
Harmonic emission from cluster nanoplasmas subject to intense short laser pulses

S. V. Popruzhenko,1,2 M. Kundu,1 D. F. Zaretsky,3,4 and D. Bauer1

1Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany
2Moscow State Engineering Physics Institute, Kashirskoe Shosse 31, 115409 Moscow, Russia

3Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
4Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

�Received 4 December 2007; revised manuscript received 26 March 2008; published 5 June 2008�

Harmonic emission from cluster nanoplasmas subject to short intense infrared laser pulses is studied. In a
previous publication �M. Kundu et al., Phys. Rev. A 76, 033201 �2007�� we reported particle-in-cell simulation
results showing resonant enhancements of low-order harmonics when the Mie plasma frequency of the ionizing
and expanding cluster resonates with the respective harmonic frequency. Simultaneously we found that high-
order harmonics were barely present in the spectrum, even at high intensities. The current paper is focused on
the analytical modeling of the process. We show that dynamical stochasticity owing to nonlinear resonance
inhibits the emission of high-order harmonics.
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I. INTRODUCTION

The study of rare gas and metal clusters interacting with
intense infrared, optical, and ultraviolet laser pulses has
emerged as a promising research area in strong field physics
�see �1,2� for reviews�. The generation of fast electrons and
ions, the production of high charge states, the generation of x
rays and nuclear fusion �in the case of deuterium-enriched
clusters� was observed using cluster targets in strong laser
fields of intensities up to 1020 W /cm2. Hot and dense non-
uniform, nonequilibrium, and nonstationary plasmas pro-
duced under such conditions and confined on a femto- or
picosecond time scale to nanometer sizes—so-called
nanoplasmas—are physical objects with unusual properties.

One of the most important features of nanoplasmas is the
very efficient energy transfer from light to charged particles,
which is much higher �per particle� than for an atomic gas of
the same average density �3�. Although the particular mecha-
nisms responsible for the laser energy deposition in clusters
still remain debated �4–12�, the pivotal role of collective
plasma dynamics �in particular the excitation of surface plas-
mons� and of nonlinear resonance �a definition is given be-
low in Sec. III� in the energy transfer from laser light to the
electrons in the nanoplasma and the subsequent outer ioniza-
tion was proved in experiments, simulations, and simple ana-
lytical models �6,8–10,13,14�.

While the energy absorption from intense laser pulses by
nanoplasmas has been widely studied both in experiments
and theory, much less attention has been paid to harmonic
emission from such systems. Naturally the question arises
whether laser-driven clusters, being highly nonlinear sys-
tems, may be a source of high-order harmonics as efficient as
atoms in the gas phase �or even more efficient?�. There are at
least two essentially different physical mechanisms which
could be responsible for emission of harmonics from such a
system.

First, the mechanism based on recombination of the vir-
tually ionized electron with its parent ion �15�, well-studied
in gaseous atomic targets, may also work in clusters where it

can be modified by the fact that the atoms are closer to each
other, so that the electron’s motion between ionization and
recombination can be distorted by the field of the other ions.
Moreover, the electron may recombine with an ion different
from its parent. This leads to modifications in the single-
electron dynamics and in the phase matching conditions
while the physical origin of harmonic generation �HG� re-
mains the same as in a gas jet. Modifications of the atomic
recombination mechanism in clusters have been considered
in �16,17�. However, in high intensity fields where each atom
is losing one or several electrons already during the leading
edge of the laser pulse the recombination mechanism can
hardly be efficient.

Second, as dense electron plasma is produced inside a
cluster, its coherent motion may be an efficient source of
radiation. In a collisionless plasma, as it is generated by in-
tense laser fields inside small clusters, individual electron-
electron and electron-ion collisions cannot destroy the coher-
ency of the collective electron motion. This coherent,
collective electron motion may cause HG if it is nonlinear.
Recently, several experiments on high harmonic emission
from plasma surfaces illuminated by short laser pulses of
intensity 1017 W /cm2 and higher were reported �see, e.g.,
�18,19��. The physical picture which is behind such plasma
harmonics appears to be more complicated and diverse than
the recombination mechanism in atomic HG.

In macroplasmas the magnetic component of the Lorentz
force is a typical source of nonlinearity. In this case the non-
linearity parameter is v /c where v is the typical velocity
related to collective oscillations of the electron plasma and c
is the speed of light. As a consequence, generation of har-
monics from dense macroplasmas may require relativistic in-
tensities �18�. As compared to macroplasmas, clusters intro-
duce an extra source of nonlinearity due to their small spatial
size, namely X /R0, where R0 is the cluster radius and X is the
amplitude with which the electron cloud oscillates under the
action of the laser field �20�. Therefore one could expect
strongly nonlinear electron motion even in the nonrelativistic
regime. It should be noted, however, that although individual
collisions may not be important, there are other effects which
can spoil the coherency required for efficient radiation. Most
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of these undesirable effects can be attributed to dynamical
instabilities induced by the interaction of particles with the
mean self-consistent field �in the presence of the laser field�.
Therefore the examination of plasma harmonics usually re-
quires not only the analysis of the collective motion but that
of individual electron trajectories as well.

Up to now only a few experiments on HG from
clusters are known. In Refs. �21–23� HG from rare-gas
clusters irradiated by infrared pulses of moderate
��1013–1014 W /cm2� intensity was studied. It was shown
that under such conditions harmonics can be generated up to
higher orders and with a higher saturation intensity than in a
gas jet. In addition other interesting properties including dif-
ferent power laws in the intensity-dependent harmonic yield
for particular harmonics for clusters and atoms were reported
�21�. However, in Refs. �21–23� the applied intensities were
rather low to create a dense nanoplasma inside clusters and
the main features of the recorded spectra �such as a plateau
followed by a cutoff� were found to be quite similar to the
case of a gaseous target. This allows us to attribute the ob-
served effects to HG along the standard atomic recombina-
tion mechanism as described above.

