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We present the biorthogonal complement of the standing wave state and its relation to scattering operators.
This establishes a completeness relation in terms of the standing wave states, and therefore completes the
R-matrix �reactance matrix� theory of scattering. We clarify with an example that the R-matrix theory, in its
formulation presented here, can claim its due place in addition to the standard T-matrix theory.
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I. INTRODUCTION

The R-matrix �reactance matrix� theory describes scatter-
ing phenomena in terms of standing wave states �1�. In spite
of its many merits, it has not, however, enjoyed as wide use
as the T-matrix theory. The key problem is that the standing
wave states do not constitute an orthogonal basis set, and
therefore that a proper completeness relation has not been
known in the R-matrix theory �1�. In this paper we solve the
above long-standing problem. We present the biorthogonal
state of the standing wave state, and show that it is a solution
to the equation studied by Kouri and Levin �2,3� more than
three decades ago.

The plan of the paper is the following. In Sec. II, we
briefly review the T-matrix theory with fixing the notation. In
Sec. III, we explain the R-matrix theory where the scattering
operator and the scattering state are described by R�E� and
�E�P, respectively. Here we contrast the R-matrix to the
T-matrix theory, and clarify what is missing in the current
R-matrix theory. In Sec. IV, we introduce a scattering opera-

tor R̃�E� and a corresponding scattering state �Ẽ�P, which are
closely related to R�E� and �E�P, respectively. Then, we

present the main point of the present work, that ��Ẽ�P� is
biorthogonal to ��E�P�, which in turn gives the completeness

relation via ��Ẽ�P� and ��E�P� immediately. In Sec. V, we
present discussions on the basis of the above findings. We

derive a spectral representation of R̃�E� in terms of the
standing wave states, which in turn leads to a counterpart of
the Low equation �1,4� in the R-matrix theory. By comparing
the Low equations in the T- and R-matrix theories, we show
that R-matrix version is much more tractable than the origi-
nal T-matrix version. Finally in Sec. VI, we present a brief
summary.

II. SCATTERING OPERATOR T(E)

We consider a spinless particle described by the following
Hamiltonian �1�:

H = H0 + V , �1�

where H0 is the kinetic energy and V is the potential energy
of the particle with a fixed force center. In the absence of the
potential V, the particle is described by H0 alone, of which
the eigenstate with energy E is given by

H0�Ea� = E�Ea� , �2�

where “a” denotes additional quantum numbers. They are
normalized as �1�

	E�a��Ea� = ��E� − E��a�a. �3�

When “a” stands for the angular momentum quantum num-
bers lm, for example, Eq. �3� reads

	E�l�m��Elm� = ��E� − E��l�l�m�m

and when “a” represents the direction k̂= �� ,�� of the mo-
mentum k of the particle �E=k2 /2m�, it reads

	E�k̂��Ek̂� = ��E� − E���k̂� − k̂� ,

where ��k̂�− k̂�=����−������−�� /sin �. Then the com-
pleteness relation can be written symbolically as �1�



0

�

dE�
a

�Ea�	Ea� = 1, �4�

from which it follows immediately

�
a

�Ea�	Ea� = ��E − H0� . �5�

Now we introduce the potential V, which represents a central
force of short range, and describe briefly the scattering states
in the T-matrix theory �1�. The T operator is defined for an
arbitrary E by

T�E� = V + V
1

E − H0 + i�
T�E� = V + V

1

E − H + i�
V . �6�

The corresponding scattering state �Ea�+ obeys H�Ea�+
=E�Ea�+ with the outgoing wave boundary condition. It is
given by

�Ea�+ = �Ea� +
1

E − H0 + i�
V�Ea�+

= �Ea� +
1

E − H0 + i�
T�E��Ea� �7�

and satisfies

V�Ea�+ = T�E��Ea� . �8�

Here we define the on-shell matrix T�E� by
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	a��T�E��a� = 	Ea��V�Ea�+ = 	Ea��T�E��Ea� . �9�

Then the S matrix is given by

S�E� = 1 − 2�i T�E� , �10�

which is, in the angular momentum basis, the familiar ex-
pression 	l�m��S�E��lm�=�l�l�m�m exp�2i�l�E�� in terms of
the phase shift �l�E�. Note here that we have to require the
unitarity relation �generalized optical theorem� �1�

T�E� − T†�E� = − 2�i T�E�T†�E� �11�

or its operator extension

T�E� − T†�E� = − 2�i T�E���E − H0�T†�E� �12�

to guarantee the unitarity of the S matrix S�E�.
It is well known �1� that ��Ea�+� constitutes an orthogonal

set satisfying

+	E�a��Ea�+ = ��E� − E��a�a �13�

and therefore that the completeness relation is



0

�

dE�
a

�Ea�++	Ea� = 1. �14�

Here we have employed a notation which suggests that there
are no bound states for simplicity; bound states are taken into
account easily by adding appropriate contributions in the
summation in the above, and also in what follows.

