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We have performed experimental and theoretical studies of double ionization of helium by 6 MeV proton
impact using a recently developed tool, four-particle Dalitz plots �Schulz et al., J. Phys. B 22, 3091 �2007��
which enable the representation of multiple differential cross sections as a function of all four fragments in a
single spectrum without loss of any part of the total cross section. As a result, the relative importance of the
various interactions between the fragments can be studied in great detail. Comparisons of experimental data
with theoretical first-order calculations and simulations for the higher-order �TS-2� process show that elastic
scattering between the heavy particles is surprisingly strong. For a large fraction of collision events, the
final-state electron momenta are small compared to the momenta of the heavy particles. Our results suggest that
an uncorrelated double ionization mechanism, involving two independent interactions of the projectile with
both electrons, is significantly more important than previously expected for such fast collisions.
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I. INTRODUCTION

The importance of studying atomic breakup processes for
advancing our understanding of the fundamentally important
few-body problem has been frequently pointed out; see, e.g.,
�1,2�. In the case of three-body fragmentation, e.g., single
ionization �SI� of hydrogen or helium by charged-particle
impact, the theoretical description has made impressive
progress in recent years �e.g., �2–7��. In particular, measured
fully differential cross sections �FDCS�, which offer the most
sensitive tests of theoretical models, can now basically be
reproduced, except for some specific kinematic conditions
�1�, highly-charged-ion impact �8–10�, and slow ion impact
�11,12� �for a recent review see also �13��.

In four-body fragmentation processes involving a transi-
tion of two electrons, e.g., double ionization �DI� of helium
by charged-particle impact, a particularly interesting aspect
of the few-body problem is the role of correlation effects
between the two electrons. Two DI mechanisms involving
electron-electron correlations are usually discussed �14�: in
one, dubbed two-step one-projectile-electron interaction two-
step-one �TS-1� projectile-electron interaction, the projectile
interacts with only one electron, which subsequently inter-
acts with the second electron leading to the ejection of both
electrons. In the second mechanism, called shake-off �SO�,
the projectile also interacts with only one electron directly.
The resultant ejection of the electron may leave the residual

He+ ion in a state which is not an eigenstate of the Hamil-
tonian. Therefore, this state has a nonzero overlap with the
continuum so that the second electron can be ejected with
some finite probability. In terms of the projectile–target-atom
interaction both TS-1 and SO are first-order processes. DI
without any electron-electron correlations can occur only in
second �and higher� order. In the second-order process,
which is referred to as two-step two �TS-2� projectile-
electron interaction, the projectile interacts with each elec-
tron independently.

The literature on measured data on DI is not nearly as
comprehensive as for SI. In the case of electron impact
FDCSs were obtained only by two groups �15,16� and for ion
impact only one data set for nearly fully differential cross
sections is available �17�. The qualitative features of these
data are quite similar to photo-double-ionization and can to a
large extent be described by a combination of a Coulomb
repulsion between the two electrons in the continuum and the
dipole selection rule prohibiting back to back emission of
electrons with equal energy originating from the 1s2 ground
state of helium. However, it is very difficult to extract infor-
mation regarding the relative importance of the various DI
mechanisms described above because it is not known with
sufficient accuracy which mechanism leads to which charac-
teristic features in the FDCS. Fischer et al. concluded indi-
rectly that for electron impact TS-2 is somewhat more im-
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portant than for proton impact at similar initial projectile
velocity �17�.

In spite of the tremendous power of analyzing FDCSs
there are also some important drawbacks. First, experimental
data for FDCS cover only a tiny fraction of the total cross
section. As a result, features that appear to be very pro-
nounced in the FDCSs for selected kinematic conditions may
be insignificant in the total cross sections and vice versa.
Consequently, it is difficult to evaluate the relative overall
importance of the various DI mechanisms based on FDCSs.
Second, using conventional plotting techniques, the FDCSs
cannot be presented as a function of all collision fragments
in a single spectrum. It is therefore practically impossible to
analyze the correlation between all final-state particles simul-
taneously in the collision dynamics. These disadvantages of
FDCSs were recently addressed by a new data analyzing
technique which is based on four-particle Dalitz �4D� plots
�18�. These plots are basically an extension of conventional
Dalitz plots, originally introduced in particle physics to ana-
lyze three-body decays �19�, to four-body fragmentation pro-
cesses. The tremendous power of three-particle Dalitz plots
has readily been demonstrated in atomic physics as well in
studies of a broad variety of processes such as three-body
fragmentation of molecules �20–22�, single �23–25� and
triple ionization �26� of atoms by charged-particle impact, or
mutual ionization of both collision partners �27�. In a 4D
plot, the data are presented in a tetrahedral coordinate system
�compared to an equilateral triangle in regular Dalitz plots�,
where each tetrahedron plane represents one of the four frag-
ments. The perpendicular distances of a given data point
�which can occur only in the inner region of the tetrahedron�
to the four planes represent the relative squared momenta of
the four particles �i= pi

2 /�pj
2, where in the case of the scat-

tered projectile the momentum transfer to the target atom q
is used instead of the total final-state projectile momentum.

In a 4D plot multiple differential cross sections are pre-
sented as a function of all collision fragments simultaneously
in a single spectrum without loss of any part of the total
cross section �given by the integral of the 4D plot�. The
disadvantages of FDCSs mentioned above are thus over-
come. However, the obvious disadvantage is that the degree
of differentiality is lower than in FDCSs, and 4D plots
should therefore be viewed as a powerful complementary
rather than competitive tool to FDCSs. Additional informa-
tion can be obtained by generating the 4D plots for selected
momentum components. Using this technique to analyze si-
multaneous electron ejection from both collision partners in
H−+He collisions, it was recently demonstrated that some of
the interactions involved in the collision dynamics leave
their footprint only in specific coordinates �18�.

