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We investigate the response of two three-body Coulomb systems when driven by attosecond half-cycle
pulses: The electron transfer between two hydrogen atomic centers and the double ionization of the helium
atom. Using very short half-cycle pulses �HCPs� which effectively deliver “kicks” to the electrons, we first
study how a carefully chosen sequence of HCPs can be used to control to which of one of the two fixed atomic
centers the electron gets reattached �HCP assisted electron transfer�. Moving from one electron in two atomic
centers to two electrons in one atomic center we then study the double ionization from the ground state of He
by a sequence of attosecond time-scale HCPs, with each electron receiving effectively a “kick” from each HCP.
We investigate how the net electric field of the sequence of HCPs affects the total and differential ionization
probabilities.
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I. INTRODUCTION

Rapid developments in the generation of attosecond time
scale laser pulses �1� makes investigations of the interaction
of multielectron atoms with ultrashort laser pulses timely.
The control and manipulation of Rydberg atoms using one or
more half-cycle pulses �HCPs�, with each HCP of duration
��Tn where Tn is the classical electron orbital time, has
been the subject of intense research lately �2�. One of the
tools for controlling such states are carefully tailored se-
quences of HCPs �2,3�. An interesting aspect of the HCPs is
that atoms respond to them very differently than to laser
pulses. The response of a single-electron atom to a sequence
of HCPs has been thoroughly explored in Ref. �4�. In addi-
tion, for single-electron atoms, the effect that the net field of
a sequence of HCPs has on the atomic dynamics �5–7�, as
well as the remarkable control that can be achieved using a
chirped train of HCPs �8� are among the problems that have
been studied recently.

In the current work, we first address the HCP assisted
electron transfer in H+H+, that is, the electron transfer from
one hydrogen atomic center �where the electron is initially
localized� to another hydrogen atomic center, located far
away from the first. The purpose of this section is to refresh
concepts of the “kicked” one electron dynamics in one
atomic center when driven by a sequence of HCPs �4,9� and
to explore new effects. We begin with the simplest scenario
in which the two atomic centers are so far apart that the
electron is initially localized on one atomic center. The large
distance between the fixed atomic centers allows us to make
a connection to the response of a single electron atom to
HCPs which has been studied intensively. In particular, for
HCPs of picosecond duration there is a large number of stud-
ies for single ionization of Rydberg atoms �see, for example,
Refs. �4,6,9–11��. Very recently, protocols of generating at-
tosecond HCP trains using strong two-color infrared laser
pulses have been analyzed �12�.

The other three-body Coulomb system we explore is the
He atom where we study the effect of an idealized sequence
of HCPs on double ionization both when the net electric field

vanishes �even number of kicks� and when it does not �odd
number of kicks�. The interaction of multi-electron systems
with very strong and ultrashort laser pulses is still a wide-
open problem. We perform our calculations using the classi-
cal trajectory Monte Carlo method �13�. Quite a few studies
show that classical methods can be successful in describing
the single ionization of atomic systems when driven by ul-
trashort and strong laser fields, in very good agreement with
quantum-mechanical results �14–16�. However, open issues
remain for single ionization of atomic systems such as the
effect of the Coulomb interaction on the ionization process
depending on different intensities of the field �17–19�. An-
other issue concerns the range of parameters over which the
classical techniques give the best agreement, for integral as
well as differential probabilities, with quantum-mechanical
studies �20–22�. One of the goals of the current classical
study is to initiate exploration of the above issues in the case
of the double ionization of the attosecond time scale driven
He.

The parameters we use are chosen to complement recent
studies on ionization by strong ultrashort pulses �23,24�.
These authors have found that when the electron is driven by
two HCPs of alternating sign there is a very high probability
for the electron to recombine to the ground state of H. They
have derived analytic expressions, in the framework of the
Magnus approximation, for the recombination rates for a
single-electron atom �23� and only very recently for two
electron atoms �26�.