The completeness relation of Eq. �14� can be used, for
example, to give the spectral representation of Green’s op-
erator 1 / �E−H+ i�� as

1

E − H + i�
= �

A

�A�+
1

E − Ea + i� +	A� , �15�

where we have used a shorthand notation �A� for �Eaa� and
�A for �dEa�a . By using Eq. �15� in the second equality of
Eq. �6�, we can immediately obtain the following spectral
representation of T�E�:

	A��T�E��A� = 	A��V�A� + �
B

	A��T�Eb��B�

�
1

E − Eb + i�
	B�T†�Eb��A� , �16�

which shows that an off-shell �Ea�E , Ea��E� matrix ele-
ment of T�E� can be written in terms of half-on-shell matrix
elements �1�.

III. SCATTERING OPERATOR R(E)

Let us turn to the R-matrix theory �1�. The R operator
R�E� is given by

R�E� = V + V
1

E − H0
R�E� , �17�

where the propagator 1 / �E−H0� is defined via the principal
value. The corresponding scattering state �Ea�P satisfies

H�Ea�P=E�Ea�P with the standing wave boundary condition.
It is given by

�Ea�P = �Ea� +
1

E − H0
V�Ea�P = �Ea� +

1

E − H0
R�E��Ea�

�18�

and has the following property:

V�Ea�P = R�E��Ea� . �19�

Then we define the on-shell matrix R�E� as �5�

	a��R�E��a� = 	Ea��V�Ea�P = 	Ea��R�E��Ea� , �20�

in the same way as T�E� of Eq. �9�.
It is appropriate here to present relations between the R-

and T-matrix frameworks. They can be most simply derived
as follows. By comparing �Ea�+ of Eq. �7� and �Ea�P of Eq.
�18�, we can immediately see


1 −
1

E − H0
V���Ea�P − �Ea�+� = i���E − H0�V�Ea�+,

�21�

where we have used 1 / �E−H0+ i��=1 / �E−H0�− i���E
−H0�. Let us note here, by using Eqs. �5� and �9�

��E − H0�V�Ea�+ = �
b

�Eb�	Eb�V�Ea�+ = �
b

�Eb�	b�T�E��a�

on the right-hand side of Eq. �21�. Then, by dividing both
sides of Eq. �21� by 1− �1 / �E−H0��V and by using Eq. �18�,
we arrive at the following relation between the outgoing
wave �Ea�+ and the standing wave �Ea�P:

�Ea�+ = �
b

�Eb�P�1 − i�T�E��ba, �22�

where Tba�E� means 	b�T�E��a� defined in Eq. �9�. Finally, by
substituting Eq. �22� in Eq. �9�, we obtain the Heitler integral
equation �1�

T�E� = R�E� − i� R�E�T�E� , �23�

which directly relates T�E� and R�E�.
Having derived the relations �22� and �23� between the T-

and R-matrix descriptions, we can easily see that the S ma-
trix of Eq. �10� is written in terms of R�E� as

S�E� =
1 − i�R�E�
1 + i�R�E�

. �24�

In the partial wave decomposition, R�E� becomes diagonal
as 	lm�R�E��lm�=−�1 /��tan �l�E�, to give 	lm�S�E��lm�
=exp�2i�l�E��.

Note that Hermiticity of R�E� �or R�E�� alone can assure
the unitarity of S�E�. This is a great advantage of the R
matrix over the T-matrix description where T�E� �or T�E��
must satisfy the nonlinear Eq. �11� �or Eq. �12�� to be com-
patible with the unitarity of S�E�. In Sec. V, we shall see an
example which illustrates this point.