Recently the experimental observation of the third har-
monic �TH� generation from argon clusters in a strong laser
field was reported �24�. The laser intensity was varied be-
tween 1014 and 1016 W /cm2 and was thus sufficiently high
for the creation of a dense nanoplasma. At such intensities
HG along the atomic recombination mechanism relevant in
gases is essentially suppressed because of saturated single-
electron ionization so that the observed TH signal can be
fully attributed to the nonlinearity of the laser-driven nano-
plasma. A resonant enhancement of the TH yield �when the
Mie frequency of the expanding cluster approaches three
times the laser frequency� has been measured using a pump-
probe setup. The TH enhancement of the single-cluster re-
sponse, as studied in theory before �20,25,26�, is, however,
masked in the experiment by phase matching effects whose
optimization at high average atomic density necessary to cre-
ate clusters has been shown to be more intricate than for
rare-gas jets. The latter complication makes an experimental
study of nanoplasma radiation a difficult task while in com-
putations it can be simplified by first examining the single-
cluster response and, second, analyzing propagation effects.

In the recent paper �27�, we considered the radiation emit-
ted by a single cluster exposed to a strong laser pulse. We
computed harmonic spectra from argon clusters in short
800-nm pulses of intensity 2.5�1014–7.5�1017 W /cm2 us-
ing a 3D particle-in-cell �PIC� code �applied before to the
study of collisionless energy absorption in laser-driven nano-
plasmas �10��. The most intriguing outcome of our study was
the absence of high-order harmonics in the computed spec-
tra, even at high intensities for all cluster sizes we consid-
ered. We attributed this effect to the above-mentioned dy-
namical instability in motion of individual electrons.

In this paper we introduce two analytical models which
describe the collective and single-electron dynamics of a
laser-driven nanoplasma, respectively, and apply them for the
explanation of both the numerical results �27� and the data
�24�. We show that the numerical results can be well de-
scribed and understood within the rigid sphere model �RSM�

but only for low harmonic orders 3, 5, 7 while for higher
harmonics the RSM yields qualitatively wrong predictions.
Using a simple one-dimensional �1D� model we describe a
stochastic, resonant single-particle electron dynamics which
suppresses the emission of high harmonics.

The paper is organized as follows. In Sec. II we formulate
the statement of the problem and describe the numerical
method and the PIC results. In Sec. III the spectra extracted
from the PIC simulations are compared with the predictions
of the RSM. In Sec. IV we introduce a model for the descrip-
tion of the single-electron dynamics and radiation and use it
to explain the suppression of the high harmonic yield. The
last section contains the conclusions.

II. STATEMENT OF THE PROBLEM
AND PREVIOUS RESULTS

A cluster is converted into a dense electron plasma almost
promptly if the laser pulse is intense enough to ionize the
cluster constituents. We refer to this process as inner ioniza-
tion which should not be confused with outer ionization,
when the nanoplasma electrons leave the cluster. Several
competitive processes govern the evolution of this plasma
during the interaction with the pulse and later, until the clus-
ter becomes dissolved due to Coulomb explosion or hydro-
dynamic expansion. The electron density increases because
of further ionization of atoms and ions by the local electric
field which may differ essentially from the applied laser
field. With increasing plasma density due to inner ionization,
the oscillating electric field of an infrared laser is screened,
so that its amplitude inside the cluster may be a few times or
even an order of magnitude less than the amplitude of the
incident wave �see more explanations on screening in Sec.
IV below Eq. �8��. Simultaneously, as soon as a sizeable
fraction of electrons have left the cluster, a quasistatic space
charge field is built up which may become strong enough
to induce further inner ionization �“ionization ignition,”
�28,29��. On the other hand, both outer ionization and the
expansion of the cluster reduce the electron density. The net
result of this competition is very sensitive to all parameters,
including laser intensity, pulse duration, cluster size, and
type of atoms. However, for the vast majority of parameters
a significant part of the electrons remains confined within the
expanding ionic core. During this stage of the cluster evolu-
tion until the laser pulse is off the nonlinear motion of the
laser-driven nanoplasma may cause emission of laser har-
monics.

We have observed the above described scenario in PIC
simulations of laser-cluster interaction, as reported in
�10,27�. The dynamics and the radiation of nanoplasmas was
studied for ArN clusters �with the number of atoms N
�104–105 and radii R0�6–10 nm�, irradiated by linearly
polarized, eight-cycle sin2-laser pulses with an electric
field El�t�=E0 sin2��lt /2n�cos��lt� and the wavelength �
=800 nm. Here �l is the carrier frequency and n=8 is the
number of optical cycles in the pulse. The contribution of
electrons remaining bound in atoms �ions� during the inter-
action was not taken into account. Results were reported in
Ref. �27� where also more details about the numerical simu-
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lation may be found. Here we restrict ourselves to briefly
summarize the main results:

�i� The relative yields of low-order harmonics depend on
the laser intensity and the cluster size.

�ii� The time-frequency analysis of harmonic spectra
shows that low-order harmonic enhancements occur when
multiples of the laser frequency resonate with the transient
Mie frequency.

�iii� Even for the very high intensity 7.5�1017 W /cm2

no distinguishable high harmonics �higher than the seventh�
appear in the spectra �see Fig. 1 in Ref. �27��.