In calculating 4D spectra, theory faces a serious problem
which is usually not as severe for more conventional spectra.
Total and differential cross sections of lower degree than
FDCSs are normally obtained by integrating the latter over
the appropriate kinematic parameters. Typically, measured
spectra correspond to cross sections differential in param-
eters �e.g., ejected electron energy and angles, projectile scat-
tering angle, etc.�, which are part of a natural coordinate
system used in theoretical models such that a degree of sym-
metry as high as possible is achieved. The integration of the

FDCSs can then often be performed partly analytically or at
least the required numerical efforts are minimized.

The four Dalitz coordinates are not natural in this sense
and only a low degree of symmetry can be taken advantage
of. Theoretical regular Dalitz plots �for three particles� were
recently presented for SI of helium by ion impact �24�. How-
ever, the extra final-state particle in DI makes the analysis
much more complex. Furthermore, the theoretical descrip-
tion even of the FDCSs is a much more challenging problem
for DI than it is for SI. At present, it therefore seems hopeless
to calculate 4D spectra by direct integration of the FDCS.
One possible way out of this theoretical predicament is of-
fered by the Monte Carlo event generator �MCEG� method
which was recently introduced to atomic physics �28�. In this
technique only the calculation of the FDCS is required, re-
gardless of what type of cross section the investigator wishes
to analyze. Based on these FDCSs a large number �typically
around 1�106� of collision events leading to the process of
interest �here DI� is simulated, or in other words the infor-
mation provided by the detectors in an experiment is simu-
lated. The kinematically complete information, i.e., the mo-
mentum components of the collision fragments, is then
stored in an event file similar to the one obtained in the
experiment. This event file can then be analyzed in precisely
the same way as experimental data, i.e., whatever cross sec-
tion can be extracted from the experiment is extractable from
theory as well. In the case of SI this method was recently
used to fully include the experimental resolution in theory
�28� and to convolute the calculated cross sections with elas-
tic scattering between the projectile and the residual target
ion �29�.

In this paper we present both measured and calculated 4D
plots for DI in 6 MeV p+He collisions. The theoretical plots
were obtained using the MCEG technique described above.
Although the prohibitively complex direct integration of the
FDCS is avoided in this method, the generation of the event
file is still very computer-time demanding. It is therefore
currently not feasible for numerically intensive models and
we applied it only to first-order type of calculations including
electron-electron correlations. Furthermore, such spectra
were generated by modeling DI in terms of two independent
SI events. Extrapolating the rapidly increasing computer
power to the future, performing such calculations with more
sophisticated models should become possible not too long
from now. Nevertheless, even the comparison of our mea-
sured data with the simulation of DI in terms of two inde-
pendent SI events and with our relatively simple theoretical
models readily provides surprisingly rich information about
the DI collision dynamics. Perhaps the most significant result
we report here is strong indications that TS-2 is much more
important than previously assumed for this large projectile
velocity.

II. EXPERIMENT

The experiment was performed at the 12 MV tandem Van
de Graaff accelerator at the Max–Planck-Institut für Kern-
physik in Heidelberg. A pulsed 6 MeV proton beam with a
pulse length of about 1 ns and a repetition rate of 680 kHz
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intersected with a cold �1.5 K� He beam from a supersonic
gas jet. The recoil ions and the ionized electrons were ex-
tracted in the longitudinal direction �defined by the initial
projectile direction� by a weak electric field of 2.3 V/cm.
Their momentum vectors and the recoil charge state were
determined by using position-sensitive detectors and time-of-
flight techniques, where a fast signal from the projectile
beam pulser served as a timing reference

A uniform magnetic field of 14 G confined the transverse
motion of the electrons so that all electrons with a transverse
momentum of less than 2 a.u. were guided onto the detector.
For each DI event both electrons were detected simulta-
neously with a single detector employing a multihit tech-
nique �dead time�10 ns�. From the electron momenta it is
straightforward to calculate the emission angles. In the data
analysis losses due to the limited acceptance were carefully
accounted for. The momentum components of the scattered
projectiles are deduced in the data analysis from momentum
conservation.

A thorough analysis of the resolution of all momentum
components �electrons and recoil ions� in a kinematically
complete experiment was recently performed for SI of he-
lium by 100 MeV/amu C6+ impact �28,29�. It was found that
the main contribution to the experimental overall uncertain-
ties is due to the temperature of the target beam and the size
of the interaction volume �i.e., the overlap of the projectile
and target beam�. In the present experiment the target tem-
perature was about the same as in Ref. �29�, but the size of
the interaction volume was about a factor of 2 larger. How-
ever, in the momentum resolution of the recoil ions this
larger size is partly compensated by the smaller extraction
voltage used in this experiment. Furthermore, the momentum
resolutions depend on the momenta themselves and therefore
averaged values are provided. In the longitudinal �z� direc-
tion they are �0.075 and �0.005 a.u. for the recoil ion and
for the electron, respectively. In the direction of the jet ex-
pansion �y direction�, the corresponding numbers are �0.25
and �0.15 a.u., and for the x direction �0.1 and
�0.05 a.u., respectively. Since the momentum resolution of
the electrons is small compared to that of the recoil ion, the
projectile momentum resolution is essentially the same as for
the recoil ions.