This should not be, however, the whole story of the
R-matrix description of scattering theory. It is well known,
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for example, that the spectral representation �16� of the T
operator has played important roles in many aspects �1�. In
the R-matrix theory, on the other hand, we do not have the
counterparts to Eqs. �13�–�16� of the T-matrix theory. The
point is that the standing wave states ��Ea�P� do not form an
orthogonal basis set; instead they satisfy �1�, as shall also be
proven later,

P	E�a��Ea�P = ��E� − E��1 + �2R2�E��a�a, �25�

where Ra�a�E� means 	a��R�E��a� defined in Eq. �20�. Con-
sequently, it is suggested that a properly normalized standing
wave state is given by �1�

�Ea�P� = �
b

�Eb�P�1 + �2R2�E��ba
−1/2.

Then we may write down the completeness relation as
�A�A�P�P�

	A�=1. This is not, however, a convenient way of
treating the standing wave states, first because the physical
meaning of �A�P�= �Eaa�P� is not clear, and second because
	Ea��V�Ea�P� cannot be written as a matrix element of an
appropriate scattering operator as in Eq. �20�. Since a proper
completeness relation is not known in the R-matrix theory,
even the principal value Green’s operator has been expressed
as �1�

1

E − H
= �

A

�A�+
1

E − Ea
+	A� , �26�

using the complete set ��A�+� of the T-matrix theory as in Eq.
�15�. Obviously this expression is not satisfactory; we need a
proper completeness relation and a spectral representation of
1 / �E−H� in terms of the standing wave states. This is ex-
actly what we shall establish below.

IV. SCATTERING OPERATOR R̂(E)

Having understood the unsolved problem in the R-matrix

theory, we define a Hermitian operator R̃�E� by

R̃�E� = V + V
1

E − H
V , �27�

where 1 / �E−H� is defined via the principal value. Note that

R̃�E� is different from R�E� of Eq. �17� �1–3�. We introduce

a corresponding scattering state �Ea˜�P, that satisfies H�Ea˜�P

=E�Ea˜�P by

�Ea˜�P = �Ea� +
1

E − H
V�Ea� , �28�

so that we have

V�Ea˜�P = R̃�E��Ea� . �29�

Note that Eqs. �27�–�29� correspond to Eqs. �17�–�19� in the

R-matrix theory. We shall see later that �Ea˜�P is quite similar
to the standing wave state �Ea�P.

Kouri and Levin �2,3� studied Eqs. �27� and �28� more

than three decades ago, and showed that R̃�E� can give the

phase shift �l�E� as R�E� does. However, their analysis did

not reveal physical meanings of R̃�E� and �Ea˜�P, which then
have been left unclear to date without drawing much atten-
tion. In the following, we clarify their meanings.

We now present the key point of the present paper. �Ea˜�P
defined via Eq. �28� is biorthogonal to �Ea�P, satisfying

P	E�a�˜�Ea�P = ��E� − E��a�a. �30�

The proof goes as follows. Let us note

P	E�a�˜�Ea�P

= 	E�a���1 + V
1

E� − H
��1 +

1

E − H0
R�E���Ea�

= 	E�a��Ea� + 	E�a��
1

E − H0
R�E��Ea�

+ 	E�a��V
1

E� − H
�Ea�P. �31�

By using Eq. �20�, we see that the last term on the right-hand
side can be written as

	E�a��V�Ea�P
1

E� − E
= 	E�a��R�E��Ea�

1

E� − E
,

which cancels the second term 	E�a��R�E��Ea� / �E−E��.
Then the right-hand side of Eq. �31� becomes 	E�a� �Ea�
=��E�−E��a�a, which completes the proof of Eq. �30�.

Because ��Ea�P� constitutes a complete set for the scatter-

ing states, so does its biorthogonal set ��Ea˜�P�. It is then clear
that we have established the completeness relation in terms
of the standing wave states as


 dE�
a

�Ea�PP	Ea˜� = 1, �32�

which is to be compared to Eq. �14� in the T-matrix theory.
Then we can show immediately the useful relation

�
a

�Ea�PP	Ea˜� = ��E − H� , �33�

with which we can prove the following identity:

V��E − H�V = R�E���E − H0�R̃�E� = R̃�E���E − H0�R�E� ,

�34�

where we have used Eqs. �19� and �29� to make ��E−H0� of
Eq. �5�.