The current paper is structured as follows. In Sec. II we
study the HCP assisted electron transfer between two hydro-
gen atomic centers. In Sec. III, we obtain the total and
double differential probabilities for the double ionization of
the driven He atom. We explore the effect of a sequence of
HCPs when the net electric field vanishes and when it does
not and investigate the influence of the electron-electron in-
teraction in the ionization process.

II. HCP ASSISTED ELECTRON TRANSFER BETWEEN
TWO HYDROGEN ATOMIC CENTERS

In recent years quite a few studies have addressed ioniza-
tion of single electron atoms when driven by HCPs, with
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each HCP with duration � much smaller than the time the
electron needs to orbit around the nucleus �Kepler period� Tn.
Let us describe the sequence of HCPs by a field of the form
E�t�=�n=1

n=N�−1�nE0fn�t− �n−1���ẑ, where the shape of each
HCP is given by the function fn�t� with �n−1��� t�n�, and
� being the time delay between the HCPs numbered n and
n+1. In these previous studies �4,9� it has been well estab-
lished that the effect of an N=1 HCP with ��Tn is to deliver
a momentum “kick” with the energy distribution of the ion-
ized electron centered around q2 /2− �Ei� when q2 /2− �Ei�
�0, with Ei being the binding energy of the electron. If
fn�t�=sin���t−�� /��, which is the shape of the HCP we use
for all subsequent calculations, then the strength E0 of the
field is expressed in terms of the momentum “kick” as E0
=q� / �2��, and the sequence of HCPs we use effectively de-
livers “kicks” of alternating direction. In recent studies
�23,24� it was shown that while a single �N=1� HCP strips
the electron from the hydrogen atom, a subsequent applica-
tion of a second HCP of opposite sign immediately after the
end of the first one results in reattachment of the ionized
electron with probability close to 1.

Studying the above concepts in a new context we now
investigate the effect of a sequence of N=2 HCPs on H
+H+. We assume that initially the two nuclei are along the z
axis at R=40 a.u. and the electron is localized on the left
nucleus. Since the distance R of the nuclear centers is large it
is a very good approximation to consider the initial state of
the single electron as that of a hydrogen atom. We take as our
initial state a statistical distribution of states in n=2 state of
the hydrogen atom �left nucleus� and consider the two nuclei
fixed in space. The initial distribution is given by the micro-
canonical distribution �13� ����:

���� = N 	 
�E1 + I1� �1�

with the normalization constant N and I1=1 /8 a.u., namely,
the ionization energy of the electron in the n=2 state.

A. Single electron ionization in H+H+ when driven
by an N=1 HCP

We first study the effect of an N=1 HCP on H+H+ using
the full three-body Hamiltonian with nuclei fixed in space

H = p2/2 − 1/�r − R1� − 1/�r − R2� − r · E�t� , �2�

with R1, R2 the position vectors of the two nuclear centers
and E�t� the field specified above polarized along the direc-
tion of the molecular axis z. The probability for ionization
from the H+H+ as a function of the strength of the momen-
tum transfer q is shown in Fig. 1 for a HCP with �=3 a.u.
Since the nuclei are so far apart it is of course to be expected
that our results in Fig. 1 are exactly the results one would
obtain from the single ionization of hydrogen from the n
=2 state, as is indeed the case �24�. In our classical calcula-
tion with the initial distribution considered in Eq. �1� the
agreement with quantum mechanical results is better the
larger the strength of the field is and thus the higher it is from
the threshold field strength corresponding to over the barrier
ionization. Let us also emphasize that for all the results pre-
sented the full Hamiltonian of Eq. �2� is used for the propa-

gation in time and our reference to “kicks” is only an inter-
pretation of the accurate results obtained with all interactions
accounted for.

