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We present the computation of two-photon transition spectra between rovibrational states of the H2
+ mo-

lecular ion, including the effects of hyperfine structure and excitation polarization. The reduced two-photon
matrix elements are obtained by means of a variational method. We discuss the implications of our results for
high-resolution spectroscopy of H2

+.
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I. INTRODUCTION

The H2
+ ion is the simplest stable molecule. It plays an

important role, both as a benchmark system for detailed stud-
ies of molecular energy levels �1�, and in astrophysics. How-
ever, there have been very few investigations concerning
high-resolution spectroscopy of H2

+. Radiofrequency spec-
troscopy of the hyperfine structure has been performed on
H2

+ ions trapped in a Paul trap �2�. Rotational and rovibra-
tional transitions close to the dissociation limit were investi-
gated using microwave and laser spectroscopy on an ion
beam �3,4�. The scarcity of experimental studies is mainly
due to the fact that H2

+, being homonuclear, does not have a
dipole-allowed rotational or vibrational spectrum �except in a
small region close to the dissociation limit, where the 1s�g
and 2p�u electronic curves overlap�.

Two-photon rovibrational transitions are nevertheless al-
lowed, and Doppler-free two-photon spectroscopy was pro-
posed a few years ago as a promising new method for deter-
mination of the electron-to-proton mass ratio me /mp �5,6�.
Transition probabilities between L=0 states were computed
in Ref. �7� �where L is the total orbital angular momentum
quantum number�, demonstrating the feasibility of two-
photon spectroscopy using �v=1 transitions around
8–12 �m. Among these, transitions lying in the spectral
range of CO2 lasers �9–10 �m� are especially attractive for
frequency metrology, because of their high output power and
stability. Even if there is no coincidence of H2

+ transitions
with the CO2 lines, a CO2 laser can be used as a frequency
reference for a tunable quantum cascade laser �QCL� �8�. We
have built an experiment designed to probe the �v=0,L=2�
→ �v�=1,L�=2� transition at 9.166 �m �9�.

The aim of this paper is to present the computation of
two-photon transition spectra in H2

+, including the effects of
hyperfine structure. In Sec. II, the hyperfine effective Hamil-
tonian obtained in Ref. �10� is diagonalized, and the hyper-
fine states are written explicitly. In Sec. III, we recall the
theory of two-photon transition probabilities. The transition
matrix elements between hyperfine states are expressed as a
function of reduced matrix elements involving only the or-

bital part of the wave functions, which are calculated using
the same variational method as in Ref. �10�. In order to avoid
huge data, only the spectra of the transitions �v=0,L�
→ �v�=1,L� with 0�L�3 are presented �11�. One reason
for this choice is that the H2

+ hyperfine structure is essen-
tially determined by the value of L. Moreover, the considered
L values are the only one which are significantly populated
when H2

+ ions are created by electron impact ionization on
H2 at room temperature, and the frequencies of these transi-
tions are sufficiently close to a CO2 line to allow their exci-
tation by a laser system discussed below.

II. HYPERFINE STRUCTURE OF H2
+

A. Hyperfine Hamiltonian

The following notations are used throughout this paper: Se
and I1, I2 are, respectively, the electron spin and the spins of
both protons, with Se= I1= I2=1 /2. We introduce the total
nuclear spin I=I1+I2, where I is equal to 0 or 1. The total
orbital angular momentum quantum number is denoted L.
Note that due to the Pauli symmetrization, and taking into
account that the electron is in the ground 1s�g state, the total
nuclear spin I is equal to 0 when L is even, and to 1 when L
is odd.

The hyperfine effective Hamiltonian of the H2
+ molecular

ion is taken in the form �10�

Hhfs = bF�I · Se� + ce�L · Se� + cI�L · I�

+
d1

�2L − 1��2L + 3�
�2

3
L2�I · Se� − ��L · I��L · Se�

+ �L · Se��L · I��� +
d2

�2L − 1��2L + 3�

��1

3
L2I2 −

1

2
�L · I� − �L · I�2� . �1�

The numerical values of the coefficients bF ,ce ,cI ,d1 ,d2 have
been computed with a relative accuracy of O��2� �10� using
a variational method, for all rovibrational levels �v ,L� with
0�L�4 and 0�v�4.

If I�0, the strongest coupling is the spin-spin electron-
proton interaction, i.e., the first term in Eq. �1�. This interac-*karr@spectro.jussieu.fr
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tion determines the principal splitting of the rovibrational
levels of H2

+. With this consideration in mind, the preferable
coupling scheme of angular momentum operators is

F = Se + I, J = L + F . �2�

The possible values of F and J, as well as the number of
hyperfine levels, are given in Table I for each value of L. The
hyperfine structure is much simpler for the states of even L,
where only the value F=1 /2 is allowed since the total
nuclear spin is zero.