In the following, we establish relations between R̃�E� and

R�E�, and between �Ea˜�P and �Ea�P. Let us first note the
following identity �2�:

1

E − H
=

1

E − H0
+

1

E − H0
V

1

E − H
− �2��E − H0�V��E − H� ,

�35�

which we can prove by using 1 / �E−H� i��=1 / �E
−H�	 i���E−H�, and the Lippmann-Schwinger equation
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for 1 / �E−H� i��. Then it is easy to show that R̃�E� of Eq.
�27� satisfies

R̃�E� = V + V
1

E − H0
R̃�E� − �2V��E − H0�V��E − H�V ,

�36�

which makes a clear contrast with Eq. �17� that allows a
perturbation expansion of R�E� in powers of V. By solving

Eq. �36� for R̃�E�, we obtain �2�

R̃�E� = R�E��1 − �2��E − H0�V��E − H�V� , �37�

where we have used a formal expression for R�E� in terms
of V that derives from Eq. �17�. By substituting Eq. �34� for
V��E−H�V in Eq. �37�, we arrive at the following operator

relation between R̃�E� and R�E� �2�:

R̃�E� =
1

1 + �2�R�E���E − H0��2R�E�

= R�E�
1

1 + �2���E − H0�R�E��2 . �38�

It should be noted here that the Hermiticity of R�E� guaran-

tees the Hermiticity of R̃�E�, and vice versa, as can be
shown by Eq. �38�.

We now define the on-shell matrix R̃�E� by

	a��R̃�E��a� = 	Ea��V�Ea˜�P = 	Ea��R̃�E��Ea� , �39�

in the same way as T�E� and R�E�. By taking the on-shell
matrix element of Eq. �38� between 	Ea�� and �Ea�, we ob-
tain the on-shell matrix relation

R̃�E� =
R�E�

1 + �2R2�E�
, �40�

where we have used Eq. �5� for ��E−H0�.
It is easy to generalize Eq. �40� to the off-shell and half-

on-shell cases. By evaluating the half-on-shell matrix ele-
ment of Eq. �38�, for example, we obtain

	E�a��R̃�E��Ea� = �
b

	E�a��R�E��Eb��1 + �2R2�E��ba
−1,

�41�

which is the half-on-shell generalization of Eq. �40�.
It is appropriate here to discuss the relation between R̃�E�

and S�E�. We can derive immediately the following matrix
relation using Eqs. �24� and �40�:

S�E� − S†�E� = − 4�iR̃�E� , �42�

which shows that R̃�E� determines the anti-Hermitian part of
S�E�. This is naturally understood by noticing

R̃�E� =
1

2
�T�E� + T†�E�� , �43�

which we can prove easily using the second equality of

Eq. �6�. This relation shows explicitly that R̃�E� is the Her-

mitian part of T�E�, which in turn determines the anti-
Hermitian part of S�E� of Eq. �10�. Note also that the knowl-

edge of R̃�E� is sufficient to give the phase shift �l�E�,
because Eq. �40� becomes diagonal in the angular momen-

tum basis as 	lm�R̃�E��lm�=−�1 /��cos �l�E�sin �l�E�.
Let us turn to the relation between �Ea˜�P and �Ea�P. First,

using Eqs. �35�, �27�, and �37� in order in Eq. �28�, we can

express �Ea˜�P as

�Ea˜�P = �1 +
1

E − H0
R�E���1 − �2��E − H0�V��E − H�V�

��Ea� . �44�

Second, by using expressions �34� and �5� for V��E−H�V
and ��E−H0�, respectively, we can easily see

��E − H0�V��E − H�V�Ea�

= �
bc

�Eb�	Eb�R�E��Ec�	Ec�R̃�E��Ea�

= �
b

�Eb��R�E�R̃�E��ba.

Then, we can show that Eq. �44� gives the following explicit

relation between �Ea˜�P and �Ea�P:

�Ea˜�P = �
b

�Eb�P�1 + �2R2�E��ba
−1, �45�

where we have used Eqs. �18� and �40�. In the angular mo-
mentum basis, Eq. �45� becomes

�Elm˜�P = �Elm�Pcos2 �l�E� , �46�

which shows obviously that �Elm˜�P is a standing wave state
except for an overall factor �2,3�.

It is very important here to note that we have expressed

�Ea˜�P in two ways, i.e., first by Eq. �28� that relates �Ea˜�P to

the scattering operator R̃�E�, and second by Eq. �45� that
proves by itself the biorthogonality of Eq. �30� because of
Eq. �25�. The crucial point is that these two definitions, �28�
and �45�, lead to the same �Ea˜�P.

