minimum problem �respectively, energy minimum
problem�. Simple algebra leads to the total costs CT and CE
which read

CT = �i + a�m + b�


2
+ �m� + c




2
, �31�

and

CE =
1

T
��i

2 + a�m
2 + b�


2
+ �m�2

+ c

2

4
� , �32�

where a, b, and c are given by

a = �sin �i sin �m sin��m − �i� + cos �i cos �m�2,

b = �sin �i cos �m sin��m − �i� − cos �i sin �m�2,

c = sin2 �i cos2��m − �i� . �33�

The last step of the optimization procedure is to minimize
CT and CE as a function of ��i ,�i� �i.e., the choice of the time
of the measurement� and ��m ,�m� �choice of the observable
Q�. Since CT,E�0, one sees that the optimal choice corre-
sponds to �i=�m=0 which leads to CT,E=0. To determine a
solution which is not trivial, we fix the observable Q, i.e., the
coordinates �m and �m, and we search for the values of �i
and �i which minimize the cost. The two computations being
similar, we only consider the time-minimum control prob-
lem. It can be shown that the minimum of CT occurs for
�m−�i=
 /2 when 0�m
 /2 and for �m−�i=3
 /2
when 
 /2�m
. Analyzing the variations of CT as a
function of �i one deduces that the optimal value for �i is 0 if
�m�arcsin�2 /
� /2 and �m�
−arcsin�2 /
� /2. In the other
cases, the minimum is reached for

�i = �m −
1

2
arcsin� 2



� �34�

when arcsin�2 /
� /2��m�
 /2 and

�i = 
 − �m −
1

2
arcsin� 2



� �35�

when 
 /2��m�
−arcsin�2 /
� /2. Note that the maximum
value that �i can attain is 
 /2−arcsin�2 /
� /2.

C. Case (b)

We solve separately the control problems on Si and Sf.
Since the initial state is X3=1, one deduces that C0

T=�i and

C0
E=�i

2 /T where �i is the coordinate of the state on which the
measurement is performed. On Sf, we consider three differ-
ent controls from, respectively, X2=1, X4=1, and X6=1 to
X2=1. By construction, the first cost C1 is zero. Using the
results of case �a�, one obtains that C2

T=
 /2 for the time
minimum problem and C2

E=
2 / �4T� for the energy. The last
optimal control is the most difficult to determine. We search
for the trajectory which goes from ��=
 /2,�=0� to ��
=
 /2,�=
 /2�. For the time minimum, using Eq. �A18�,
one sees that the extremal ���� only depends, up to a sign,
on the ratio hT / j. From the analytical solution of Eq. �A18�,
it can be shown �15� that the optimal trajectory satisfies
hT / j=�3. This result is represented in Fig. 2 with the corre-
sponding optimal fields u1 and u2. Integrating the equation

�̇ = �
�hT

2 − j2 cot2 �

hT
, �36�

one obtains that the travel time of this trajectory is C3
T

=
�3 /2.

0 0.4 0.8 1.2 1.6 2
0

0.5

1

1.5

2

2.5

3

φ

θ

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

t

u

(b)

(a)

FIG. 2. �a� Optimal trajectories for the time-minimum problem
from X2=1 to X6=1. The upper and the lower extremals are asso-
ciated, respectively, with j=1 /�3, hT=1, and p�= ��hT

2 − j2. The
horizontal and vertical dashed lines are, respectively, for equations
�=
 /2 and �=
 /2. �b� The optimal fields u1�t� and u2�t� corre-
sponding to this trajectory are respectively represented in solid and
dashed lines. u1, u2, and t are dimensionless.
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The total cost is then given by

CT = �i + C1
T sin2 �i sin2 �i + C2

T cos2 �i + C3
T sin2 �i cos2 �i,

�37�

which simplifies into

CT = �i + C2
T cos2 �i + C3

T sin2 �i cos2 �i. �38�

CT is minimum for �i=
 /2. We then have

CT = �i + C2
T cos2 �i, �39�

which is minimum for

�i =
1

2
arcsin� 2



� . �40�

For the energy, we have

CE =
�i

2

T
+ C2

E cos2 �i + C3
E sin2 �i cos2 �i, �41�

whose minimum can be determined as above.

D. Case (c)

To simplify the discussion, we limit here the study to the
time-optimal control problem. As already mentioned above,
we determine the target state and the angle � such that the
travel time of the three extremal trajectories on Sf is the
same. The optimal trajectories and the optimal fields for the
extremal starting from ��=
 /2,�=
 /2� are displayed in
Fig. 3. When changing p� to −p� with the same value of j,
we obtain two trajectories starting, respectively, from ��
=
 /4,�=0� and ��=3
 /4,�=0� which are symmetric with
respect to the axis �=
 /2. These two extremals intersect on
this axis at the same time.