B. Hyperfine states

In order to obtain the hyperfine eigenstates and frequency
shifts, it is necessary to diagonalize the Hamiltonian �1�. This
is immediate when L is even: the effective Hamiltonian re-
duces to ce�L ·Se�, and can be written

Hhfs =
ce

2
�J2 − L2 − Se

2� . �3�

Its eigenstates are the states �v ,L ,Se= 1
2 , I=0,F= 1

2 ,J ,MJ�
coupled according to the angular summation scheme �2�, the
corresponding energy shifts are

	v,L,
1

2
,0,

1

2
,L −

1

2

Hhfs
v,L,

1

2
,0,

1

2
,L −

1

2
�

= −
L + 1

2
ce, �L � 0� , �4�

	v,L,
1

2
,0,

1

2
,L +

1

2

Hhfs
v,L,

1

2
,0,

1

2
,L +

1

2
� =

L

2
ce. �5�

All energy shifts for L=0,2 and v=0,1 are given in Table II.
The relative theoretical accuracy is O��2�, corresponding to
the limit of the Breit-Pauli Hamiltonian used in Ref. �10� to
compute the hyperfine coefficients. The numerical accuracy
is higher, which is why more digits are given here, as well as
in Table III below; the extra digits will become useful when
higher-order corrections to the hyperfine structure are com-
puted.

The case of odd L is more complicated. The operators
involved in the expression of Hhfs are I ·Se, L ·Se, L ·I, L2,
and I2. Note that they all commute with L2, Se

2, I2, J2, and Jz,
but the terms L ·Se and L ·I do not commute with F2. As a
consequence, F is an approximate quantum number only.

There is a degeneracy in MJ, so that it suffices to diagonalize
the restriction of Hhfs to a subspace of given MJ. In the
following, MJ is set to 1/2.

Let us consider a set of states


F =
3

2
,J = L +

3

2
�, 
F =

3

2
,J = L +

1

2
� ,


F =
1

2
,J = L +

1

2
�, 
F =

3

2
,J = L −

1

2
� ,

TABLE I. Possible values of F and J as a function of L. n is the
number of hyperfine levels.

L Se I F J n

0 1
2 0 1

2
1
2 1

1 1
2 1 1

2
1
2 , 3

2 5
3
2

1
2 , 3

2 , 5
2

even 1
2 0 1

2 L− 1
2 , L+ 1

2 2

odd 1
2 1 1

2 L− 1
2 , L+ 1

2 6
3
2 L− 3

2 , L− 1
2 , L+ 1

2 , L+ 3
2

TABLE II. Hyperfine splitting �in MHz� for the rovibrational
levels �v ,L� with L=0,2 and v=0,1. All digits are converged. The
relative theoretical accuracy is O��2�, which corresponds to an un-
certainty of a few kHz.

L v J=L−1 /2 J=L+1 /2

0 0 0.0000

0 1 0.0000

2 0 −63.2438 42.1625

2 1 −59.3574 39.5716

TABLE III. Hyperfine splitting �in MHz� and eigenstates for the
rovibrational levels �v ,L� with L=1,3 and v=0,1. All digits are
converged. The relative theoretical accuracy on the frequency shifts,
as well as on the smaller of the two coefficients �C1

� ,C3
��, is O��2�.

This corresponds to a few tens of kHz for the frequency shifts.

L v F̃ J �Ehfs �C1
� ,C3

��

3/2 5/2 474.1063 �0,1�
3/2 3/2 481.9534 �0.015612,0.999878�

1 0 1/2 3/2 −930.4332 �−0.999878,0.015612�
3/2 1/2 385.3985 �0.038891,0.999243�
1/2 1/2 −910.7579 �−0.999243,0.038891�
3/2 5/2 461.2574 �0,1�
3/2 3/2 468.5247 �0.015074,0.999886�

1 1 1/2 3/2 −905.7836 �−0.999886,0.015074�
3/2 1/2 377.9948 �0.037345,0.999302�
1/2 1/2 −887.2491 �−0.999302,0.037345�
3/2 9/2 507.2568 �0,1�
3/2 7/2 489.5257 �0.042115,0.999113�

3 0 1/2 7/2 −941.1034 �−0.999113,0.042115�
3/2 5/2 423.6342 �0.061812,0.998088�
1/2 5/2 −894.6614 �−0.998088,0.061812�
3/2 3/2 341.5540 �0,1�
3/2 9/2 492.3817 �0,1�
3/2 7/2 475.5771 �0.040656,0.999173�

3 1 1/2 7/2 −915.7408 �−0.999173,0.040656�
3/2 5/2 413.6810 �0.059441,0.998232�
1/2 5/2 −872.0486 �−0.998232,0.059441�
3/2 3/2 336.9246 �0,1�
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F =
1

2
,J = L −

1

2
�, 
F =

3

2
,J = L −

3

2
� ,

where the last ket exists only if L�3. We will refer to them
as pure states. The matrix representing Hhfs in this basis can
be derived by use of the following relations:

I · Se =
1

2
�F2 − I2 − Se

2� =
1

2
�F2 −

11

4
� , �6�

�FJ�L · Se�F�J� = �− 1�J+L+F
 L 1 L

F� J F
��L�L + 1��2L + 1�

��Se,I,F��Se��Se,I,F�� , �7�

�FJ�L · I�F�J� = �− 1�J+L+F
 L 1 L

F� J F
��L�L + 1��2L + 1�

��Se,I,F��I��Se,I,F�� , �8�

L2I2 = 2L�L + 1� , �9�

and the reduced matrices of Se and I on the subspaces S
= �F= 3

2 ,F= 1
2 � �see Eq. �91� of Ref �12��

�Se� = �
�15

3
−

2
�3

2
�3

−
�6

6
�, �I� = �

2�15

3

2
�3

−
2
�3

2�6

3
� . �10�

Since there is no coupling between different J states, the
shape of Hhfs is the following:

Hhfs =�
A 0 0 0 0 0

0 B C 0 0 0

0 C D 0 0 0

0 0 0 E G 0

0 0 0 G H 0

0 0 0 0 0 K

� . �11�

The nonzero coefficients are calculated from Eqs. �6�–�10�:

A =
bF

2
+

L

2
�ce + 2cI −

1

3

2d1 + d2

2L + 3
� , �12�

B =
bF

2
+

L − 3

6
�ce + 2cI� +

L + 3

6

2d1 + d2

2L + 3
, �13�

C =
�L�2L + 3�

3
�ce − cI� −

�L

6�2L + 3
�d1 − d2� , �14�

D = − bF −
L

6
�ce − 4cI� , �15�

E =
bF

2
−

L + 4

6
�ce + 2cI� +

L − 2

6

2d1 + d2

2L − 1
, �16�

G =
��L + 1��2L − 1�

3
�ce − cI� +

�L + 1

6�2L − 1
�d1 − d2� ,

�17�

H = − bF +
L + 1

6
�ce − 4cI� , �18�

K =
bF

2
−

L + 1

2
�ce + 2cI +

1

3

2d1 + d2

2L − 1
� . �19�

The eigenstates of J=L�
3
2 are pure states of angular cou-

pling: �v ,L ,Se=1 /2, I=1,F=3 /2,J=L�3 /2�, while the
eigenstates of J=L�

1
2 are linear combinations of F=1 /2

and F=3 /2 states, obtained by diagonalization of the 2�2
submatrices appearing in Eq. �11�:

�v,L,Se,I,F̃,J = L �
1
2� � C1

��v,L, 1
2 ,1, 1

2 ,L �
1
2�

+ C3
��v,L, 1

2 ,1, 3
2 ,L �

1
2� . �20�

We will refer to them as mixed states. The coefficients C1
�

and C3
� are calculated in Table III together with the hyperfine

frequency shifts, for L=1,3 and v=0,1. The mixing between
F=1 /2 and F=3 /2 states is weak, so that the states can be

labeled by the dominant F, noted as F̃. The hyperfine split-
ting of the first rovibrational levels �11� is shown in Figs. 1
and 2.

III. TWO-PHOTON TRANSITIONS

A. Two-photon transition operator

In this paragraph, we present the general theory of two-
photon transitions with arbitrary excitation polarizations, as
developed by Grynberg in Ref. �13�. Let us consider an H2

+

ion irradiated by two beams of polarizations 	1 and 	2. The
transition probability between two states �
� and ��� by ab-
sorption of one photon in each wave is proportional to

J=1/2

J=1/2

98.9 MHz
J=3/2

J=5/2

L=2L=0

v=0

v=1

105.4 MHz

J=5/2

J=3/2

FIG. 1. Hyperfine splitting of the rovibrational levels �v ,L� with
L=0,2 and v=0,1. The spacings between hyperfine states are pro-
portional to the frequency difference. That scale is not respected for
the rotational and vibrational spacings.
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��
�SQ	1	2
����2, �21�

where

SQ	1	2
=

1

2
�Q	1	2

+ Q	2	1
� �22�

is the two-photon transition operator, with

Q	1	2
= d · 	1

1

H − E
d · 	2. �23�

In this expression, d is the dipole operator, H is the full
Hamiltonian, and E the intermediate state energy. If the ex-
citation polarizations are chosen among the standard polar-
izations �, �+, and �−, the two-photon transition operator
reads

SQq1q2
=

1

2
�Qq1q2

+ Qq2q1
�, Qq1q2

= dq1

1

H − E
dq2

�24�

where dqi
�qi=−1,0 ,1� are the standard components of d.

Tensor Qq1q2
has a rank 2 and can be represented in terms of

irreducible tensors

Qq
�k� = �

q1,q2

��kq�11q1q2�Qq1q2
, k = 0,1,2. �25�

Inverting this expression, one finds

SQq1q2
= �

q=−2

2

aq
�2�Qq

�2� + a0
�0�Q0

�0�, �26�

where

aq
�k� = ��11q1q2�kq� . �27�

Table IV gives the values of the coefficients aq
�k� for all com-

binations of the standard polarizations.

B. Two-photon matrix elements between hyperfine levels

We consider a two-photon transition between the hyper-
fine states �
�= �v ,L ,Se , I ,F ,J ,MJ�= �g ,J ,MJ� and ���
= �v� ,L� ,Se , I� ,F� ,J� ,MJ��= �e ,J� ,MJ�� with standard excita-
tion polarizations q1, q2. In order to simplify the expressions,
we restrict the presentation to a case where the initial and
final states are pure states; the results will be generalized at
the end of the paragraph. Using the Wigner-Eckart theorem,
the two-photon matrix element between �
� and ��� may be
expressed as

�
�SQq1q2
��� = �

k

aq
�k���J�kMJ�q�JMJ�

�gJ��Q�k���eJ��
�2J + 1

,

�28�

q = q1 + q2.