Here we make the following two points. First, because we
have derived Eqs. �30� and �45� independently of Eq. �25�,
we can easily give a proof of Eq. �25� by combining Eqs.
�30� and �45�. Second, Eqs. �25� and �45� in turn give the

overlap among ��Ea˜�P� as

P	E�a�˜�Ea˜�P = ��E� − E��1 + �2R2�E��a�a
−1 . �47�

In this section, we have introduced R̃�E� and �Ea˜�P, and
have clarified their meanings. We stress here that their sig-
nificance originates from the fact that they provide the
R-matrix theory with the completeness relation �32�, but not
from numerical feasibility in calculating phase shifts for a
given potential V. In fact, Eq. �17� for R�E� is numerically

more tractable than Eq. �27� for R̃�E�. In Sec. V, we shall see

how R̃�E� and �Ea˜�P show up as indispensable elements in
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numerical as well as in analytical aspects of the scattering
theory.

V. DISCUSSIONS

Here we derive the spectral representation and the Low
equation in the R-matrix theory. Discussions on the basis of
these results show the importance of the relations obtained in
Sec. IV. In particular, we will see that the Low equation is an
example where the R-matrix theory is truly more appropriate
than the T-matrix theory.

A. Spectral representation

We show, as an application of the completeness relation in
the standing wave states, the counterpart of Eq. �16� in the
R-matrix theory. It is clear that R�E� does not have a spectral
representation because the propagator in Eq. �17� is 1 / �E
−H0�. On the other hand, R̃�E� of Eq. �27� is defined via
1 / �E−H�, and has a spectral representation. Using the com-
pleteness relation �32�, we have

1

E − H
= �

B

�B�P
1

E − Eb
P	B̃� , �48�

which replaces Eq. �26�. Then we can show immediately that
Eq. �27� yields the following spectral representation:

	A��R̃�E��A� = 	A��V�A� + �
B

	A��R�Eb��B�
1

E − Eb

�	B�R̃�Eb��A� . �49�

Because the matrix elements of R�E� and R̃�E� can be trans-
formed to each other by virtue of Eq. �38� as shown by Eqs.
�40� and �41�, the spectral representation of Eq. �49� plays
exactly the same role in the R-matrix theory as that of Eq.
�16� in the T-matrix theory.

We emphasize here that the derivation of Eq. �49� requires

both expressions �28� and �45� for �Ea˜�P. Suppose one starts
with the knowledge the R-matrix theory summarized by Eqs.
�17�–�20�, �24�, and �25�. Then, from Eq. �25� for the overlap

among ��Ea�P�, one would be led naturally to define �Ea˜�P by
Eq. �45�, that guarantees the biorthogonality �30� and gives
the expression �48� for 1 / �E−H�. Only with R�E� of Eq.
�17� at hand, however, one cannot proceed any further to
establish Eq. �49�. In order to write a spectral representation,

one needs, in addition to Eq. �45�, a relation between �Ea˜�P
and a scattering operator defined via 1 / �E−H�. The investi-
gation in the present work shows that the relation is exactly
what is expressed by Eq. �29�, and the scattering operator is

R̃�E� defined by Eq. �27�. In fact, to complete Eq. �49�, we

need to use P	B̃�V�A�= 	B�R̃�Eb��A� that derives from Eq.
�29�. The above observation clearly shows that if we had, to

express �Ea˜�P, either Eq. �28� or Eq. �45� only, we could not
have arrived at the spectral representation �49�.

B. Low equation

Having established the spectral representation �49�, we
now derive for the first time the Low equation �1,4� in the

R-matrix theory in the following manner. First, by setting
E=Ea in Eq. �49�, we obtain

	A��R̃�Ea��A� = 	A��V�A� + �
B

	A��R�Eb��B�
1

Ea − Eb

�	B�R̃�Eb��A� . �50�

Second, by changing indices as A↔A� in Eq. �50� and tak-
ing the complex conjugate, we have

	A��R̃�Ea���A� = 	A��V�A� + �
B

	A��R�Eb��B�

�
1

Ea� − Eb
	B�R̃�Eb��A� . �51�

Here we have used

�
B

	A��R̃�Eb��B�
1

Ea� − Eb
	B�R�Eb��A�

= �
B

	A��R�Eb��B�
1

Ea� − Eb
	B�R̃�Eb��A� ,

which we can show by using Eqs. �41� and �45�. Subtracting
Eq. �51� from Eq. �50�, we eliminate V to obtain

	A��R̃�Ea��A� − 	A��R̃�Ea���A�

= �
B

	A��R�Eb��B�
 1

Ea − Eb
−

1

Ea� − Eb
�	B�R̃�Eb��A� .