�iv� Only a part of the nanoplasma deeply bound inside
the ion core contributes to �low-order� harmonic generation.

III. RESONANT ENHANCEMENT OF
LOW-ORDER HARMONICS

The enhancements of particular low-order harmonics pre-
dicted in �20,25� have been later studied numerically for
small clusters using molecular dynamics simulations �26�
and were finally observed in the experiment for the case of
the third harmonic �24�. It is well established now that the
physical origin of enhancements is the resonance between
the harmonic frequency and the Mie frequency of the ex-
panding nanoplasma. The time-frequency analysis of the ra-
diation as calculated from the PIC results for the total accel-
eration further confirmed this statement �27�. Typical time-
frequency �TF� diagrams, showing which frequencies are
emitted when, are reproduced in Fig. 1. In the same plots we
show the scaled time-dependent effective Mie frequency
�Mie�t� /�l. The standard definition of the Mie frequency
�Mie=�4�z̄n0 /3, where z̄ is the average ion charge and n0 is
the atom density, is only appropriate for the case of an almost
homogeneous charge distribution �in this section atomic
units �=m=e=1 are used�. However, because of the ignition
effect and the cluster expansion the average ion charge z̄
depends on the ion position. As we found in �27�, the low-
order harmonics are emitted mainly by electrons confined
within the ion core and with excursion amplitudes compa-
rable to the initial cluster radius R0 or less. In the following
we will refer to these electrons as the deeply bound electrons,
and we define the effective Mie frequency as �Mie�t�
=�Q0�t� /R0

3 with Q0�t� the total ionic charge inside the
sphere of radius R0 within which the cloud of deeply bound
electrons oscillates.

It is clearly seen from the TF diagrams of Fig. 1 that the
enhancements of the third and fifth harmonic must be attrib-
uted to the respective high-order nonlinear resonances be-
tween the laser frequency and the Mie frequency, �Mie�t�
=m�l �with m=3,5�. Here we call the resonance nonlinear
since it appears in a nonlinear system. This nonlinearity �i.e.,
anharmonicity in the effective potential of electron-ion inter-
action� is a necessary condition for the emission of harmon-
ics. The physical origin of this nonlinearity may be either the
electrons jutting out of the core during their motion, thus
sensing the Coulomb tail �20�, or the inhomogeneous charge
distribution within the ion core �25�. Note that the appear-
ance of a significant signal at frequencies different from odd
multiples of the laser frequency �namely, the second har-

monic in Fig. 1�a� and the forth harmonic in Fig. 1�c�� should
be attributed to the excitation of eigenoscillations of the elec-
tron cloud with the time-dependent eigenfrequency �Mie�t�.
These oscillations are of significance only in short pulses, as
used in the PIC simulations.

The results of the TF analysis in Ref. �27� not only ex-
plain, at least qualitatively, the resonant enhancement of the
TH observed in �24� but also confirm the idea formulated
there that with a proper adjustment of parameters harmonics
of higher order �fifth, maybe seventh� could also be reso-
nantly enhanced.

It was shown in earlier studies �20,26� that the resonant
enhancements of low-order harmonics may be reasonably
described using a very simple rigid sphere model �RSM�.
Here we show that, while for low-order harmonics the RSM
works well, it fails even qualitatively to reproduce the high-
energy part of the spectrum. In a RSM �8,10,30� it is usually

FIG. 1. �Color online� Time-frequency diagrams for an Ar17256

cluster at laser intensities 2.5�1015 W /cm2 �a�, 7.5
�1017 W /cm2 �b�. Panel �c� shows the TF diagram for an Ar92096

cluster at the intensity 7.5�1017 W /cm2. The scaled time-
dependent Mie frequency �Mie�t� /�l is included in all plots �solid
lines�.
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assumed that both ions and electrons form homogeneous,
rigid spheres with sharp boundaries. In this case the electron
and ion charge density distributions are

�e�i��r� = � z̄n0��R0 − r� , �1�

where n0 is the atom density in the cluster and ��x� is the
Heaviside step function. The signs � correspond to electrons
and ions, respectively. Within this model the restoring force
Fei��l

2R0f depends upon the displacement X�R0y of the
electron cloud as �30�

f�y� = −
y

y
g0�y� ,

g0�y� = 	�Mie

�l

2�y −

9y2

16
+

y4

32
, 0 	 y 	 2,

1

y2 , y 
 2. � �2�

Here the dimensionless coordinate y and force f are intro-
duced. The equation of motion reads

d2y

d�2 = f�y� − �
dy

d�
−

El���
�l

2R0

, �3�

where El��=�lt� is the electric field of the laser wave and �
is the effective damping constant which can be estimated
assuming a collisionless damping mechanism �6,12� �in cal-
culations we use �=0.1, in accordance with such estimates�.