The states �g ,J ,MJ� and �e ,J� ,MJ�� are degenerate in MJ or
MJ�. If we assume the initial level to be unpolarized, the
transition probability averaged over MJ and MJ� is propor-
tional to the averaged squared matrix element

�SQ̄q1,q2
�gJ → eJ���2

=
1

2J + 1 �
MJ,MJ�

��g,J,MJ�
SQq1q2

�e,J�,MJ���
2. �29�

Using the orthogonality relations of Clebsch-Gordan coeffi-
cients �12�, one obtains �13�

TABLE IV. Values of the coefficients aq
�k� for all combinations of

the standard polarizations.

�− � �+

q1=−1 q1=0 q1=1

�− aq
�2�=
q,−2 aq

�2�=
�2
2 
q,−1 aq

�2�=
�6
6 
q,0

q2=−1 a0
�0�=0 a0

�0�=0 a0
�0�=

�3
3

� aq
�2�=

�2
2 
q,−1 aq

�2�=� 2
3
q,0 aq

�2�=
�2
2 
q,1

q2=0 a0
�0�=0 a0

�0�=−
�3
3

a0
�0�=0

�+ aq
�2�=

�6
6 
q,0 aq

�2�=
�2
2 
q,1 aq

�2�=
q,2

q2=1 a0
�0�=

�3
3

a0
�0�=0 a0

�0�=0

449.4

F=3/2

−898.8

F=1/2

J=1/2

J=5/2
J=3/2

J=3/2
J=1/2

461.5

F=3/2

−923.0

F=1/2

J=1/2

J=5/2
J=3/2

J=3/2
J=1/2

446.9

F=3/2

−893.8

F=1/2

J=3/2

J=5/2

J=7/2
J=9/2

J=7/2

J=5/2

F=3/2

458.8

F=1/2

−917.6

J=7/2

J=5/2

J=3/2

J=5/2

J=7/2
J=9/2

v=1

v=0

L=3L=1

FIG. 2. Same as Fig. 1, with L=1,3. Within a given F̃ multiplet,
the spacings between J states are proportional to the frequency dif-
ference. That scale is not respected for the other spacings. The

frequency shifts of the centers of the F̃ multiplets with respect to the
spin-independent level, are indicated in MHz.
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�SQ̄q1,q2
�gJ → eJ���2 =

1

2J + 1 �
k=0,2

�aq
�k��gJ��Q�k���eJ���2

2k + 1
.

�30�

The dipole operator and hence Q�k� acts on the spatial vari-
ables only. Using Eq. �89� of Ref �12�. one can write the
reduced matrix elements of Q�k� using only orbital wave
functions

�gJ��Q�k���eJ�� = 
I,I�
F,F��− 1�J�+L+F+k�2J + 1�2J� + 1

�
 L k L�

J� F J
��vL��Q�k���v�L�� . �31�

In the case where the initial and final states are not pure basis
states �i.e., for odd L and J=L�1 /2�, they can be written
according to Eq. �20�:

�g̃,J� = �
Fi=1/2,3/2

CFi
�v,L,1/2,1,Fi,J� . �32�

This expression can also be applied to pure states, where one
coefficient is equal to zero and the other is equal to 1. It is
then straightforward to generalize Eq. �31�:

�g̃J��Q�k���ẽJ��

= 
I,I� �
Fi,Fj�


Fi,Fj�
CFi

CFj�
�− 1�J�+L+Fi+k�2J + 1�2J� + 1

�
 L k L�

J� Fi J
��vL��Q�k���v�L�� . �33�

C. Selection rules

Since the two-photon transition operator is a sum of op-
erators of rank 0 and 2, the states �
�= �v ,L ,Se , I ,F ,J ,MJ�
and ���= �v� ,L� ,Se , I� ,F� ,J� ,MJ�� can be coupled only if �L
−L���2 and �J−J���2. For the rovibrational states of H2

+,
the total nuclear spin is I=0 when L is even and I=1 when L
is odd. The two-photon transition operator acts on the orbital
variables only, which explains the 
II� factor in Eq. �31� and
gives the selection rule �L=0 or �2.

For the same reason, if we consider pure states, we get the
selection rule �F=0, as can be seen from the 
FF� factor in
Eq. �31�. However, due to the mixing between F=1 /2 and

F=3 /2, transitions between mixed states of different F̃ are
weakly allowed.

There are additional selection rules on MJ and MJ� de-
pending on the beam polarizations as can be seen in Table
IV. A difference MJ�−MJ must be equal to 0 for �� and
�+�−, +1 �−1� for ��+ ���−�, and +2 �−2� for �+�+ ��−�−�.