B. Controlling the atomic center of electron reattachment
in H+H+ using N=2 HCPs

Next, we consider the case of N=2 HCPs, with q
=2 a.u. and �=3 a.u., where we vary the time delay � be-
tween the two HCPs. What we are effectively doing is first
“kicking” the electron from left to right with a momentum
transfer of q=2 a.u. and then “kicking” it in the opposite
direction with a delay �. At the end of the two HCPs we
compute the electrons that remain bound, that is, the trajec-
tories for which the energy of the electron given from Eq. �2�
is negative. The electrons are bound either to the left or right
nuclear center which we specify by checking whether z�0
or z�0, respectively, where z is the coordinate of the elec-
tron along the molecular axis, with the 0 of the axis being at
the center of the two nuclei. The results are shown in Fig. 2.
As expected, when the two HCPs which have opposite direc-
tion and equal strength are delivered one immediately after
the other the electron remains almost completely bound to
the left nucleus and the probability to be bound to the right
one is zero. However, as the delay between the two pulses
increases the probability to find the electron bound to the
right nucleus significantly increases. This is reasonable since
the longer the delay time, the more time the ionized electron
from the left nuclear center needs to travel further toward the
right nucleus. When the second “kick” is received in the
opposite direction it reduces the kinetic energy of the elec-
tron ionized from the left nucleus, and depending on the
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FIG. 1. Probability for ionization of the electron from a n=2
state of a hydrogen atom driven by an N=1 HCP with �=3 a.u.
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FIG. 2. Probability for attachment in the right nuclear center
when the electron is initially localized in the left nuclear center at
the n=2 state and is then driven by N=2 HCPs with q=2 a.u. and
�=3 a.u.
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electron’s position from the right nuclear center it can result
in reattachment of the electron to the right nucleus. Note that
the maximum of the reattachment probability takes place at a
� very close to the time it takes for the electron with a
momentum approximately q=2 a.u. to travel from the left to
the right nuclear center R /q=40 /2=20 a.u. Note that our
three-dimensional calculation indicates that the probability
for the electron to be reattached when one uses HCPs is very
large which is to be expected since the ionization probability
from the first HCP is very large launching with high prob-
ability electrons to the continuum and thus resulting in
higher recombination probability to the other nuclear center.
With rapid experimental advances, this method could be used
in the future for determining distances between atomic cen-
ters. For related work on how to use attosecond pulses �not
HCPs� to observe effects similar to the ones discussed above
in diatomic ions see Refs. �27–29�.

III. TWO ELECTRONS DRIVEN BY STRONG
ATTOSECOND PULSES

We now turn from single electron dynamics in two atomic
centers to two-electron in one atomic center. In the case of a
driven two-electron atom the Hamiltonian is

H =
p1

2

2
+

p2
2

2
−

Z

r1
−

Z

r2
+

1

�r1 − r2�
+ �r1 + r2� · E�t� . �3�

In what follows we use as an electric field the same linearly
polarized sequence of HCPs as for the case of the one elec-
tron atom in the previous section with the time delay being
fixed now and equal to � �i.e., effectively we have a sine
pulse�.

A. Initial phase space distribution for the two-electron atom

The initial phase space density ���� in our classical cal-
culation of the double ionization of He is given by a product
of microcanonical distributions

���� = N
��1 + I1�
��2 + I2� , �4�

with normalization constant N. In the case of He we account
for the electron-electron repulsion in the initial state indi-
rectly through the use of effective charges �30�. In the fol-
lowing we present results for two sets of effective charges:

�a� I1= I2=Zeff
2 /2, where Zeff=27 /16 and �b� I1=Zeff1

2 /2 and
I2=Zeff2

2 /2 with I1 and I2 being the ionization potentials for
the two electrons in the 1s2 state of He, i.e., I1=2 and I2
=0.9 a.u. The latter choice of effective charges accounts bet-
ter for the electron-electron repulsion in the initial state.