Using the RSM significant insights into the absorption
mechanisms in clusters �10� and TH emission �20� have been
gained. However, an essential shortcoming of the RSM in the
form specified by Eqs. �1� and �2� is the appearance of even
powers of y in Eq. �2� at y	2. Physically it is the result of
the discontinuous charge distributions �1� at r=R0. As a con-
sequence, in a perturbative treatment of harmonic generation
the intensity of the sth harmonic is proportional to E0

2s−2

instead of E0
2s. For example, for the third harmonic one ob-

tains with the RSM P3�E0
4, which is obviously unphysical

�20�. To improve the model it is sufficient to assume a
smoothed charge distribution for the electrons while the posi-
tive charge density still may be described by Eq. �1�. We use
a Gaussian of characteristic width Re for the electron charge
density,

�e�r� = − z̄n0 exp�− r2/Re
2� , �4�

and assume that the net charge density is zero at the cluster
center. From Eq. �4� the total number of electrons
is Ne=�3/2z̄n0Re

3. The restriction Ne	 z̄N gives Re

	 �4 /3���1/3R0�0.91R0. The equation of motion has now
the same form �3� but with a modified restoring force:

g0�y� → g1�y� =
�Mie

2

�l
2y2	1

2
��y3 + 1�erf�a�y + 1��

− �y3 − 1�erf�a�y − 1���

+
1

4��a3
�e−a2�y − 1�2

�1 − 2a2�1 + y + y2��

− e−a2�y + 1�2
�1 − 2a2�1 − y + y2���
 , �5�

where a=R0 /Re1.1 and erf�x�=2 /���0
xexp�−z2�dz is the

error function. Contrary to Eq. �2�, a decomposition of the
restoring force �5� contains only odd powers of y while it has
the same asymptotic Coulomb behavior for large displace-
ments. The respective asymptotic expansions have the form
�compare with Eq. �2��

g1�y� = 	�Mie

�l

2�A1y + A3y3 + . . . , y � 1,

1

y2 + O�e−a2y2
� , y � 1 � �6�

with A1=erf�a�−2a /�� exp�−a2�0 and A3
=−4a5 /5�� exp�−a2�. It is clear that A1→1 if a→�, i.e.,
when the tail of the electron density distribution does not
stick out of the ion core. In this case the eigenfrequency of
small oscillations �A1�Mie is equal to �Mie. For a finite a the
spread of the electron cloud beyond the ion core reduces the
eigenfrequency.

Note that within the model we describe above the restor-
ing force is nonlinear because a part of the electron cloud
spreads out of the ion core. In this case the leading term in
the nonlinear part of the force can be estimated as
�Mie

2 XX2 /R0Re. As a result, the third harmonic signal scales
as R0

4 with the cluster radius, in contrast to the standard R0
6

law, expected for a volume bulk effect. This shows that the
above discussed low-order harmonic emission from the
nanoplasma is a surface effect which becomes relatively less
pronounced with increasing the cluster size. In small cold
metal clusters subject to infrared laser pulses of moderate
intensity the R0

4 dependence was observed in �31� though the
experiment was not entirely conclusive �see also �32� for the
respective theoretical analysis�.

Figure 2 shows harmonic spectra P��� calculated from
the above-described RSM. Within the model, the dynamics
and radiation of the electron cloud are governed mainly by
the values of the two parameters �Mie /�l and E0 /�l

2R0, de-
termining the possibility of resonant enhancements for par-
ticular harmonics and the number of excited harmonics in the
spectrum. The eigenfrequency of the electron cloud �eff de-
pends upon the amplitude of the oscillations �the maximum
value max��eff�=�A1�Mie corresponds to small harmonic os-
cillations� and therefore upon the laser intensity. As a result,
at fixed cluster parameters the resonant enhancements appear
at certain values of the intensity. For the spectra of Figs. 2�a�
and 2�d� and Figs. 2�c� and 2�f� the parameters were chosen
such that the maximum value of the eigenfrequency exceeds
the integers 3 and 5, respectively, so that, with increasing
intensity, resonant enhancements of the third and the fifth
harmonic appear. These enhancements are clearly seen from
the comparison of these spectra with the ones calculated for
the case shown in Figs. 2�b� and 2�e� when the maximum
eigenfrequency max��eff��4.4 is far from both resonances.
In Figs. 2�a�–2�c� the intensities are chosen such that the
sphere’s oscillation amplitudes are almost the same in each
case so that the relative difference in the strength of the third
and the fifth harmonic �about three orders in magnitude�
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shows the efficiency of the resonant enhancement. For the
higher intensities in Figs. 2�d�–2�f� these enhancements are
even more pronounced.

A comparison between the RSM and the PIC results
shows that for the low-order harmonics the RSM provides a
qualitatively correct description of the spectrum, including
the effect of resonant enhancement. This gives an additional
justification of the RSM for applications to laser-driven
nanoplasmas. However, for relatively high harmonics �ninth
or higher� the results predicted by the RSM appear to be
qualitatively wrong. Indeed, the RSM predicts the appear-
ance of higher harmonics with increasing laser intensity, as it
is seen from Fig. 2�f� where the spectrum ends up at the 13th
harmonic. By a moderate variation of the parameters inher-
ent to the model, namely �Mie /� and a, one may obtain even
higher harmonics for the same intensities used for the spectra
of Fig. 2. As expected for a classical system, no signature of
a plateau emerges in the spectra. However, the PIC simula-
tions reported in �27� do not show any harmonics above the
seventh within the studied domain of parameters, including
the very high intensity of 7.5�1017 W /cm2. The same ef-
fect was found in �13� where no harmonics above the ninth
have been observed for intensities up to 1017 W /cm2. In
Ref. �27� we concluded from the inspection of individual
PIC electron’s trajectories that a dynamical instability in-
duced by the resonant interaction of electrons with the time-
dependent self-consistent field is responsible for the suppres-
sion of high harmonics. Obviously, such a mechanism is
beyond the RSM since the latter accounts for collective elec-
tron dynamics only. In the next section we introduce a
single-particle model suited for the analysis of the motion
and the radiation of individual electrons so that the instability
responsible for the suppression of high harmonics from clus-
ter nanoplasmas under the above-described conditions can be
studied.