III. DATA ANALYSIS

A thorough description of the 4D plots and their genera-
tion from Cartesian momentum components of the collision
fragments was provided in �18� and will not be repeated here
with the same level of detail. In short, as mentioned above,
the data are presented in a tetrahedral coordinate system and
can occur only in the inner region of the tetrahedron. Each
tetrahedral plane represents one of the four final-state par-
ticles. The perpendicular distance of a specific data point to
the four planes determines the relative squared momenta �i
= pi

2 /�pj
2 of the four collision fragments.

Since the momentum transfer is given by the sum of the
momenta of the two ejected electrons �k1 ,k2� and of the
recoil ion �prec�, the quantity −q+k1+k2+prec is zero. Con-
sidering that the Dalitz coordinates contain the momenta

only in squared form, this condition has the same effect on
the 4D plots as q+k1+k2+prec=0, i.e., if the 4D plots were
generated using −q instead of q in the �i’s, the plot would
not change. For the latter condition, in turn, it is easy to see
that the entire inner region of the tetrahedron is not kinemati-
cally allowed: for example, for any corner of the tetrahedron,
where three planes intersect, three of the four momenta are
simultaneously zero, i.e., the condition that the summed mo-
mentum of all four momenta is zero cannot be satisfied.

A 4D plot can be generated using a standard Cartesian
coordinate system by employing the following transforma-
tions �18�:

x = �1, y =
1
�8

�3�2 + �1�, z =�3

2
��3 + 0.5�2 + 0.5�1� .

�1�

It should be noted that these transformations also entail a
phase space transformation of the cross sections such that,
for a uniform distribution in Cartesian momentum space, the
4D plot will be strongly peaked in the center of the tetrahe-
dron �18�. Therefore, structures near the center of the 4D plot
could be merely due to this phase space transformation; how-
ever, any structures near the surface of the tetrahedron have a
deeper significance.

IV. THEORETICAL FRAMEWORK

A. Fully differential cross sections in the first Born
approximation

We treat DI within the first Born approximation �FBA�.
Since it contains the projectile-atom interaction only to first
order, DI is only possible through a mechanism involving
some form of electron-electron correlation �SO or TS-1�, i.e.,
contributions from TS-2 are neglected in our calculations.
Three models are employed which all use the same initial
state incorporating part of the radial correlation and which
differ only in the description of the final state.

The FDCS differential in the momentum of the two
ejected electrons k1 and k2 and in the transverse component
of the momentum transfer q, i.e., q�, with q=q�+qzv̂ and
q� · v̂=0, v̂ being the direction of the projectile velocity v,
can be written as

d8�

dk1dk2dq�

=
�2��4

v2 �Tif�2, �2�

where we have reduced the dimensionality using the energy
conservation � function ��Ei−Ef�, Ei �Ef� being the total
initial �final� energy of the system. In ion-atom collisions the
relation qz=�� /v is satisfied to a very good approximation.
Here, the projectile energy loss is given by ��=k1

2 /2+k2
2 /2

+ �	i�, where 	i is the total binding energy of the helium atom.
Within the FBA, the transition amplitude Tif in the prior

form is given by �see, e.g., �30��

Tif = 	
 f
�−��V̂�
0
 �3�

with the initial �final� state wave function 
0 �
 f
�−�� and the

perturbation V̂, which consists of the Coulomb interactions
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between the incoming projectile and each of the constituents
of the helium atom, i.e., both electrons and the nucleus.

We approximate the initial state 
0 by a plane wave of
momentum Ki for the incoming projectile 
Ki

and a two-
electron wave function �0 that represents the helium ground
state

�
0
 = �
Ki

��0
 . �4�

Among the numerous models to represent the latter we
choose the following ansatz which uses two different effec-
tive charges to model the screening of the atomic nucleus
experienced by the outer electron and caused by the inner
one:

�0�r1,r2� = N�e−Zar1e−Zbr2 + e−Zbr1e−Zar2� . �5�

The charges Za and Zb are calculated variationally and have
the values 2.183 171 and 1.188 530, respectively. This model
yields the ground-state energy 	i=−2.8757 a.u. �31�, which
is below the Hartree-Fock result 	i=−2.8617 a.u. for the 1s2

configuration. In this sense �radial� correlations are included
to some extent in the initial state �30�.

The final-state wave function is assumed to be of the form

�
 f
−
 = �
Kf


��k1,k2

�−� 
 , �6�

where 
Kf
represents a plane wave for the outgoing projec-

tile with momentum K f and �k1,k2

�−� is a two-electron con-
tinuum eigenfunction of the helium atom Hamiltonian.
Within the FBA the integral over the projectile coordinate
can be calculated directly, and consequently we can write the
transition amplitude Tif as

Tif =
ZP

2�2q2 �ZTM0 − M1 − M2� �7�

with momentum transfer q=Ki−K f, projectile charge ZP,
target nuclear charge ZT=2, and

M0 =� dr1� dr2�k1,k2

�−�� �r1,r2��0�r1,r2� , �8�

M1 =� dr1� dr2�k1,k2

�−�� �r1,r2�eiq·r1�0�r1,r2� , �9�

M2 =� dr1� dr2�k1,k2

�−�� �r1,r2�eiq·r2�0�r1,r2� . �10�

In a strict sense the contribution of M0 to the T matrix should
vanish in the FBA because of the orthogonality of the initial
and final electronic states. However, it should be noted that
with the way we model these states they are not exactly
orthogonal. As a result, the T matrix contains some contribu-
tions from elastic scattering between the projectile and the
target nucleus. However, a test calculation confirmed that
these contributions are insignificant because the nonorthogo-
nality is small.