D. Reduced orbital two-photon matrix elements

The last step consists in the numerical computation of the
reduced matrix elements �vL��Q�k���v�L��. This is achieved
using the variational approach outlined in Ref. �10�. Briefly,
the wave function for a state with a total orbital angular
momentum L and of a total spatial parity �= �−1�L is ex-
panded as follows:

�LM
� �R,r1� = �

l1+l2=L

YLM
l1l2�R̂, r̂1�Gl1l2

L� �R,r1,r2� , �34�

Gl1l2
L� �R,r1,r2� = �

n=1

N

�Cn Re�e−�nR−�nr1−�nr2�

+ Dn Im�e−�nR−�nr1−�nr2�� ,

where the complex exponents �, �, �, are generated in a
pseudorandom way. The use of complex exponents instead
of real ones allows to reproduce the oscillatory behavior of
the vibrational part of the wave function and improves the
convergence rate. Since very high accuracy is not required
for transition probabilities, relatively small basis lengths of
N=700–1000 were used, providing a relative accuracy of a
few parts in 109 for the nonrelativistic energies, and a few
parts in 105 for the matrix elements.

The reduced matrix elements �vL��Q�k���v�L�� are divided
into three terms corresponding to the possible values L−1,

TABLE V. Reduced matrix elements of the operators Q�0� and
Q�2� for the transitions �v=0,L�→ �v�=1,L� with 0�L�3, in
atomic units.

L �0L��Q�0���1L� �0L��Q�2���1L�

0 0.7255 0

1 1.261 0.7753

2 1.640 0.8541

3 1.962 0.9903

TABLE VI. Average two-photon matrix elements �SQ̄q1,q2
�2 given by Eq. �30� between the rovibrational

levels �v=0,L� and �v=1,L� with L=0,2, in atomic units. �f is the hyperfine shift of the transition fre-
quency in MHz.

L �f J J� �� �+�+ �+�−

0 0.0000 1/2 1/2 0.1754 0.0000 0.1754

−50.7600 5/2 3/2 0.0039 0.0058 0.0010

2 −1.2955 5/2 5/2 0.1949 0.0233 0.1832

1.9432 3/2 3/2 0.1929 0.0204 0.1827

51.4077 3/2 5/2 0.0058 0.0088 0.0015
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L+1, L for the angular momentum of the intermediate state.
The three following terms are evaluated numerically:

a− = − �
v�

�vL��d��v�L − 1��v�L − 1��d��v�L��
��2L + 1��2L� + 1��� − Ev�L−1�

, �35�

a+ = − �
v�

�vL��d��v�L + 1��v�L + 1��d��v�L��
��2L + 1��2L� + 1��� − Ev�L+1�

, �36�

a0 = �
v�

�vL��d��v�L��v�L��d��v�L��
��2L + 1��2L� + 1��� − Ev�L�

, �37�

where Ev�,L� is the energy of the intermediate state �v�L�� and
�= �Ev�L�−EvL� /2 is the photon energy. The reduced matrix
elements of Q�k� are related to a−, a+, a0 in the following
way:

�vL��Q�0���v�L�
�2L + 1

= −
�3

3
�a− + a0 + a+� , �38�

�vL��Q�2���v�L − 2�
�2L + 1

= −�2L − 3

2L − 1
a−, �39�

�vL��Q�2���v�L�
�2L + 1

= −
1
�6

��2L + 3��2L − 1�L�L + 1�

�� a−

L�2L − 1�
−

a0

L�L + 1�

+
a+

�2L + 3��L + 1�� , �40�

�vL��Q�2���v�L + 2�
�2L + 1

= −�2L + 5

2L + 3
a+. �41�

The reduced matrix elements of Q�0� and Q�2� for the transi-
tions �v=0,L�→ �v�=1,L� with 0�L�3, are given in Table
V.

E. Two-photon transition spectra

Using Eqs. �30� and �33�, the orbital reduced matrix ele-
ments given in Table V, and the mixing coefficients given in
Table III, we have computed the two-photon matrix elements
for the four transitions �v=0,L�→ �v�=1,L� with 0�L�3.
They are given in Tables VI–VIII for L=0 and 2, L=1, and
L=3, respectively. The corresponding spectra, for three dif-
ferent choices of standard polarizations: linear-linear �+�+

and �+�− are shown in Figs. 3–5.

TABLE VII. Same as Table VI, with L=1.