A few more remarks on the construction of the initial state
are in order. Our initial state is not an eigenstate of the driven
two-electron Hamiltonian in Eq. �3�, and it can thus “au-
toionize” even without the presence of the external field. We
avoid the latter problem in the following way. �i� We first
generate the initial conditions for each electron indepen-
dently using the microcanonical distribution for a one elec-
tron atom with charge Zeff1

or Zeff2
for electrons 1 and 2,

respectively. We then use the initial conditions we have just
generated to obtain the total energy of the two electron atom
from Eq. �3� by setting the field equal to zero. The initial
total energy distribution of the two electrons is shown in Fig.
3, where we see that there is a long tail on both sides of the
ideal value of −2.9 a.u. We cut the tail off by introducing
two parameters Emin, Emax such that �31�
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FIG. 3. Total energy distribution of the two electrons in the
initial state without a field.
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FIG. 4. �Left� Radial distribution as a function of the radial
electronic coordinate. �Right� Momentum distribution as a function
of the electronic momentum. Since we use different effective
charges the two electrons are not equivalent and so we plot as a
function of the radial coordinate of electron 1 or 2 �r1 � r2� and
similarly for the momentum distribution.

FIG. 5. �Color online� The field-free evolution in time of the
initial momentum distribution. At time zero it is identical to the
momentum distribution shown in Fig. 4.
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�
Emin

Emax

E��E�dE

�
Emin

Emax

��E�dE

= Ep, �5�

with Ep the most probable energy and ��E� the energy dis-
tribution. In our calculations Emax=−2.51. �ii� In addition, we
evolve the two-electron atom freely �i.e., without an external
field and using the full three-body Coulomb Hamiltonian�
and discard the trajectories for which the total two electron
energy becomes positive during the field-free propagation.
We freely propagate the system for times twice the Kepler
period, with the latter being approximately 2.2 a.u. for the
He ground state. In this latter step we find that the fraction of
trajectories labeled as “autoionizing” and thus discarded in
our simulation is small. After these steps, we obtain an initial
state distribution which has the radial and momentum distri-
bution shown in Fig. 4. Finally, we also find that the field-
free evolution of the initial momentum distribution changes
little for times comparable to the Kepler period �see Fig. 5�
and we can thus consider our ensemble of initial conditions
as approximately stable for all practical considerations.

B. Computation of the doubly ionizing trajectories

We determine doubly ionizing trajectories due to the
HCP’s as follows: when the pulse is switched off we check
the total energy of the three-body Coulomb system. If the
energy is negative then the driving field has not transferred
enough energy to cause double ionization and we thus label
those trajectories as nondoubly ionizing trajectories. If the
energy is greater than zero then it can be the case that these
trajectories will lead to single or double ionization. To decide
if these latter trajectories are singly or doubly ionized we
continue to monitor them in time by propagating the freely
evolving three-body Coulomb system until the asymptotic
regime is reached. If at that time �i= pi

2 /2−Z /ri, with Z=2,
for each electron are both positive we label these trajectories
as double ionizing otherwise as nondouble ionizing. Note
that the above described method does not allow us to sepa-
rate the singly ionized from the bound trajectories. The rea-
son is that with the process described above the �i= pi

2 /2
−Z /ri reach constant values only asymptotically but when
the system is propagated for so long the classical nature of

our calculation can cause bound trajectories to become “au-
toionized” and thus artificially contribute to the single ion-
ization probability. To compute the double ionization prob-
ability we first find the number of double ionizing
trajectories and normalize with respect to the total number of
trajectories that have been propagated. The single and double
differential probabilities presented in this paper use the
asymptotic values of the quantities plotted. We believe that
even though we account for the electron-electron correlation
in the initial state through effective charges this simple initial
state captures accurately the essential final correlations as has
been shown in other cases �30�.