To proceed further it is necessary to specify the two-
electron wave function �k1,k2

�−� �r1 ,r2�. There exist several
models to deal with the two-electron continuum �see, e.g.,

�32�� in approximate fashion. We choose three of them to
study the DI process. The first model, which serves also as a
reference, is a symmetrized product of two one-electron scat-
tering eigenstates with incoming boundary conditions �k

�−��r�
of the bare helium nucleus. This electronic wave function
reads

�k1,k2

�−�,2C�r1,r2� =
1
�2

��k1

�−��r1��k2

�−��r2� + �k2

�−��r1��k1

�−��r2��

�11�

and is known as the 2–Coulomb �2C� model. It describes the
two one-electron-nucleus subsystems exactly, but neglects
the interaction between the electrons completely, i.e., this
model contains electron-electron correlations only in the ini-
tial state. The 2C model was used extensively in the past in
studies of electron impact ionization of helium �33�. Due to
the absence of electron-electron correlations in the final state,
it leads to an unphysical preference for both electrons to be
emitted into the same direction, a feature that was pointed
out by several authors �see, e.g., �34� and references therein�.

In the second model we incorporate the asymptotic
boundary conditions of the three-body Coulomb problem,
i.e., of the two ionized electrons and the residual target ion.
This can be accomplished by adding a third Coulomb distor-
tion to model the electron-electron interaction and thus im-
prove the representation of the dynamics of the system at
large interparticle distances. A variety of model wave func-
tions have been proposed in the field of electron impact ion-
ization, e.g., the 3C or Brauner-Briggs-Klar wave function
�35�. These models represent the three-body asymptotic state
in terms of combinations of two-body subsystems, which are
in turn described by suitable effective one-body wave func-
tions. The evaluation of the ionization T matrix elements
with this three-body wave function is cumbersome, since it
requires a substantial numerical effort, thereby making sub-
sequent numerical calculations of differential cross sections
impractical �35�. In order to avoid these difficulties a simpli-
fied version of the 3C ansatz was suggested, in which the
relative Coulomb scattering wave function of the two-
electron subsystem is replaced by its value at zero spatial
distance. The explicit expression for this wave function can
be written as �36�

�k1,k2

�−�,2C+�r1,r2� =
1
�2

��k1

�−��r1��k2

�−��r2� + �k2

�−��r1��k1

�−��r2��

���k12� , �12�

where

��k12� = e−�
12��1 − i
12�, 
12 =
Z12

k12
, �13�

with k12= �k1−k2� being the relative momentum between the
two electrons and Z12=1 represents the case of static screen-
ing �see the discussion below�. In the transition probabilities
and cross sections, the quantity
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���k12��2 =
2�
12

e2�
12 − 1
�14�

appears as a prefactor. Equation �14�, known as the Gamov
factor, was used extensively in investigations of DI by elec-
tron and ion impact. It suppresses exponentially the probabil-
ity to find both ionized electrons with close momenta, but
ensures that electrons with very different momenta move in-
dependently.

The choice Z12=1 yields too strong a repulsion between
electrons with low emission energies, and consequently the
cross sections near threshold are underestimated. In our third
model we address this drawback by introducing effective
charges that depend on the electron momenta �37–40�. Dif-
ferent explicit forms for this dependence have been proposed
and applied to different processes, especially in electron-
induced ionization processes. These models are known ge-
nerically as dynamic screening approaches. Very recently, a
simplified derivation of dynamic screening was proposed and
used to describe �e ,3e� reactions �41�, and furthermore ap-
plied to model the correlation function in DI by ion impact
�42�. Following Ref. �41�, we use the effective charge

Z12 = 1 −
k12

2

�k1 + k2�2 �15�

in Eq. �14�. We label our models as follows: model I refers to
Eq. �11�, model II to the one which uses the static charge
Z12=1, and model III to the one which uses the screened
charge �15� in Eq. �14�. In all cases discussed below the
initial-state wave function �5� has been used.

B. The Monte Carlo event generator method

As mentioned above, the second important step, apart
from calculating the FDCS for DI, is to use the MCEG tech-
nique to generate an event file with which the 4D plots can
be generated using an identical analysis as for the experi-
mental data. A detailed explanation of the MCEG procedure
can be found in �28�, where the method was used to deal
with SI by ion impact. Consequently, we give only a brief
description of the numerical procedure to calculate the event
files for DI, and we emphasize the differences from the SI
case.

In DI by ion impact, the event file contains seven inde-
pendent momentum components which are required to fully
determine the kinematics, i.e., three components for each of
the ejected electrons �k1

x ,k1
y ,k1

z ,k2
x ,k2

y ,k2
z� and one component

of the momentum transfer �qx�. We use a coordinate system
in which x is pointing along the transverse component of q
so that qy =0 for all events. The component of q along the z
axis, defined by the initial beam direction, is readily deter-
mined by the sum energy of both ejected electrons �see pre-
vious section� and is thus not needed.