�52�

This is a system of self-consistent nonlinear equations for the

half-on-shell matrix elements of R̃�E� �or of R�E�, because
of Eq. �41��. We note that Eq. �52� is obviously the R-matrix
version of the Low equation �1,4�. In fact, by starting from
Eq. �16� and following the same way as in the above, we can
obtain the original Low equation in the T-matrix theory as

	A��T�Ea��A� − 	A��T†�Ea���A�

= �
B

	A��T�Eb��B�
 1

Ea − Eb + i�
−

1

Ea� − Eb − i��
�	B�T†�Eb��A� . �53�

It should be stressed here that the Low equation does not
explicitly depend on the potential V, and therefore that its
applicability may exceed the domain of potential scattering.
This important feature of the Low equation warrants its nu-
merical as well as analytical investigations.

Now we compare Eqs. �52� and �53�. It is known that Eq.
�53� in the T-matrix theory is very difficult to solve �6�, and
has not been used in actual calculations. One of the main
difficulties is that one must solve Eq. �53� with the unitarity
constraint of Eq. �12�, which itself is a complicated nonlinear
equation. In the R-matrix version �52�, on the other hand, the

only constraint is that R̃�E� �and therefore R�E�� be Hermit-
ian. Let us explain the above situation in a different way.
Because of Eq. �43�, we can regard Eq. �52� as a closed
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system of equations for only the Hermitian part of T�E�. On
the other hand, Eq. �53� �along with Eq. �12�� is a system of
coupled equations for the Hermitian and anti-Hermitian parts
of T�E�. The above observation shows clearly that the
R-matrix version �52� is much more tractable than the origi-
nal T-matrix version �53�. We believe that the Low equation,
in its standing wave representation �52�, is now ready for
numerical studies as well as for analytical investigations.

The Low equation is a good example where the R-matrix
description is truly more convenient than the T-matrix de-
scription, while both theories ultimately lead to the same
results. This shows clearly that the R-matrix theory, in its
present formulation, can claim its due place in the descrip-
tion of scattering phenomena in addition to the standard
T-matrix theory.

VI. SUMMARY

Let us summarize the present work. The R-matrix theory
describes scattering phenomena in terms of the scattering
operator R�E� and the standing wave state �Ea�P. To date,
the R-matrix theory has lacked the biorthogonal complement

of �Ea�P, and the corresponding scattering operator, and the
proper completeness relation. In this situation, we have pre-
sented the following results. First, we have shown that the

scattering operator R̃�E� of Eq. �27� and the corresponding

scattering state �Ea˜�P of Eq. �28� are related to R�E� and
�Ea�P in the R-matrix theory by Eqs. �38� and �45�, respec-
tively. Second, and most important, we have proven that

�Ea˜�P is biorthogonal to �Ea�P. We have then obtained the
completeness relation �32� in terms of the standing wave
states, that has long been missing in the R-matrix theory.
Finally, in order to show the importance of the above com-
pleteness relation, we have derived the spectral representa-

tion �49� of R̃�E�, and the Low equation �52� in the R-matrix
theory. In particular, we have shown that the Low equation in
its R-matrix version is much more controllable than its origi-
nal T-matrix version. Having solved the long-standing prob-
lem of the completeness relation in the R-matrix theory, we
believe that the present work has made the R-matrix descrip-
tion as complete as and in some cases even more useful than
the T-matrix description of scattering phenomena.

�1� R. G. Newton, Scattering Theory of Waves and Particles, 2nd
ed. �Springer-Verlag, Berlin, 1982�.

�2� D. J. Kouri and F. S. Levin, Ann. Phys. 83, 316 �1974�.
�3� D. J. Kouri and F. S. Levin, Phys. Lett. 48B, 203 �1974�.

�4� F. E. Low, Phys. Rev. 97, 1392 �1955�.
�5� In our notation, −�R�E� is K�E� in Ref. �1�. We use R�E�

because the contrast to the T-matrix description is clearer.
�6� R. L. Warnock, Phys. Rev. 170, 1323 �1968�.

KAZUO TAKAYANAGI PHYSICAL REVIEW A 77, 062714 �2008�

062714-6