C. Single and double differential probabilities
for double ionization

Following the procedure previously described, we con-
struct the initial state distribution both for equal and different
effective charges and find the trajectories that doubly ionize
after N=1 HCP. We find that both initial state distributions
yield similar results both for the energy as well as the inter-
electronic angular distribution, as can be seen in Figs. 6 and
7. In the following we present results for the initial state
distribution that corresponds to I1� I2. In addition, for the
single differential probabilities presented in this paper for
I1� I2 we take the average of the differential probabilities of
the two electrons unless otherwise specified.
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FIG. 6. Distribution of the interelectronic angle for a laser pulse
with q=3 a.u. and �=0.1 a.u. Results for N=1 HCP are shown:
The � refer to I1= I2 while the � refer to I1� I2.
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FIG. 7. Energy distribution normalized over the double ioniza-
tion probability for a laser pulse with q=3 a.u. and �=0.1 a.u.
Results for N=1 HCP are shown. The � refers to I1= I2 while the
� refers to I1� I2.
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FIG. 8. Energy distribution for a laser pulse with q=3 a.u. and
�=0.1 a.u. �Left� results for an odd number of HCPs with N=1
���, N=3 ���, N=5 �*�, N=7 �+�, N=9 ���. �Right� Results for
an even number of HCPs with N=2 ���, N=4 ���, N=6 �*�, N
=8 �+�, N=10 ���.
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In Fig. 8, we present results for the energy distribution for
odd or even number of HCPs for q=3 a.u. and �=0.1 a.u.,
with � much smaller than the Kepler period Tn of an electron
in a hydrogenic atom Tn=2�n3 /Zeff

2 . Let us note that while
an even number of HCPs corresponds to a zero time integral
of the complete pulse and it can thus be produced, the odd
number of HCPs corresponds to a nonzero time integral of
the pulse and can thus not be produced �32�. However, what
can be produced instead of an N=1 HCP is a very short and
strong first half cycle followed by a much weaker and much
longer second half to compensate �3�. While the interaction
of each of the electrons with the laser pulse is very strong,
the electron-electron interaction as well as the interaction of
each of the electrons with the nucleus is not negligible. If the
latter were of no importance, double ionization would not
take place, since an even number of HCPs transfers zero net
momentum. This has already been noted for the ionization of
the driven hydrogen, see Ref. �24�. There it was pointed out
that one can think of the process as a sequence of 
 kicks, at
times equal with an integer multiple of � /2, with opposite
signs �HCPs of opposite sign� where the interaction of the
electron with the nucleus in between the kicks cannot be
neglected. For an even number of HCPs it is no surprise that
on average the momentum transfer is small and the kinetic
energy acquired is less than the binding energy of the two-

electron atom Ei with the energy distribution peaking at en-
ergies close to zero. However, when an odd number of HCPs
are applied then the net momentum transfer is q and since the
kinetic energy for each electron is greater than the electron’s
binding energy q2 /2� �Ei� /2, one expects the energy distri-
bution to peak around q2 /2− �Ei� /2	3.1 a.u. if the electron-
electron interaction plays no role. From Fig. 8 we see that the
electron distribution peaks at an energy smaller than 3.1 a.u.
The latter effect cannot be due to our approximate initial
state since this latter approximation can only cause the en-
ergy distribution to peak at a higher energy �effectively,
smaller Ei�. As we increase the number of odd HCPs the shift
of the energy distribution to smaller energies becomes more
substantial, although one can clearly see a “shoulder” struc-
ture around E=3.1 a.u. This shift to smaller energies for an
increased number of odd HCPs must be due to the increasing
significance of the electron-electron repulsion in the dynam-
ics of the doubly ionizing trajectories for the application of
longer pulses. Indeed, for an even number of HCPs where
the electron-electron interaction is more important �see also
next paragraph� the energy distribution is peaked around
small energies.

TABLE I. Probability for double ionization as a function of the
number of HCPs.

No. half-cycles Prob. No. half-cycles Prob.