For all momentum components of both electrons the col-
lision kinematics is restricted to a range from −2 to 2 a.u.
Furthermore, for the transverse component of the momentum
transfer qx the range is between 0 and 2 a.u. The Monte Carlo
generated events are selected using a simple rejection
method, where the following cycle is repeatedly executed

until a sufficiently large sample of good events has been
generated. �i� A set of eight random numbers is chosen,
seven of which represent a point in the seven-dimensional
momentum phase space �k1

x ,k1
y ,k1

z ,k2
x ,k2

y ,k2
z ,qx� and are uni-

formly distributed within the limits stated above. The eighth
random number u is uniformly distributed in the interval
�0,1�. �ii� The cross section is calculated at the randomly
selected point �k1

x ,k1
y ,k1

z ,k2
x ,k2

y ,k2
z ,qx� from the theoretical

model, in our case FBA-type models with and
without the inclusion of electronic correlation in the final
state. �iii� The random number u is compared with
the normalized cross section �̃�k1

x ,k1
y ,k1

z ,k2
x ,k2

y ,k2
z ,qx�

=��k1
x ,k1

y ,k1
z ,k2

x ,k2
y ,k2

z ,qx� /�max where �max is the maximum
of the cross section within the selected seven-dimensional
phase space. In this way �̃ ranges between zero and one. �iv�
If u��̃ we consider the event represented by the seven mo-
menta a good event and store it in the event file. On the other
hand, the event is discarded if u��̃.

As the cross section drops more rapidly toward larger
electron momenta and momentum transfers, as in the case of
SI, this method becomes quite inefficient, i.e., many events
are rejected so that a lot of random numbers need to be
generated until a sufficiently large event file is obtained. The
efficiency of the rejection method could be improved signifi-
cantly by modifying the weight of the randomly selected
number u from a uniform to another distribution, which is a
better match to the cross section. However, this last task is
difficult to achieve in our seven-dimensional phase space and
consequently we have used the usual random number gen-
erators with uniform distributions.

It should be noted that it is necessary to assure the quality
of the pseudorandom number generator in our numerical
scheme. One measure of the randomness is the period of the
random sequence, and to this end we have adopted a portable
random number routine with a period around 2�1018 that is
enough for our purposes �43�. Typically, the event files con-
tain about 1�106 valid DI events. To obtain this quantity of
events is certainly a computational challenge, since the ac-
ceptance for DI events is even smaller than for the case of
SI. Out of 2�1010 trials only approximately 600 events sur-
vived the rejection and were stored in the file. Consequently,
to obtain the full quantity of events it is necessary to run the
single routine several hundreds of times. Using parallel pro-
gramming techniques implemented in a distributed computa-
tional system, we were able to handle this problem in a rea-
sonable time �approximately five days for each model�.

V. EXPERIMENTAL RESULTS

An experimental 4D plot is shown in Fig. 1�a� for DI of
helium by 6 MeV proton impact. This and all following plots
are shown with an offset of 7% of the maximum number of
counts in the spectrum. Without this offset the spectra would
be overloaded with data points so that the prominent struc-
tures would be very difficult to identify. The ejected elec-
trons are represented by the front and bottom planes, the
recoil ion by the back plane and the scattered projectile �i.e.,
the momentum transfer� by the right plane. At the intersec-
tion lines of two tetrahedral planes, the momenta of the par-
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ticles represented by these planes are zero and the momen-
tum exchange in the collision occurs only between the other
two particles. We therefore associate events falling on these
intersection lines with binary interactions and they are la-
beled 1 through 6 in Fig. 1�a� for easier reference in the text.

The dominant feature in the experimental 4D plot of Fig.
1�a�, similar to what was observed in Ref. �18�, is a peak at
the intersection line between the planes representing the two
ejected electrons �line 5�. For this region, the momenta of the
electrons are small compared to the recoil-ion momentum
and to q, i.e., the momentum exchange occurs predominantly
between the two heavy particles. Therefore, just as in simul-
taneous electron ejection from both collision partners in rela-
tively slow 200 keV H−+He collisions, elastic scattering be-
tween the projectile and the target nucleus surprisingly plays
a major role for the momentum balance in doubly ionizing
collisions even at the very small perturbation parameter �
�0.065 �projectile charge to velocity ratio� realized for the
present collision system. Non-negligible peak structures are
also observed near intersection lines 2 and 6 representing
binary interactions between the target nucleus and one of the
ejected electrons. As pointed out in Ref. �18�, these struc-
tures partly represent a residue of the momentum distribution
of the target atom in the initial ground state and we therefore
refer to them as internal correlations. However, as we will
show in the next section, the repulsion between the electrons
in the continuum may also contribute in this region. Finally,
weak contributions are found near intersection lines 3 and 4
representing binary interactions between the projectile and
one electron.

It is interesting to note that binary electron-electron inter-
actions, represented by intersection line 1, are almost com-
pletely absent in the 4D plots. However, this does not imply
by any means that electron-electron correlation effects are
unimportant. In sharp contrast to simultaneous electron ejec-
tion from both collision partners studied in Ref. �18� DI can-
not proceed through an electron-electron interaction alone,
but rather an interaction of the projectile with at least one
electron is required. On the other hand, the minimum mo-
mentum transferred by the projectile in DI is given by qmin
=	i /v=0.19 a.u. �44�, where 	i is the total binding energy of
79 eV. Binary electron-electron interactions with negligible
momentum transfer and negligible recoil-ion momentum are
therefore unlikely. In the next section we will discuss in
which regions of a 4D plot signatures of electron-electron
correlations might be expected.