�f �F ,J� �F� ,J�� �� �+�+ �+�−

−693.869 �3/2,3/2� �1/2,3/2� 1.028�10−5 1.534�10−5 2.607�10−6

−689.945 �3/2,5/2� �1/2,3/2� 2.550�10−6 3.824�10−6 6.374�10−7

−684.601 �3/2,3/2� �1/2,1/2� 1.003�10−5 1.505�10−5 2.509�10−6

−680.678 �3/2,5/2� �1/2,1/2� 1.118�10−5 1.677�10−5 2.794�10−6

−645.591 �3/2,1/2� �1/2,3/2� 5.090�10−5 7.635�10−5 1.273�10−5

−636.324 �3/2,1/2� �1/2,1/2� 4.229�10−7 0.000�10−1 4.229�10−7

−51.979 �3/2,3/2� �3/2,1/2� 1.329�10−3 1.993�10−3 3.322�10−4

−48.056 �3/2,5/2� �3/2,1/2� 8.003�10−3 1.201�10−2 2.001�10−3

−10.348 �3/2,3/2� �3/2,5/2� 1.683�10−2 2.524�10−2 4.207�10−3

−6.714 �3/2,3/2� �3/2,3/2� 1.853�10−1 1.281�10−2 1.789�10−1

−6.424 �3/2,5/2� �3/2,5/2� 1.842�10−1 1.122�10−2 1.786�10−1

−3.702 �3/2,1/2� �3/2,1/2� 1.767�10−1 0.000�10−1 1.767�10−1

−2.791 �3/2,5/2� �3/2,3/2� 1.122�10−2 1.683�10−2 2.804�10−3

2.487 �1/2,1/2� �1/2,3/2� 2.666�10−2 3.999�10−2 6.665�10−3

11.754 �1/2,1/2� �1/2,1/2� 1.767�10−1 0.000�10−1 1.767�10−1

12.325 �1/2,3/2� �1/2,3/2� 1.901�10−1 2.002�10−2 1.801�10−1

21.592 �1/2,3/2� �1/2,1/2� 1.333�10−2 2.000�10−2 3.333�10−3

37.929 �3/2,1/2� �3/2,5/2� 2.401�10−2 3.601�10−2 6.002�10−3

41.563 �3/2,1/2� �3/2,3/2� 2.657�10−3 3.986�10−3 6.643�10−4

644.376 �1/2,1/2� �3/2,1/2� 4.229�10−7 0.000�10−1 4.229�10−7

654.214 �1/2,3/2� �3/2,1/2� 2.387�10−5 3.581�10−5 5.968�10−6

686.008 �1/2,1/2� �3/2,5/2� 3.637�10−5 5.455�10−5 9.092�10−6

689.641 �1/2,1/2� �3/2,3/2� 2.000�10−5 3.000�10−5 4.999�10−6

695.845 �1/2,3/2� �3/2,5/2� 4.102�10−6 6.153�10−6 1.026�10−6

699.479 �1/2,3/2� �3/2,3/2� 1.020�10−5 1.522�10−5 2.588�10−6
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Simplest is, of course, the L=0 case, where there is no
hyperfine splitting. The transition probability had been com-
puted in Ref. �7� for linear-linear polarizations. Note that the
transition is forbidden for �+�+ polarizations, because of the
selection rule �MJ=2. In the L=2 case, there are two intense
�J=0 lines shifted by a few MHz and two weak �J= �1
lines shifted by about 50 MHz.

The spectra are more complex for odd values of L. They
consist in one main cluster of intense �F=0 lines which
is about 50–100 MHz wide, and two satellite clusters
of very weak lines �corresponding to �F= �1� about
600–700 MHz away. The total number of lines is 25�34� for
L=1�3� but the most intense are those of �F=�J=0; there
are 5�6� of them for L=1�3�.

Whatever the value of L, all the favored transitions are
between states with similar spin structure �i.e., same values
of F ,J�. This feature makes them especially attractive for
metrological purposes. Indeed, in such pairs of homologous
hyperfine states, systematic shifts such as the Zeeman shift
�see Ref. �14�� are expected to have similar values, so that
the shift of the transition frequency will be much smaller.
The same is true for hyperfine structure corrections to the
transition frequency: as can be seen, e.g., from Figs. 4 and 5,
the most intense lines span a frequency interval of less than
25 MHz because the spin-dependent corrections to the initial
and final state energies partially cancel each other. For this
reason, the theoretical uncertainty on the frequency of these
transitions is much smaller with respect to the other ones. On

TABLE VIII. Same as Table VI, with L=3.