1 0.70

2 0.0029

3 0.67

4 0.0177

5 0.58

6 0.053

7 0.51

8 0.1

9 0.48

10 0.15
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FIG. 9. Distribution of the interelectronic angle for a laser pulse
with q=3 a.u. and �=0.1 a.u. �Left� Results for an odd number of
HCPs with N=1 ���, N=3 ���, N=5 �*�, N=7 �+�, N=9 ���.
�Right� Results for an even number of HCPs with N=2 ���, N=4
���, N=6 �*�, N=8 �+�, N=10 ���.
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FIG. 10. Double ionization probability as a function of the mo-
mentum transfer q for N=8 ��� and N=9 ��� HCPs.

FIG. 11. �Color online� Probability density of momentum along
the z axis for q=3 a.u. and �=0.1 a.u. Results for an odd number
of HCPs with N=1,3 ,5 ,7 and N=9 from left to right.
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In Fig. 9, we show the distribution of the interelectronic
angles for odd as well as even numbers of HCPs. We see that
for an odd number the distribution peaks at approximately
45° while for an even number of HCPs its peak shifts from
larger to smaller angles as the number of HCPs increases.
The fact that the interelectronic angle between electrons that
have received an even number of kicks is larger than the
angle between those which have been kicked an odd number
of times is to be expected: In the former case the electrons
are much slower �compare the right and left panels in Fig. 8�
and thus the electron-electron repulsion is much more pro-
nounced as compared to the electrons that escape after an
odd number of cycles. This will be further illustrated in the
following when we present single and double differential
probabilities in angle.

In Table I we present the probability for double ionization
as a function of the number of HCPs. We find that the double

ionization probability follows the same pattern as the single
ionization of H �24�. Namely, as the number of even HCPs
increases the probability for double ionization increases
whereas the probability for double ionization decreases with
increasing number of odd HCPs �Table I shows that the prob-
ability for both electrons to remain bound after a large num-
ber of even cycles is significant.� So as for the case of a
single electron atom for the case of two electron atoms the
electrons are “stripped” from the atom when driven by an
odd number of HCPs while an even number of HCPs causes
the two electrons to reattach to the atomic center �25�. Also,
in Fig. 10 we show how the double ionization probability
changes as a function of the momentum transfer q for the
case of N=8 and N=9 HCPS.

In addition, we show in Fig. 11 and 12 the probability
density of the momentum along the z axis �see Ref. �33� for
the definition of the classical probability density�. It is clear
that the effect of the field on each of the electrons is a kick
received during each of the HCPs. We emphasize that all our

FIG. 12. �Color online� Probability density of momentum along
the z axis for q=3 a.u. and �=0.1 a.u. Results for an even number
of HCPs with N=2,4 ,6 ,8, and 10 from left to right.

FIG. 13. �Color online� Double angle differential probability
density for a laser pulse with q=3 a.u. and �=0.1 a.u. The angles
�1 and �2 are the angles of the two electrons with respect to the
direction of the field. �i=0 corresponds to a direction parallel to the
field. Results for an odd number of HCPs with N=1,3 ,5 ,7, and 9
from left to right. Note that the results have been symmetrized with
respect to the diagonal �1=�2.

FIG. 14. �Color online� Double angle differential probability
density for a laser pulse with q=3 a.u. and �=0.1 a.u. The angles
�1 and �2 are the angles of the two electrons with respect to the
direction of the field. �i=0 corresponds to a direction parallel to the
field. Results or an even number of HCPs with N=2,4 ,6 ,8, and 10
from left to right. Note that the results have been symmetrized with
respect to the diagonal �1=�2. �The graph for N=2 is not smooth
due to the lower statistics.�

FIG. 15. �Color online� Double momentum differential probabil-
ity density for the momentum p1,2. The left figure corresponds to
N=1 HCP and the right one corresponds to N=9 HCPs. Note that
the results have been symmetrized with respect to the diagonal p1

= p2.
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results are obtained by propagating with the full three-body
Hamiltonian under the influence of an odd or even number of
HCPs of total duration N�, see Eq. �3�. Referring to “kicks”
is only an interpretation consistent with the results obtained
accounting for all Coulomb interactions and accounting for
the effect of the finite total duration of the external field
applied. The probability density of the momentum along the
z axis clearly illustrates that the HCPs applied are very
strong.