We then determine the parameters of the trajectories ini-
tiated from ��=
 /2,�=
 /2� and ��=
 /4,�=0� such that
they intersect on the axis �=
 /2 at the same time. We have
solved this problem numerically. We have obtained p��0�
�0.6272 and j=−1 for the first extremal and p��0�
�−0.9245 and j=1 for the second one. The two extremals
intersect in ��1.091 at time t�1.668. Let T0 be the cost
corresponding to these three trajectories. The total cost CT is
given by

CT = C0 + T0. �42�

Since by definition C0�0, the optimal solution is C0=0, i.e.,
the measurement has to be performed at time t=0. The result
is thus independent of the initial state of Si. Note that the
same work can be done for the minimization of the energy.

E. Case (d)

Here, again, we only consider the minimization of the
time. Using Eq. �A21� of the Appendix, the time to go from
�
 /2,0� to the state ��i ,�i� where the measurement is per-
formed is

C0 =
− 1

�1 + mi
2
arcsin��1 + mi

2 cos �i� , �43�

where mi= j /hT. To establish Eq. �43�, we have assumed that
the function ��t� is an increasing function of time. In addi-
tion, we notice that the value �i depends on the constant mi
chosen. In other words, minimizing the cost with respect to
��i ,�i� is equivalent to minimizing the cost with respect to �i
and mi. We next determine the cost to reach the target state
from each state of the measured operator. From �� f =0,� f
=0�, a result of case �a� leads to C1=
 /4. By symmetry, we
also deduce that the cost from �� f =
 /2,� f =0� and �� f
=
 /2,� f =
 /2� is the same, i.e., C2=C3=C. We determine
numerically this time. For the cost C, we have obtained mf
�1 /1.126 and a corresponding time C equal to 1.422. Using
Eq. �A21�, it can be shown that

C =
2


2�1 + mf
2

−
1

�1 + mf
2
arcsin��1 + mf

2

�2
� . �44�

To compute C, we have used the fact that for the extremal
trajectory � is not a monotonous function of time and that the
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FIG. 3. �a� Optimal trajectories for the time-minimum problem
from the different states associated with the measurement to the
target state. �b� The optimal fields u1�t� and u2�t� corresponding to
the trajectory starting from ��=
 /2,�=
 /2� are, respectively, rep-
resented in solid and dashed lines.
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minimum of � is arccos�1 /�1+mf
2�. Figure 4 represents the

three optimal trajectories reaching the target state.
A straightforward calculation then gives the total cost CT

which can be written as follows:

CT = C0 +



4
cos2 �i + C�sin2 �i cos2 �i + sin2 �i sin2 �i� ,

�45�

=C0 +



4
cos2 �i + C sin2 �i. �46�

CT is then minimized with respect to �i and �i. We have
checked numerically that the optimal solution corresponds to
C0=0. The total cost is given by CT=C. We have also ob-
tained the same result when the initial angle is different from

 /2.

VI. CONCLUSION

We have investigated in this paper the control of a three-
level quantum system by laser fields and instantaneous selec-
tive measurements. We have considered only the case of a
single measurement. We have defined a cost functional tak-
ing into account the measurements and we have applied the
Pontryagin maximum principle to this case. For given initial
and target states, we have optimized both the choice of the
observable �and the time at which the measurement has to be
performed� and the control field. In this paper, we have con-
sidered a simple model in order to highlight the geometrical
structure of the control. The question which naturally arises
is the generalization of this approach to more complex sys-
tems such as the nonisotropic three-level system �dipolar in-
teraction with nonconstant terms� or systems having four or
five levels. For instance, we could consider a N-level har-
monic system associated to a constant dipolar interaction
coupling only neighboring states. If N is odd then it can be
shown that the dynamical Lie algebra of the system is so�N�
�38� and that a von Neumann measurement can restore the
complete controllability of the system �36�. Some progress in

the geometrical description of these problems has recently
been achieved �20,21� and could be used to determine the
effect of von Neumann measurements. However, due to the
number of degrees of freedom of such systems, the optimal
control problem will be solved by numerical methods.
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APPENDIX: THE GRUSIN MODEL

In this section, we recall how to solve analytically the
optimal control problem associated to the Grusin model on
the sphere �3,26�. We consider the following control system
of differential equations:

�ẏ1

ẏ2

ẏ3
� = u1�− y2

y1

0
� + u2� 0

− y3

y2
� , �A1�

where u1 and u2 are real controls. The coordinates �y1 ,y2 ,y3�
satisfy the relation y1

2+y2
2+y3

2=1. This system can be written
in a more compact form as

ẏ = u1F1 + u2F2, �A2�

where y is the vector of coordinates �y1 ,y2 ,y3� and F1 and F2
are the following vector fields

F1 = �− y2

y1

0
�, F2 = � 0

− y3

y2
� . �A3�

We introduce the spherical coordinates �� ,�� defined by

y1 = cos � sin �, y2 = cos �, y3 = sin � sin � . �A4�

Using the relations

�

�y1
= cos � cos�

�

��
−

sin �

sin �

�

��
,

�

�y2
= − sin �

�

��
,

�

�y3
= cos � sin �

�

��
+

cos �

sin �

�

��
, �A5�

one deduces that

F1 = � − cos �

sin � cot �
�, F2 = � sin �

cos � cot �
� . �A6�

In the coordinates �� ,��, the system �A1� reads

� �̇

�̇
� = u1� − cos �

sin� cot �
� + u2� sin �

cos � cot �
� . �A7�

The following rotation on the control:

v1 = − cos �u1 + sin �u2, v2 = sin �u1 + cos �u2,

�A8�

which does not modify the cost, leads to
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FIG. 4. Optimal trajectories for the time-minimum problem
starting from the different states associated to the measurement.
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� �̇