As a first attempt to interpret the features observed in the
4D plot we analyze DI in terms of a simulation of the TS-2
mechanism convoluting two independent SI events. We real-
ize that for the fast collisions investigated here TS-2 is not
necessarily expected to be the most important mechanism.
However, such an analysis is nevertheless useful because it
provides valuable information about the signatures of TS-2
to be expected in the 4D plots. The signatures of first-order
correlated DI processes �SO and TS-1� we will explore in the
next section using our theoretical models.

The convolution of two independent SI events can be per-
formed in various ways. One possibility is to convolute SI of
neutral helium �with an ionization potential of 24.6 eV� with
SI of He+ �with an ionization potential of 54.4 eV�, which we
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FIG. 1. �Color online� Experimental and theoretical 4D plots for DI of helium by impact of 6 MeV protons. �a� Experimental 4D plot,
�b� 4D plot using the TS-2 simulation without any convolution, �c� 4D plot using the TS-2 simulation convoluted only with resolution, and
�d� 4D plot using the TS-2 simulation convoluted with both experimental resolution and elastic scattering. For all the 4D plots the three
components of the particle momenta were used �see text�.

CIAPPINA et al. PHYSICAL REVIEW A 77, 062706 �2008�

062706-6



call the independent event model �45�. Another possibility is
to treat the two electrons as completely equivalent, i.e., as-
suming that they equally share the total two-electron binding
energy of the helium ground state, and to consequently con-
volute two SI events assuming an ionization potential of 39.5
eV for each electron �46�. We refer to this approach as the
independent electron model. Reasonable arguments can be
made for both approaches and it is not immediately clear
which one is more appropriate. We therefore employed both
methods.

Since we only have experimental data for SI of neutral
helium, we performed the convolution using calculated SI
cross sections for ionization potentials of 24.6, 39.5, and
54.4 eV, respectively, employing the FBA. The 4D plots
were then calculated basically the same way as for our the-
oretical DI models. One important difference is that two cal-
culations of the FDCS �one for each SI event� had to be done
simultaneously. Another difference is that the x and z com-
ponents of two momentum transfers �again, one for each SI
event� were stored in the event file. Since the x direction was
chosen to be the transverse component in the scattering plane
�defined by the initial and final projectile momenta�, the di-
rection of the electron momentum and the momentum trans-
fer in the xy plane had to be randomized for one of the two
SI events. This accounts for the independent nature of the
two SI events, which implies that all mutual angles between
the electron emission planes for both events should occur
with equal probability and that the scattering planes for the
two SI events are generally not identical. The total momen-

tum transfer for the simulated DI event is then simply the
sum of the momentum transfers for the SI events. Final-state
correlations were accounted for by rejecting simulated DI
events with a probability given by the Gamov factor depend-
ing on the relative momenta between the two electrons. At
this point, the 4D plots can be calculated exactly the same
way as in the experimental data analysis and in the theoret-
ical models. Although this simulation is not a rigorous rep-
resentation of TS-2, for simplicity we nevertheless use this
notation when we refer to it for the remainder of this paper.

The results of the TS-2 simulation are shown in Fig. 1�b�.
In this spectrum, and in all other spectra generated by the
TS-2 simulation, we did not observe noticeable differences
depending on whether the independent electron or the inde-
pendent event model was used �in all cases the results of the
independent event model are plotted�. Before we compare to
the experimental data, we study the influence of the experi-
mental resolution on the 4D plots. To this end the TS-2 simu-
lation was additionally convoluted with all known contribu-
tions to the experimental resolution following the method of
Dürr et al. �28�, and the result is shown in Fig. 1�c�. Surpris-
ingly, the resolution has no noticeable effect on the TS-2
simulation and the same behavior was also found when our
theoretical models were convoluted with the resolution.1 Fig-
ure 1�d� shows our TS-2 simulation convoluted with both the

1In contrast, a significant effect of the resolution on the angular
distribution of the electrons was found, which will be described in a
forthcoming presentation.
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FIG. 2. �Color online� �a� Experimental 4D plot for only the longitudinal components of the particle momenta, �b� as in �a� but for the
transverse component in the scattering plane, �c� 4D plot using the TS-2 simulation for only the longitudinal components of particle
momenta, and �d� as in �c� but for the transverse component in the scattering plane. For cases �c� and �d� the TS-2 event files were convoluted
with both experimental resolution and elastic scattering.
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experimental resolution and with elastic scattering �in the
following referred to as full convolution� using the method of
Schulz et al. �29�. Not surprisingly, the convolution with
elastic scattering leads to a pronounced peak at intersection
line 5 which, in fact, becomes the dominant feature in the 4D
plot.

The spectrum with the full convolution is in surprisingly
good qualitative agreement with the experimental data. More
specifically, it reproduces that elastic scattering is the domi-
nant feature, that the internal correlations lead to peak struc-
tures near intersection lines 2 and 6, and that some weak
contributions from binary projectile-electron interactions are
present �intersection lines 3 and 4�. However, quantitatively
there are some significant discrepancies. In particular, the
internal correlations are overestimated by our simulation
relative to elastic scattering.

Additional information about the DI collision dynamics
can be obtained by generating 4D plots for specific momen-
tum components of the final-state particles. In Fig. 2�a� such
a spectrum is shown for the longitudinal components �i.e.,
the initial projectile beam direction� and in Fig. 2�b� for the
transverse components in the scattering plane. For compari-
son, the corresponding spectra obtained from the TS-2 simu-
lation are shown in Fig. 2�c� and 2�d�, respectively. Note that
the peak at intersection line 5 is strongly suppressed in the
longitudinal plot �both in the experiment and in the simula-
tion� because in elastic scattering the momentum exchange
occurs almost exclusively in the transverse direction. For
both components, especially the transverse component in the

scattering plane, the qualitative agreement with the data is
even better than for the three-dimensional momentum vec-
tors.