In Figs. 13 and 14 we show the double angle differential
probability densities. The angles in question refer to the
angle that each of the electrons makes with the polarization
axis z. We find that when the two electrons are driven by an
odd number of HCPs they escape to the continuum almost
antiparallel to the electric field �which is the direction of the
force the field exerts on each of the electrons� with a small
interelectronic angle. When the number of cycles is even the
two electrons escape with a much larger interelectronic angle
with one electron at a small angle with respect to the polar-
ization axis.

Finally, in Figs. 15 and 16 we plot the double differential
probability with respect to the magnitude of the momenta of
electrons 1 and 2. Both for the case of odd and even number
of cycles we find that as we increase the number of HCPs
more electrons escape with differing momenta, that is, the
probability for one fast and one slow electron increases with
the number of HCPs. Also a comparison between the N=9
and N=10 HCPs case clearly shows that the escape of the
two electrons with different momenta is much more pro-
nounced for the case of N=10 HCPs. In Fig. 17 we plot the
average momentum, radius, and relative direction of the mo-
mentum and position r ·p / �rp� for each electron for the case
of N=9 and N=10 HCPs for all doubly ionizing trajectories.
We find that at the end of the N=10 HCPs the electrons are
closer to the nucleus �smaller radii� compared to the N=9
case. Another difference is that while for the case of N=9
HCPs the two electrons follow the external field during the
time that it is switched on, for the case of N=10 HCPs the
electrons strongly interact with the nucleus �very small value
of the radii� before they follow the driving field.

In this section we have presented classical results regard-
ing the double ionization of the ground state of the He atom
with HCPs with the duration � of each HCP being much
shorter than the Kepler period. In addition, all our calcula-
tions for single and double differential probabilities have
been performed for values of the peak of the external field E0
that are much higher than the threshold value for over the
barrier ionization. So our choice of peak strength and dura-
tion of the pulse is such that the classical calculations would
be most reliable. We expect that our classical calculations
accurately capture the essential features of the double ioniz-
ing trajectories particularly of those where the electrons es-
cape with larger energies. Our classical results are presented
for the n=1 state of the He atom using parameters of the
external field that correspond to a peak intensity of 7.8
	1020 W /cm2 and an effective frequency � /� of 31 a.u.
which are well beyond current experimental capabilities.
However, the results presented �with an appropriate scaling
of the transfer q and the time �� should also hold for two
electrons much less bound in the initial state as is the case for
the doubly excited resonant states of He which can have
lifetimes of picoseconds and are thus within current experi-
mental capabilities.

In summary, we have used a classical calculation to show
how a sequence of HCPS can be used to “strip” and reattach
one electron to two atomic centers or two electrons to one
atomic center. We have presented results for the single and
double differential probabilities for the double ionization of
helium from the ground state when driven by HCPs of at-
tosecond time scales. We have shown that for an even num-
ber of attosecond HCPs the effect of the nucleus on double
ionization is pronounced and cannot be neglected. We antici-
pate that as quantum calculations become available a direct
comparison with our classical results will better illustrate the
regime of validity of the classical calculations for single and
double differential probabilities.

FIG. 16. �Color online� Double momentum differential probabil-
ity density for the momentum p1,2. The left figure corresponds to
N=2 HCPs, the right one corresponds to N=10 HCPs. Note that the
results have been symmetrized with respect to the diagonal p1= p2.

FIG. 17. �Left� N=9 HCPs and �right� N=10 HCPs: Average
over all double ionizing trajectories of the radius of electrons 1
�black dashed line� and 2 �gray dashed line�, of the relative direc-
tion between the position and the momentum of electron 1 �black
solid line� and electron 2 �gray solid line�, the momenta parallel to
the field for electron 1 �black dotted line� and electron 2 �gray
dotted line�. The thin solid line represents sin�� /�t�.
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