�̇
� = v1�1

0� + v2� 0

cot �
� . �A9�

The pseudo-Hamiltonians HP associated to this system
are, respectively, given by

HP = v1p� + v2p� cot � −
1

2
�v1

2 + v2
2� , �A10�

for the energy minimization problem and by

HP = v1p� + v2p� cot � �A11�

for the time-optimal control. In the first case, the constant p0
of Eq. �15� has been normalized to −1 /2 and in the second
case, this constant has been subtracted in the definition of
HP. The application of the PMP gives the following extremal
controls:

v1 =
p�

R
, v2 =

p� cot �

R
, �A12�

where R=1 for the energy and R=�p�
2+ p�

2 cot2 � for the
time-minimum problem. The extremal trajectories corre-
spond to the flows of the Hamiltonians HE �for the energy�
and HT �for the time minimum� given by

HE =
1

2
�p�

2 + p�
2 cot2 ��, HT = �p�

2 + p�
2 cot2 � .

�A13�

We then deduce that the extremal flows satisfy the following
system given by Hamilton’s equations associated to HE and
HT:

�̇ = p�/R, �̇ = p� cot2 �/R, p� = j ,

ṗ� = p�
2 cot ��1 + cot2 ��/R . �A14�

In the system of Eqs. �A14�, p� is a constant of the motion
denoted j which implies that HE and HT are integrable. One

of the consequences of this integrability is the fact that the
trajectories can be calculated by quadratures as a function of
the value of the Hamiltonian denoted hE or hT and of the
value of the constant j.

The idea is to eliminate the time parametrization and to
introduce functions �→���� in the coordinates �� ,��. In
both cases, we have

�̇

�̇
=

d�

d�
=

p�

j cot2 �
. �A15�

Using Eqs. �A13�, a simple computation leads to

p� = � �2hE − j2 cot2 � �A16�

for the energy minimum and

p� = � �hT
2 − j2 cot2 � . �A17�

for the time minimum. One finally arrives at
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FIG. 5. Flow of the Hamiltonian HT. Numerical values are taken
to be p��0�=2, ��0�=
 /4, and ��0�=0. p��0�= �5 for the two
trajectories in solid lines and p��0�=0 for the extremal in dashed
lines.
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FIG. 6. Symmetries of the flow of the Grusin model. Panel �a�:
Intersection on the antipodal parallel of equation �=
−��0� of two
trajectories with the same cost. Panel �b�: symmetry with respect to
the axis �=0 of the flow. Numerical values are taken to be in the
two cases p��0�= �2, p��0�= �5, ��0�=
 /4, and ��0�=0.
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d�

d�
= �

�2hE − j2 cot2 �

j cot2 �
,

d�

d�
= �

�hT
2 − j2 cot2 �

j cot2 �

�A18�

for the two cases.
The Hamiltonian equations can be integrated to determine

� and � as a function of time. We start from the equation

�̇2 = 1 − m2 cot2 � , �A19�

where m= j /hT for the time minimum problem and m= j with
hE=1 /2 for the minimization of the energy. Equation �A19�
can be straightforwardly obtained from Eqs. �A14�, �A16�,
and �A17�. Simple algebra leads to

�̇2 =
1 − �m2 + 1�cos2 �

sin2 �
. �A20�

We obtain for the positive branch that

T = �
�0

�1 sin �d�

�1 − �1 + m2�cos2 �
, �A21�

where �0 and �1 are the initial and final values of �. Using
the fact that

� sin �d�

�1 − a cos2 �
= −

1
�a

arcsin��a cos �� , �A22�

one arrives at

T =
1

�1 + m2
�arcsin��1 + m2 cos �0�

− arcsin��1 + m2 cos �1�� . �A23�

The inversion of this relation gives

��t� =



2
+ arcsin� 1

�1 + m2
sin��1 + m2t + K�� ,

�A24�

in the case where � is an increasing function of t. K is a
constant which can be determined from ��0�. The evolution
of � is obtained from the differential equation

�̇ = m cot2 � �A25�

and Eq. �A24�.
The extremal trajectories, which are the same for HE and

HT, are represented in Fig. 5 for a given value of j and
different values of h. These trajectories have three symme-
tries.

The figure is first symmetric with respect to translation in
�. In addition, two trajectories corresponding, respectively,
to p� and −p� are symmetric with respect to the meridian
�=const. Finally two extremals starting from the same point
(��0� ,��0�) but with opposite initial values of p��0� intersect
on the antipodal parallel �=
−��0� with the same value of
the cost. As shown in Fig. 5, we notice that the trajectory
with p��0�=0 is tangent to the antipodal parallel. Figure 6
illustrates these two symmetries.
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