The pronounced peak structure occurring at intersection
line 5 �except for the longitudinal components� is readily
associated with elastic scattering and is thus not a signature
of a specific DI mechanism. In the longitudinal direction the
internal correlations �intersection lines 2 and 6� in the simu-
lation are much more pronounced than for the three-
dimensional momenta, in accordance with the experimental
data. Likewise, in the transverse direction in the scattering
plane the binary projectile-electron interactions become
much more important and now actually lead to a peak struc-
ture near intersection lines 3 and 4, again in accordance with
the data. However, before we can conclude that these fea-
tures are signatures of the TS-2 mechanism it is necessary to
explore whether the 4D plots are even sensitive to the details
of the DI collision dynamics. More specifically, in the next
section we will analyze which features in the 4D plots
emerge from first-order DI mechanisms like SO and TS-1 by
comparing the experimental data to our theoretical models.

VI. COMPARISON TO THEORY AND DISCUSSION

In Fig. 3 we compare the 4D plots calculated with our
various models with each other and to the experimental data
for the total three-dimensional momentum vectors. In Fig.
3�a� we show the experimental data and Figs. 3�b�, 3�c�, and
3�d� represent the corresponding 4D plots for the theoretical
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FIG. 3. �Color online� �a� Experimental 4D plot, �b� theoretical 4D plot for the model I �uncorrelated final-state model�, �c� as in �b� for
the model II �static screening model�, and �d� as in �b� for the model III �dynamic screening model�. For all the 4D plots the three
components of the particle momenta were used and the theoretical models �b�, �c�, and �d� were convoluted with both experimental
resolution and elastic scattering �see text�.
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models I, II, and III, respectively. Note that the theoretical
models were fully convoluted with both experimental reso-
lution and elastic scattering. For all three models most of the
intensity occurs �apart from the elastic scattering peak at in-
tersection line 5� along a plane parallel and very close to the
plane representing the projectile. Here, the momentum trans-
fer is small and in this region the internal correlation be-
tween the target nucleus and one or both electrons probably
contributes significantly. We have checked that this feature
also remains virtually unchanged if we turn off the initial-
state correlation by choosing Za=Zb=27 /16 in Eq. �5�.
Given this insensitivity to the initial and final states and the
absence of the feature in the TS-2 simulation, we attribute it
to the representation of the reaction dynamics in terms of a
first-order model, in which DI can only occur via electron-
electron interaction. Note that this remains true even if com-
pletely uncorrelated states are used: in this case the electron-
electron correlation is mimicked solely by the
nonorthogonality of initial and final states in the transition
amplitude. The data are much better described by the TS-2
simulation in that the intensity close to the projectile plane is
generally much weaker than in theory and is significant only
near the intersection lines with the two electron planes. This
comparison suggests that the correlation in the reaction dy-
namics is significantly overemphasized by our theoretical
first-order models.

Comparing the model without to those with final-state
correlation, it appears that one effect of the electron-electron
repulsion in the continuum is to favor a more asymmetric

energy sharing among the electrons with one fast and one
slow electron. This leads to the pronounced peak structures
along intersection lines 2 and 6 which are much less pro-
nounced in the model without final-state correlation. A simi-
lar effect is also seen in the TS-2 simulation: if the Gamov
factor is turned off the structures along those lines become
weaker �not shown�. However, these maxima do not disap-
pear completely because the internal correlation is still
present. In the data the corresponding peak structures are
even weaker than in the TS-2 simulation without Gamov
factor. One reason could be that the final-state correlation is
overestimated by the Gamov factor, even if it is used with a
dynamic screening. In either case in a 4D plot signatures of
the final-state correlation cannot be easily identified because
they cannot be separated from the internal target correlation.
As a summary of Fig. 3 we ascertain that all three theoretical
models do not reproduce the experimental data as well as the
TS-2 simulation.

In Fig. 4 the theoretical model accounting for the final-
state correlation using dynamic screening �bottom panels� is
compared to the experimental data �top panels� for the lon-
gitudinal direction �Figs. 4�a� and 4�c�� and for the transverse
component in the scattering plane �Figs. 4�b� and 4�d��. In
the following, we will not discuss the other theoretical mod-
els because no major differences between the various calcu-
lations were found. For the longitudinal components much
better qualitative agreement is achieved than for the three-
dimensional momentum vectors. However, the data are still
not as well reproduced as by the TS-2 simulation. For the
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FIG. 4. �Color online� �a� Experimental 4D plot only for the longitudinal components of the particle momenta, �b� as in �a� but for the
transverse component in the scattering plane, �c� theoretical 4D plot using the model III �dynamic screening model� only for the longitudinal
components of the particle momenta, and �d� as in �c� but for the transverse component in the scattering plane. For cases �c� and �d� the
theoretical event files were convoluted with both experimental resolution and elastic scattering.
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transverse components in the scattering plane, in contrast,
major qualitative discrepancies are rather obvious. While
both in the data and in the TS-2 simulation essentially no
intensity is observed near the tetrahedral plane representing
the projectile, in the calculation such contributions are quite
significant. Therefore, for the scattering plane the overesti-
mation of the correlation in the reaction dynamics appears to
be particularly severe. A significant difference to the 4D plots
for the three-dimensional momenta is that in the scattering
plane �both for the transverse and for the longitudinal com-
ponents� these contributions are restricted to regions near the
intersection lines with the two planes representing the elec-
trons. This suggests that either the internal target correlation
or the final-state correlation �or both� are overestimated as
well. Finally, we note one element of qualitative agreement
with the data: as in the TS-2 simulation the contributions
from binary interactions between the projectile and one elec-
tron �intersection lines 3 and 4� are reproduced at about the
right intensity in the plot for the transverse components in
the scattering plane.