IV. SUPPRESSION OF HIGH HARMONICS
VIA STOCHASTIC BEHAVIOR OF

INDIVIDUAL ELECTRONS

It is known from numerical studies �see examples in
�5,13,25,33�� that in a laser-driven cluster the electron popu-
lation separates into a dense core with a radius comparable to
the initial cluster radius R0 and a rarefied halo with a typical
size of several R0. This subdivision is equivalent to a sepa-
ration of quasifree electrons into deeply and weakly bound
electrons, correspondingly. A decrease of the electron density
due to outer ionization is compensated by the inner ioniza-
tion of atoms, provided that inner ionization is not yet de-
pleted, so that the cycle-averaged electron density distribu-
tions both in the core and the halo evolve rather slowly in
time. The core oscillates with relatively small deformations
so that the RSM seems to be applicable to the deeply bound
electron’s dynamics while electron trajectories in the halo are
strongly disturbed by the laser field and cannot be captured
by the RSM.

In Ref. �27� the radiation of individual PIC electrons has
been considered �see Fig. 3 there�. It was shown that elec-
trons radiate harmonics as long as they move inside the
dense core. Being liberated from the core, electrons leave the
cluster vicinity almost promptly, usually within a laser pe-
riod. This means, that the halo contains basically no perma-
nent population, but consists almost entirely of electrons on
their way out of the cluster. Hence the electron density in the
halo determines the rate of outer ionization from the cluster.
During the ejection, each electron emits an intense flash of
radiation with an almost continuous spectrum that extends up
to significantly higher frequencies than present in the net
harmonic spectrum. In Ref. �27� we argued that these flashes
add up incoherently in the total emission amplitude. Here we
introduce a simple analytical 1D model which helps to illu-

lo
g 10

[P
(ω

)]
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FIG. 2. Harmonic spectra �normalized to the signal at the fundamental frequency� calculated within the RSM for a cluster of radius
R0=6.2 nm, a=R0 /Re=2, and max��eff��3.2�l �a�,�d�, max��eff��4.4�l �b�,�e�, and max��eff��5.4�l �c�,�f�. The laser intensities are
given in the panels in units of 1016 W /cm2.
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minate the physical origin of this incoherency. Despite its
simplicity our model is able to describe, at least qualitatively,
all essential features seen in the simulations.

A. Model

Let us suppose frozen ions and the number of nanoplasma
electrons fixed so that in the absence of the laser field each
electron moves in the time-independent self-consistent po-
tential U�x�. The laser field excites oscillations of the elec-
tron cloud which induce the ac part of the space charge field
Esc

�I��t�. The net oscillating field inside the system can be writ-
ten as

E�t� = El�t� + Esc
�I��t� � E0f�t�cos��lt + �� , �7�

where f�t� is the time-dependent pulse envelope. If the Mie
frequency notably exceeds the laser frequency, �Mie�l, as
is the case for infrared lasers, the laser field and the ac space-
charge field Esc

�I��t� essentially compensate each other. In this
case the amplitude of the net oscillating field inside the clus-
ter E0 is related to the amplitude of the laser field E0 accord-
ing to

E0 �
�l

2E0

�Mie
2 − �l

2 � E0. �8�

This result is commonly referred to as screening of a low-
frequency laser field inside clusters �see, e.g., the review �2��.
There is no contradiction between this screening of the laser
field for individual electrons and the fact that the whole elec-
tron cloud feels the unscreened field. Indeed, in the RSM
there are two forces acting on the electron cloud: one due to
the interaction with the ion core, another one due to the laser
force; see Eq. �3�. In the single-electron description we
should also take into account the interaction between the
electron under consideration and all other electrons in the
cloud. Within the model we assume that the electron cloud
undergoes small, slightly nonlinear oscillations, so that this
extra force is almost homogeneous inside the cluster and
oscillates in time with the frequency �l. Within the RSM and
under the condition �l��Mie we assume throughout the pa-
per that the electron cloud displacement X�t� reads

X�t� � −
eE0

m��Mie
2 − �l

2�
f�t�cos��lt + �� .

Calculating the electric field induced inside the cluster due to
this displacement and summing it up with the laser field �7�
one obtains the estimate �8� for the amplitude of the net
oscillating field. This type of screening results from the co-
herent superposition of the applied and the self-consistent
field and has nothing in common with damping of electro-
magnetic waves in macroplasmas. The latter occurs on the
spatial scale of the skin depth, which is in general much
bigger than the typical cluster size we consider.

Taking a cluster consisting of N�1.7�104 Ar atoms
�R0�6.2 nm� with the average ion charge z̄�6 and the de-
gree of outer ionization ��0.5, one can estimate ��Mie
�6 eV. In a Ti:sapphire laser pulse of intensity 5
�1017 W /cm2 �E0�3 a.u.� the amplitude of the oscillating

field inside the cluster is, according to Eq. �8�, E0
�0.2 a.u., i.e., more than one order of magnitude below the
amplitude of the applied laser field. The quasistatic part of
the space-charge field Esc

�II�=Esc−Esc
�I� which traps electrons

within the ion core can also be estimated for the assumed
values of � and z̄. Namely, the field near the cluster edge is
Esc

�II���Nz̄e /R0
2�3 a.u., i.e., more than one order of magni-

tude above the oscillating field amplitude. From this estimate
we conclude that the oscillating field inside the cluster usu-
ally remains small compared to the quasistatic space-charge
field.