�f �F ,J� �F� ,J�� �� �+�+ �+�−

−711.499 �3/2,9/2� �1/2,7/2� 6.739�10−6 1.011�10−5 1.685�10−6

−702.633 �3/2,7/2� �1/2,7/2� 4.143�10−6 5.629�10−6 1.329�10−6

−689.653 �3/2,9/2� �1/2,5/2� 1.179�10−6 1.768�10−6 2.947�10−7

−680.787 �3/2,7/2� �1/2,5/2� 6.647�10−6 9.971�10−6 1.662�10−6

−669.687 �3/2,5/2� �1/2,7/2� 1.073�10−7 1.610�10−7 2.684�10−8

−647.841 �3/2,5/2� �1/2,5/2� 1.457�10−5 2.030�10−5 4.417�10−6

−628.647 �3/2,3/2� �1/2,7/2� 1.764�10−6 2.647�10−6 4.411�10−7

−606.801 �3/2,3/2� �1/2,5/2� 3.055�10−5 4.582�10−5 7.637�10−6

−85.166 �3/2,9/2� �3/2,3/2� 0.000�10−1 0.000�10−1 0.000�10−1

−76.301 �3/2,7/2� �3/2,3/2t� 5.328�10−4 7.992�10−4 1.332�10−4

−46.788 �3/2,9/2� �3/2,5/2� 3.324�10−4 4.986�10−4 8.310�10−5

−43.355 �3/2,5/2� �3/2,3/2� 5.742�10−3 8.613�10−3 1.436�10−3

−37.922 �3/2,7/2� �3/2,5/2� 5.624�10−3 8.437�10−3 1.406�10−3

−15.840 �3/2,9/2� �3/2,7/2� 4.070�10−3 6.106�10−3 1.018�10−3

−10.540 �1/2,5/2� �1/2,7/2� 2.677�10−3 4.015�10−3 6.691�10−4

−7.438 �3/2,9/2� �3/2,9/2� 1.975�10−1 2.140�10−2 1.868�10−1

−6.974 �3/2,7/2� �3/2,7/2� 1.906�10−1 1.114�10−2 1.851�10−1

−4.977 �3/2,5/2� �3/2,5/2� 1.881�10−1 7.309�10−3 1.844�10−1

−2.315 �3/2,3/2� �3/2,3/2� 1.922�10−1 1.345�10−2 1.855�10−1

1.428 �3/2,7/2� �3/2,9/2� 5.087�10−3 7.631�10−3 1.272�10−3

11.306 �1/2,5/2� �1/2,5/2� 1.992�10−1 2.394�10−2 1.872�10−1

12.681 �1/2,7/2� �1/2,7/2� 1.999�10−1 2.499�10−2 1.874�10−1

25.971 �3/2,5/2� �3/2,7/2� 7.498�10−3 1.125�10−2 1.875�10−3

34.374 �3/2,5/2� �3/2,9/2� 5.538�10−4 8.308�10−4 1.385�10−4

34.527 �1/2,7/2� �1/2,5/2� 2.008�10−3 3.012�10−3 5.019�10−4

36.063 �3/2,3/2� �3/2,5/2� 8.616�10−3 1.292�10−2 2.154�10−3

67.012 �3/2,3/2� �3/2,7/2� 1.066�10−3 1.599�10−3 2.664�10−4

75.414 �3/2,3/2� �3/2,9/2� 0.000�10−1 0.000�10−1 0.000�10−1

615.793 �1/2,5/2� �3/2,3/2� 2.202�10−5 3.304�10−5 5.506�10−6

639.014 �1/2,7/2� �3/2,3/2� 9.467�10−7 1.420�10−6 2.367�10−7

654.171 �1/2,5/2� �3/2,5/2� 1.136�10−5 1.548�10−5 3.614�10−6

677.392 �1/2,7/2� �3/2,5/2� 2.496�10−7 3.745�10−7 6.241�10−8

685.119 �1/2,5/2� �3/2,7/2� 1.062�10−5 1.593�10−5 2.654�10−6

693.522 �1/2,5/2� �3/2,9/2� 2.124�10−6 3.186�10−6 5.310�10−7

708.340 �1/2,7/2� �3/2,7/2� 3.025�10−6 3.951�10−6 1.049�10−6

716.743 �1/2,7/2� �3/2,9/2� 1.039�10−6 1.356�10−5 2.260�10−6
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the whole, the favored transitions benefit at the same time
from a smaller sensitivity to systematic effects, and from
potentially more accurate theoretical predictions.

F. Orders of magnitude

The two-photon transition probability at resonance is

� = �4�a0
3

�c
�2 4

� f
I2�SQ̄q1,q2

�2, �42�

where a0 is the Bohr radius, � f the instrumental width of the
transition, and I is the laser beam intensity. The above results

show that the averaged two-photon matrix element for the
favored transitions does not depend critically on the value of
L ,F ,J but strongly depends on the excitation polarizations;

we have the typical values �SQ̄q1,q2
�2�0.2 for the case of

linear-linear or �+�− polarizations and �SQ̄q1,q2
�2�0.02 for

the �+�+ case. In this subsection we evaluate the two-photon
transition probability, using the parameters of our experi-
ment. Our excitation source is a QCL phase-locked to a CO2
laser �8�, which delivers a linearly polarized beam with a cw
power of about 90 mW. A Fabry Perot cavity of finesse 1000
is built around the ion cloud. The QCL requires a strong
optical isolation due to its extreme sensitivity to optical feed-
back from the high finesse Fabry Perot cavity. An optical
isolation of more than 23dB �with 90% transmission� can be
achieved using an optical diode made of a grid polarizer and
a quarter-wave plate, which implies working with �+�+ po-
larizations; the isolation ratio is limited by the polarizer ex-
tinction ratio �15�. An additional isolation of 6 dB is obtained
using an acousto-optic modulator with a polarization-
dependent efficiency. The setup we have implemented is
shown in Fig. 6. The overall transmission of those optical
elements including the alignment mirrors is 60% so that 54
mW of optical power are injected into the high finesse cavity.
The transmitted power at resonance is about 10 mW; from
transmission and reflectivity measurements we estimate the
mirror transmission and losses to about 0.001, so that the
incident power on the H2

+ ions is then P�10 W in a beam
of waist w0=1 mm. The intensity on the beam axis is
2P /�w0

2�6.4 W mm−2. The instrumental width is essen-
tially the laser width � f =2��2.6 kHz �16�, since the width
of the excited state is extremely small, all the rovibrational
states of H2