The comparison of the data with the TS-2 simulation and
with the theoretical models describing first-order DI mecha-
nisms seems to strongly favor the TS-2 model. However, for
two reasons it would be premature to conclude that DI is
dominated by TS-2. First, our simulation does not represent a
rigorous theoretical treatment of TS-2. For example, SI prob-
abilities are convoluted to obtain the FDCS for DI when
amplitudes should be considered. Furthermore, the propaga-
tion of the projectile in between interactions �in the Born
series described by a Green’s function� is not properly ac-
counted for. Second, the much better agreement of the data
with the TS-2 simulation compared to the theoretical models
may just be a fortuitous anomaly of the 4D plots. It is there-
fore important to test the TS-2 simulations and the theoreti-
cal models by also comparing to other experimental spectra.

In Fig. 5 we present a measured spectrum of the sum
energy of both ejected electrons in comparison to the TS-2
simulation �solid line� and the theoretical model using dy-
namic screening �dotted curve�. The calculation is in reason-
able agreement with the data; however, once again, the simu-

lation fares even better and is in near perfect agreement with
the data. A momentum transfer spectrum is shown in Fig. 6.
Here, severe discrepancies between the calculation �dotted
line� and the data are quite obvious. More specifically, the
average momentum transfer predicted by theory is far too
small. This seems to be the key problem in our theoretical
model which can also, at least partly, explain the discrepan-
cies in the 4D plots. The overestimation of the intensity
along the intersection lines representing momentum ex-
change only between the target nucleus and one electron is
consistent with the discrepancies in the momentum transfer
spectrum. Furthermore, such discrepancies are to be ex-
pected if TS-2 plays an important role. Indeed, the TS-2
simulation is undoubtedly in much better agreement with the
data than the calculation. Several other experimental spectra,
like, e.g., angular distributions of the ejected electrons, were
tested and in all cases the simulation is in better accord with
the data than the calculation. With all the success of the TS-2
simulation it is important to keep its shortcomings in mind
�see above�. We therefore refrain from definite conclusions
regarding the relative importance of the various DI mecha-
nisms. On the other hand, the observation that the TS-2
simulation yields better, and generally good, agreement with
the data in every tested spectrum is unlikely to be purely
fortuitous and should thus not be ignored. A rigorous theo-
retical investigation of higher-order contributions to the DI
cross sections is called for. 4D plots offer a powerful tool to
study the contributions from the various DI mechanisms.
Given the continuously increasing computational power cal-
culations of 4D plots even with numerically more involved
models should become feasible in the not too distant future.

VII. CONCLUSIONS

We have presented an experimental and theoretical study
of double ionization of helium by fast proton impact. Our
analysis is based on four-particle Dalitz plots, which were
recently developed to investigate four-body fragmentation
processes �18�. The unique feature of these spectra is that

FIG. 5. �Color online� Spectra as function of the summed energy
of both ionized electrons. Closed symbols, experimental data; solid
line, TS-2 model convoluted with both elastic scattering and experi-
mental resolution; dotted line, dynamic screening model convoluted
with both elastic scattering and experimental resolution.

FIG. 6. �Color online� Spectra as function of the transverse mo-
mentum transfer component. Closed symbols, experimental data;
solid line, TS-2 model convoluted with both elastic scattering and
experimental resolution; dotted line, dynamic screening model con-
voluted with both elastic scattering and experimental resolution.
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they enable the plotting of multiple differential data as a
function of all four final-state particles simultaneously in a
single graph without loss of any part of the total cross sec-
tion. As a result, 4D plots provide a comprehensive and yet
detailed picture about the four-body fragmentation dynamics.

By comparing experimental data to a simulation of a
higher-order DI process and to theoretical calculations on
first-order DI processes we were able to identify some sig-
natures of the various interactions contributing to the DI dy-
namics and of different DI mechanisms. For example, elastic
scattering between the heavy particles leads to a surprisingly
strong peak in the 4D plots in the region for which the elec-
tron momenta are small compared to the momenta of the
heavy particles. The correlation in the dynamics which is
inherent in the first-order DI models leads to large intensities
close to the tetrahedral plane representing the projectile, i.e.,
it favors small momentum transfers, which is not observed in
the experimental data. Our results suggest that our theoretical
models significantly overestimate both correlation in the re-
action dynamics and in the final state.

Perhaps the most significant observation in this work is
that the TS-2 simulation generally yields nice qualitative

agreement with the data and, in fact, reproduces the data
much better than all of our theoretical first-order models.
This is quite surprising because it was generally held that for
such fast collisions first-order DI processes should be domi-
nant. We pointed out the shortcomings of the TS-2 simula-
tion from a rigorous theoretical point of view. Conclusions
should therefore be drawn very cautiously. Nevertheless, we
believe that the results presented imply sufficient signifi-
cance to warrant a thorough scrutiny on the relative impor-
tance of the various DI mechanisms. To this end we are now
developing sophisticated higher-order DI codes which treat
first-and higher-order processes coherently. New calculations
of 4D plots will then be performed as soon as the required
computational resources become available.
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