Within the model the electron’s evolution is governed by
the Hamiltonian

H�p,x,t� =
p2

2m
+ U�x� − eE�t�x � H0�p,x� − eE�t�x �9�

and the corresponding Newton equation

ṗ = mẍ = −
�U

�x
+ eE�t� � eEsc

�II��x� + eE�t� , �10�

where m and e are the electron mass and charge. The well
U�x� is created by the quasistatic part of the space charge.
We model it by the function

U�x� = U0�1 − 1/�1 + �x/R0�2� , �11�

where the values R0 and U0 are the cluster radius and the
depth of the self-consistent well, respectively. Here we
choose the energy minimum �=0, so the �=U0 is the con-
tinuum threshold. For small excursion amplitudes this well is
a nonlinear oscillator while for large excursions it has the
desired Coulomb behavior. According to the estimates given
above we assume the inequality

� �
eE0

F0
� 1, F0 =

U0

R0
�12�

being satisfied, where F0 has the meaning of a characteristic
quasistatic force trapping the electron.

B. Dynamics

The dynamics of the unperturbed system with the Hamil-
tonian H0 is characterized by the energy dependence of the
eigenfrequency,

���� =
2�

T���
, T��� = �2m�

a

b dx
�� − U�x�

, �13�

where T��� is the oscillation period, a���, b��� are the turning
points, and �0 is the total energy �34�. The energy-
dependent parameter

���� =
�

����
�d�

d�
� �14�

characterizes the nonlinearity of the unperturbed system and
thus its potential capability to emit harmonics. Figure 3
shows the energy dependence of the scaled eigenfrequency
���� /��0� and the parameter �14�. In cluster potentials the
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period T��� increases with increasing energy so that

d�/d� � 0. �15�

The well �11� has this property.
The system �10� is not integrable. However, if the time-

dependent force remains small in comparison to the first term
at the right-hand side of Eq. �10� �i.e., under the condition
�12�� the related dynamics can be qualitatively described us-
ing general methods of nonlinear mechanics �35–37�. It is
well established that the behavior of a nonlinear conservative
system subject to a weak oscillating field is essentially gov-
erned by the resonances between the energy-dependent fre-
quency of the unperturbed oscillations �13� and the fre-
quency �l of the external force. The positions �sm of these
resonances are determined by

s� = m�l �16�

with m and s integers. In a harmonic oscillator only the
resonance with m=s=1 can be excited. Resonances with
m=2,3 , . . . are nonlinear with respect to the external field
E�t� �in a quantum picture such resonances correspond to
multiphoton absorption and emission�. Resonances with
s=2,3 , . . . are related to the nonlinearity inherent to the un-
perturbed system H0 so that for a highly nonlinear system
they may be significant even in the weak perturbation re-
gime. This situation corresponds to the case we consider so
that below we assume m=1, disregarding the field-induced
nonlinearities. The reader should not be confused by the fact
that we disregard here exactly the same nonlinearities which
lead to the emission of harmonics we study in the rest of this
work. Although these weak nonlinearities are responsible for
the emission they play no role for the stability analysis we
consider in this subsection. Because of inversion symmetry
of the well �11� only odd resonances with s=1,3 ,5. . . are
important. Before the pulse an electron moves along an un-
perturbed trajectory, specified by the energy �0 and the initial
phase �0. If the energy is far from any resonance level �s and
the condition �12� is satisfied the oscillating field in Eq. �10�
induces a small perturbation and, as a consequence, the tra-

jectory is only slightly disturbed by the field. Under the con-
dition �15� the first-order resonance s=1 is the lowest one on
the energy scale so that the vast majority of such nonresonant
trajectories lies well below the first resonant energy �1. This
“perturbative” regime of interaction survives until the time-
dependent energy approaches the vicinity of the resonance,
either due to an increasing amplitude E0 or because of a
higher initial energy of the particle. Near the resonance the
same small perturbation yields a strongly disturbed electron
trajectory. A qualitative description of such trajectories and
the determination of the boundaries that separate the “pertur-
bative” and the “resonant” domains is possible using the
methods described, e.g., in Refs. �35–37�. We introduce new
canonical variables, namely the “action” I and the “angle” �,
which are defined in the standard way �34–36�,

I��� =
1

2�
� p��,x�dx, � = −

�S

�I
. �17�

Here p=�2m��−U�x�� is the electron momentum in the un-
perturbed system and S�x� is both the position-dependent re-
duced action and the generator of the canonical transforma-
tion. The integration in Eq. �17� is performed along the
closed trajectory with the energy �. Strictly speaking, this
canonical transformation is defined for the unperturbed
Hamiltonian H0 only when closed, periodic trajectories exist.
In this case one obtains immediately the new canonical vari-
able �=����t+�0. The variables I ,� provide an effective
zero-order approximation for the construction of a specific
perturbation theory capable of describing near-resonant dy-
namics �35–37�. Using the new variables and assuming that
the particle energy is sufficiently close to a resonant value,
say �1, we may omit rapidly oscillating terms and obtain an
approximate, time-independent resonant Hamiltonian,

Hr�I,�� = H0�I� − �lI −
eE0

2
x1�I�cos��� , �18�

so that the corresponding system is integrable. Here x1 is the
first Fourier component of an unperturbed trajectory,
X�I ,��=�kxk�I�cos�k�� and �=�−�lt. Now the trajectories
of the system in the new phase space can be found, at least in
the form of integrals. Further simplifications are possible if
we take into account that for a weak perturbation the devia-
tion of the action from its resonant value I1� I��1� is small,
i.e., �I− I1�� I1. Introducing the new canonical variable P= I
− I1 we obtain the nonlinear oscillator Hamiltonian �with the
negative effective mass�:

Hr��P,�� = −
P2

2M
− B cos��� ,

M =
1

�1��1��
 0, B =

eE0x1�I1�
2

�19�

with �1�=d� / �d���=�1
. The electron behavior can thus be

qualitatively described as nonlinear oscillations in �P ,��
space, known as phase oscillations �35–37�. In the new ca-
nonical variables which have the formal status of momentum
�P� and coordinate ��� the phase space of the Hamiltonian
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FIG. 3. Dynamical characteristics of the potential �11�: the
scaled eigenfrequency ���� /��0� �solid line� and the nonlinearity
parameter �14� �dashed line� vs the scaled energy � /U0. Positions of
the first- and third-order resonances are shown by dotted lines. The
value of the parameter � at the resonant energies is ���1��1.2 and
���3��4.5, respectively.
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�19� splits into domains of finite and infinite motion �see Fig.
4�. Finite motion corresponds to a particle trapped by the
resonance, while particles moving infinitely do not intersect
with the resonance. The separatrix of Eq. �19� is a boundary
between these two domains. The motion near separatrices is
unstable, so that even a small variation in the initial condi-
tions may entirely change a trajectory. As a result, particles
approaching a separatrix may penetrate from one domain to
another or may be trapped by a resonance. The parameters
characterizing the motion of trapped particles are the maxi-
mum deviation from the resonant action I1 and the frequency
of small phase oscillations:

Pmax = 2�MB �
�1

�l

��

�
, �ph =� B

M
� �l

��� .

�20�

In energy space the positions of the separatrices of the first-
order resonance are determined by

�1
� = ��I1 � Pmax� = �1 � ��1, ��1 � U0� x1

R0

�

�
.

�21�

If the energy intersects a respective threshold so that ��−�1�
	��1, the electron becomes trapped by this resonance do-
main and experiences phase oscillations with the frequency
and amplitude both proportional to ��. Due to the appear-
ance of a new time scale given by the frequency of the phase
oscillations �20� the motion becomes aperiodic and highly
nonlinear. It should be emphasized that in weak fields the
perturbation parameter � is far from resonance and �� close
to it so that the near-resonant motion appears to be much
more perturbed than the off-resonant one.

The interaction with an isolated resonance cannot lead to
ionization since the electron remains trapped for an, in prin-
ciple, infinite time �38�. However, the higher-order reso-
nances lying above may come into play. As soon as the sepa-
ratrices of neighboring resonances intersect, the particle,

captured by the first resonance, may jump to the third, etc.
Because the volume of the accessible phase space is increas-
ing with energy this inter-resonance motion will have a pre-
dominant direction, namely toward higher energies. This
leads to a fast liberation of the electron from the system,
known as stochastic ionization �9,35,37�. For realistic pa-
rameters of laser-cluster interaction this overlap of reso-
nances is realized with almost 100% probability so that cases
where the particle remains trapped by a resonance are rare
while almost prompt ionization occurs as soon as the first-
order resonance is reached.

We visualize the above-described scenario by solving Eq.
�10� numerically. In the calculation we take �l=R0=1.0 and
U0=5.0 so that even the amplitude E0=1.0 ��=0.2� still cor-
responds to the weak-field regime, as defined above. These
parameters are not arbitrarily chosen. Indeed, a solution of
Eq. �10� with the well �11� and the field �7� with a slowly
varying envelope depends on four dimensionless parameters,
�, F0 /m�2R, �0 /U0, and �, the two last of them defining the
initial conditions. To recalculate all the parameters for a real
system we should assume some certain values for the cluster
radius and the laser field frequency, which then define all
other parameters. For typical values, say R0=5 nm and
��l=1.55 eV, and for the dimensionless parameters of Fig.
5 one may check that the resulting strengths of the quasi-
static and the oscillating parts of the self-consistent field in-
deed correspond to the estimates given below Eq. �8�. The
positions of the most important first- and third-order reso-
nances are �1�0.48U0 and �3�0.77U0, respectively. A par-
ticle with the initial energy �0��1 starts its motion at x=0
and ���lt=−40 when the field E�t� is negligibly small.
Then the field �with a Gaussian envelope� increases, and
the electron propagation under the action of the full force is
calculated until �= +40. By choosing different phases � of
the field we model different initial conditions for the particle
at the fixed initial energy �0. The results are summarized in
Fig. 5.

Figure 5�a� corresponds to the “perturbative” regime of
interaction. The initial energy is far enough from the first
�lower� resonance, so that the trajectory in the energy space
does not intersect the respective lower separatrix, or just
touches it. As a result, the trajectory remains weakly dis-
turbed, its shape is well described as a superposition of os-
cillations with the frequencies ���0� and �l. By choosing
different initial conditions we obtain trajectories simply
shifted in time by the value of �. Figures 5�b� and 5�c� cor-
respond to the resonant regime of interaction where the ini-
tial energy is high enough or the field is strong enough to
cause penetration of the particle into the vicinity of the first
resonance. The five trajectories plotted in Figs. 5�b� and 5�c�
show that the near-resonant motion is very sensitive both to
the initial conditions and to the field amplitude so that a
particular trajectory appears to be unpredictable. Usually the
particle is emitted from the system while in rare cases it
remains in a bound state after the pulse is off, being trapped
by a resonance �see the trajectories in Figs. 5�b� and 5�c��.
From these observations we may conclude that at parameters
typical for intense laser-nanoplasma interactions the particle
behavior in the resonant regime becomes stochastic, as it is
expected to be according to the general theory �35–37�.
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FIG. 4. The phase space of the Hamiltonian �19�. A separatrix
�thick solid lines� subdivides the phase space into domains of finite
�2� and infinite �1, 3� motion. Two typical trajectories are shown by
dashed lines. Dotted lines indicate the positions of the thresholds
�Pmax determined in Eq. �20�.
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In classical ionization, a particle has to overcome the po-
tential barrier, i.e., its total energy must exceed the maximum
value of the potential energy suppressed by the field at some
time instant. Obviously, the trajectories of Figs. 5�b� and 5�c�
satisfy this condition, while both trajectories of Fig. 5�a� do
not. In Fig. 6 we show the trajectories in energy space evalu-
ated for half the laser frequency, �l�=�l /2=0.5, and all other
parameters the same as in Fig. 5�b�. The plots show that with
decreasing laser frequency the time-dependent energy gain