+ being metastable. From Eq. �42� one obtains a
transition probability ��0.7 s−1 with �+�+ polarizations.
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FIG. 3. Averaged two-photon matrix elements A= �SQ̄q1,q2
�2 in

atomic units between the rovibrational levels �v=0,L� and �v
=1,L� with L=0,2 �from Table VI�. The spectrum is centered
around the spin-independent transition frequency given in Table IX.
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FIG. 6. Setup of our experiment for excitation with circular
polarizations. AOM stands for acousto-optic modulator, P for po-
larizer, CD for cold detector.
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The transition probabilities are higher by about one order
of magnitude in the linear-linear polarization case. Due to
this, even with a circularly polarized beam it is still more
advantageous to probe the �MJ=0 transitions in a transverse
magnetic field, which must be sufficiently strong to separate
the three components �MJ=0, �2. A field in the 100 mG–1
G range is enough, as estimated in Ref. �14�. The incident
intensity is then decomposed into 50, 25, and 25 % of linear,
�− and �+ polarizations, respectively. A factor of 2 is lost on
the excitation beam intensity �hence 4 on the transition prob-
ability�, but this is more than compensated by the difference
in the two-photon matrix element. With these parameters, the
transition probability is ��1.7 s−1, a large enough value to
observe a two-photon transition in Paul traps where the ion
lifetime is typically of several seconds. Further improvement
can be achieved either by a tighter focusing of the laser �and
a smaller ion cloud section in order to minimize transit-time
broadening� or by reducing the laser linewidth.

A factor of 4 on the transition probability can be gained
by using a linearly polarized excitation beam. In this case,
the standard optical isolation technique relies on Faraday iso-
lators. In the 9 micron range, a 45° polarization rotation with
reasonable magnetic fields can only be obtained using
n-doped InSb wafers under cryogenic conditions, with high
insertion losses �17,18�. In addition, to our knowledge they
are no longer commercially available. Other ways of achiev-
ing isolation must be sought. Figure 7 shows our proposal for
a high-transmission high-isolation device for linear polariza-
tion. It takes advantage of both constructive and destructive
interference by a Fabry Perot cavity.

A Fabry Perot cavity of free spectral range 4f is locked on
resonance with the laser of frequency �L, resulting in a high
transmission. The transmitted beam is frequency shifted to
�L+ f by an acousto-optic modulator driven at a frequency f ,
and injected into the high finesse Fabry Perot cavity sur-
rounding the ion cloud. On the way back to the QCL, the
reflected beam is diffracted again by the acousto-optic modu-
lator and shifted to �L+2f . It is then exactly off resonance
with the first Fabry Perot cavity that provides optical isola-
tion. To summarize, the high transmission is due to construc-
tive interference and isolation to destructive interference.
Optical isolation of the QCL against the feedback from the
first cavity can be achieved using an optical diode as dis-
cussed above. A second quarter-wave plate turns the polar-
ization back to linear at the output of the isolation cavity.

The performances of this setup can be estimated as fol-
lows. The transmission at resonance for a Fabry Perot cavity
made of two identical mirrors of reflectivity R, transmission
T, and losses P with R+T+ P=1, is

Tcav =
1

�1 + P/�1 − R − P��2 , �43�

and the off resonance isolation ratio expressed in dB is given
by

I = − 10 log10� �1 − R − P�2

�1 + R�2 � . �44�

Using low-losses mirrors with R=0.98 and P=0.001, one
obtains Tcav=0.9 and I=40 dB.

IV. CONCLUSION

We have presented a derivation of the hyperfine structure
of two-photon transition spectra in the H2

+ molecular ion,
and applied it to several rotational components of the funda-
mental vibrational transition �v=0,L�→ �v�=1,L�. It was
shown that the most intense lines are those between pairs of
homologous hyperfine states �v ,L ,F ,J�→ �v� ,L ,F ,J�. Our
estimate reveals that observation of such lines in Doppler-
free spectroscopy is feasible with present-day laser sources.
We have also proposed an experimental setup allowing to
probe the two-photon transitions with linear-linear polariza-
tions. Let us point out that the experimental task of finding
the transition frequency is made easier by recent progress in
theoretical predictions �19�. The current theoretical uncer-
tainty on the spin-independent frequencies �given in Table
IX� is about 13 kHz �20�, while the uncertainty due to hy-
perfine corrections is of the order of 5 kHz, due to partial
cancellation between the shifts of initial and final states. We
have also shown that such transitions have a very low sensi-
tivity to external magnetic fields �14�.
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TABLE IX. Spin-independent frequency and wavelength of the
�v=0,L�→ �v=1,L� transitions, with 0�L�3. They were calcu-
lated using the data of Refs. �19,20�.

L �2ph �MHz� �2ph ��m�

0 32 844 161.844 9.128

1 32 798 213.622 9.141

2 32 706 607.796 9.166

3 32 569 919.581 9.205
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FIG. 7. Proposed experimental setup for excitation with linear
polarizations. AOM stands for acousto-optic modulator, P for po-
larizer, CD for cold detector.
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