from the field to the particle decreases down to a perturbative
level, the total energy remains always below the maximum
of the time-dependent potential energy, and no ionization or
excitation occurs. Within the resonant picture we exploit
here, the qualitative difference between the trajectories of
Figs. 5�b�, 5�c�, and 6 appears because with decreasing fre-
quency the first resonant level is shifted up and no penetra-
tion into the resonant area between the separatrices takes
place anymore.

It is instructive to show the connection between the
single-electron model specified by Eqs. �7� and �9�–�11� and
a model which describes collective motion, as the RSM of
Sec. III does. The RSM deals with the electron cloud dis-
placement X�t� whose Fourier transform is directly related to
the spectrum. This value can also be calculated within a
single-electron picture as

X�t� =� d�0� d� r��0,�,t�F��0,�� , �22�

where r��0 ,� , t� is the individual trajectory with the initial
energy �0 and the initial condition �, and F��0 ,�� is the
distribution function for electrons before the field is on. One
should note that, contrary to the RSM, the spatial distribution
of the electrons in the presence of the field is not known
unless one calculates all individual trajectories. Calculating a
trajectory r��0 ,� , t� analytically is possible only within per-
turbation theory with respect to the external field where one
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may easily derive Eq. �3� with the linear part of the restoring
force only from Eq. �22�. The derivation of nonlinear correc-
tions, although possible, requires very cumbersome algebra.
The single-particle model is appropriate for a qualitative de-
scription of the stochastic resonant behavior but hardly ap-
plicable to the study of the slightly unharmonic motion of the
deeply bound electrons.

C. Radiation

The analysis of the previous subsection gives a direct ex-
planation of the radiation spectra extracted from the PIC re-
sults in Ref. �27� both for individual electrons and for whole
clusters. Deeply bound electrons with energies below the
first resonant separatrix �	�1−��1 move along slightly per-
turbed regular trajectories. This causes HG with rapidly de-
creasing yield as a function of the harmonic order so that
even the seventh harmonic is barely present in the corre-
sponding spectrum of Fig. 7�a�. An individual electron, while
passing the resonance and being trapped by it or leaving the
cluster potential, emits radiation due to its strong accelera-
tion, seen as a flash in the TF spectrograms of Figs. 7�b� and
7�c�. These spectrograms should be compared with the ones
extracted from our PIC results �see Fig. 3 in �27��. Exactly
because of the stochastic nature of nonlinear resonance the
electrons’ trajectories are very sensitive to the initial condi-
tions with which the nonlinear resonance is entered, as is
clearly seen from Fig. 5�c� where solid black, dashed black,

and gray trajectories correspond to the same initial energy
and the same field amplitude but different phases of the ex-
ternal field. As a result, flashes from different electrons are
incoherent �the corresponding amplitudes have nearly ran-
dom phases�, and, being added up, vanish in the total dipole
acceleration.

This shows that exactly the same mechanism behind effi-
cient energy absorption by and outer ionization from clus-
ters, namely nonlinear resonance �8–10,13�, restricts HG
from them by breaking the coherent electron motion once it
becomes strongly anharmonic. Only well-bound electrons
trapped inside the ionic core with energies far from the reso-
nance contribute to the net, coherent radiation of the cluster.
A similar behavior was observed in classical ensemble simu-
lations of atomic HG �39�.

Instabilities induced by the resonant interaction grow in
time �usually with an exponential rate�. Thus the picture de-
pends also on the pulse duration. With all other parameters
fixed, for longer pulses, more and more trajectories from the
vicinity of the separatrix experience a stochastic behavior. As
a consequence, an increase of the pulse duration should lead,
in general, to a further loss of coherency.

V. CONCLUSIONS

Although laser-irradiated cluster nanoplasmas emit low-
order harmonics efficiently, no significant yield of high har-
monics can be expected even for very high laser intensities.
This is a consequence of dynamical stochasticity, inherent
to nonlinear dynamical systems driven by weak, time-
dependent forces such as the screened electric field inside a
cluster.

Increasing the laser intensity does not help much because
the self-consistent field trapping the electrons inside the ion
core increases too. As a consequence the electron population
always splits into deeply bound electrons and a halo, the Mie
frequency and the screening increase, so that the physical
picture remains almost insensitive to the intensity of the ap-
plied field.

Another option we did not consider above is to use rela-
tively long pulses where the first-order resonance with the
Mie frequency can be reached because of the ion core ex-
pansion. If the Mie resonance is met the ac electric field
inside the cluster is grossly enhanced and nearly all electron
trajectories appear to be strongly disturbed. In this case an
analysis of near-resonant stochastic behavior as given above
is inappropriate. It seems that a direct numerical study is the
only option under these conditions. An analysis based on
classical Vlasov simulations was performed in Refs. �14�.
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