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The B-spline R-matrix method with nonorthogonal orbital sets is extended to a fully relativistic version
based on the solution of the many-electron Dirac equation. The B-spline basis is used to generate both the
target description and the R-matrix basis functions in the inner region. Using B-splines of different orders for
the large and small components prevents the appearance of pseudostates in the spectrum of the Dirac equation.
Using term-dependent and thus nonorthogonal sets of one-electron functions enables us to generate accurate
and flexible representations of the target states and the scattering function. Our method is based upon the
all-electron Dirac-Coulomb Hamiltonian and thus may be employed for any complex atom or ion, without the
use of phenomenological core potentials. As a first test of the method, we consider elastic electron scattering
from Cs atoms in their ground state. Close agreement with experiment is obtained for the total and the angle
differential cross sections at various energies between 1 eV to 7 eV, as well as for several spin asymmetry
parameters. The results represent a substantial improvement over those obtained in previous Breit-Pauli and
Dirac R-matrix calculations.
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I. INTRODUCTION

Relativistic effects are well known to be crucially impor-
tant for electron scattering from heavy targets. Consequently,
serious efforts have been devoted over the past decades to
incorporating these effects in numerical calculations. One
such scheme is the widely used Breit-Pauli-based R-matrix
�close-coupling� approach �1�. Another possibility is to adopt
the Dirac equation from the beginning and thus avoid the
approximations made otherwise �2�. Note that relativistic ef-
fects may be significant in both the target structure and the
collision dynamics. A relativistic approach based on the
Dirac equation has the advantage that all relativistic effects
are included, not only for the energies, but most importantly
already in the radial wave functions.

A Dirac scheme was already implemented in the relativ-
istic “Dirac atomic R-matrix code” �DARC� developed
by Norrington and Grant �3,4�. This code, as well as its
nonrelativistic and semirelativistic companion RMATRIX-I
�5� is based on the standard implementation developed by
Burke and collaborators in Belfast. Although highly success-
ful in many applications of photon and electron collisions
with atoms, ions, and molecules �see, for example, Ref. �6��,
the method has limitations, especially when used for very
complex targets.

Over the past few years, we have developed the alterna-
tive R-matrix package BSR �7�, which addresses some of the
difficulties with the established implementation of the
method. The two essential refinements are �i� the removal
of orthogonality restrictions, which allows for the use of
nonorthogonal orbital sets to represent both the bound and
continuum one-electron orbitals, and �ii� the use of B-splines
as a universal and effectively complete basis to generate the

R-matrix functions. These features often allow us to achieve
a high accuracy in the description of the target states, as well
as a truly consistent description of the scattering system. The
BSR code, in both its nonrelativistic and semirelativistic
�Breit-Pauli� forms, was successfully applied to many prob-
lems of electron collisions from atoms and ions, including
photoionization, photodetachment, and atomic structure cal-
culations. Without giving a full list of references �some can
be found in Ref. �7��, highlights include benchmark calcula-
tions for low-energy electron scattering from Ne �8�, Ar �9�,
and Fe+ �10�, and the resolution of long-standing discrepan-
cies between experiment and theory for the spin asymmetry
function in electron impact excitation of Ar and Kr �11�.

However, it has become clear that the present BSR code
does not do as well for cases such as e-Xe collisions, simply
due to the fact that the spin-orbit interaction is becoming too
large to treat it at the level of first-order perturbation theory,
i.e., calculating relativistic corrections to the energies while
using effectively nonrelativistic wave functions �12�. It is
therefore desirable to produce a fully relativistic, all-electron
version of the BSR code, which retains all the refinements
developed in the semirelativistic version.

The present paper reports on our recent development of
this method. As a test example, we choose the low-energy
e-Cs problem. Electron scattering from Cs has received con-
siderable attention over the past three decades, theoretically
and experimentally. For this heavy open-shell target, relativ-
istic effects can be expected to be very important, especially
for the calculation of angle-differential spin asymmetries
measured by Baum et al. �13,14�. There are numerous
calculations available for this problem, based on approxima-
tions covering a wide range of complexity. These include
nonrelativistic approaches such as a two-state model em-
ployed by Karule �15� to a convergent close-coupling �CCC�
method used by Bray �16�, several Breit-Pauli R-matrix cal-
culations by Bartschat and collaborators �17–19�, and fully
relativistic calculations using DARC �20�, an independent
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Dirac R-matrix approach developed by Thumm and Norcross
�21,22�, and most recently a relativistic convergent close-
coupling method �RCCC� developed by Fursa and Bray �23�.
In contrast to DARC, the latter two methods treat the Cs
atom as a quasi-one-electron target. This has the advantage
of being able to improve the target description by adding
semiempirical local model potentials to account, for ex-
ample, for core-polarization and/or exchange effects. How-
ever, such an approach is not general, and it is ultimately
limited to a few columns of the period system. For complete-
ness, we note that a fully relativistic distorted-wave method
was also recently applied to this problem �24�.

This paper is organized as follows. After describing the
general approach in Sec. II, we illustrate the current applica-
tion to e-Cs collisions in Sec. III. Results are presented and
discussed in Sec. IV, followed by the conclusions and an
outlook to future work.

II. GENERAL THEORY

We use the Dirac-Coulomb �DC� Hamiltonian to describe
the N-electron target and the �N+1�-electron collision sys-
tems, respectively. In atomic units, the DC Hamiltonian for
N electrons in a central field made by the nucleus of charge
Z is given by

HDC = �
i=1

N �c� · pi + �c2 −
Z

ri
� + �

i�j

N
1

rij
, �1�

where the components of the vector � and � are the Dirac
matrices, pi is the momentum operator of electron “i,” and
c�137 is the speed of light. For each partial-wave symmetry
J�, with J denoting the total electronic angular momentum in
a j j-coupling scheme and � indicating the parity, the total
wave function is constructed from Dirac four-component
spinors

�n�m =
1

r
� Pn��r���m��,��

iQn��r��−�m��,��
� , �2�

where the real and imaginary radial Pauli spinors are the
large and small components, respectively, �km is the spinor
spherical harmonic, and � is the relativistic angular momen-
tum quantum number.

The theoretical basis of the Dirac R-matrix method was
already described more than 30 years ago by Chang �2�. As
mentioned previously, a general numerical implementation
�DARC�, was developed by Norrington and Grant �3,4�. Re-
cent reviews of the method and some applications can be
found in Refs. �25,26�.

The present work is an entirely independent implementa-
tion of the same basic theory, albeit with two distinctive
features that have proven to be of significant advantage, es-
pecially for the application to truly complex systems. The
first of these features concerns the orthogonality require-
ments for the one-electron radial functions. Although the op-
tion is still available, we generally do not impose any or-
thogonality conditions on the one-electron radial functions
used to represent different target states, and the continuum
orbitals do not have to be orthogonal to the bound orbitals

either. The use of nonorthogonal orbital sets avoids the need
to introduce additional �N+1�-electron terms in the R-matrix
expansion for the continuum electron. Most importantly,
however, it makes it possible to optimize, and then to use in
the subsequent collision calculation, the radial wave func-
tions independently for each target state. Consequently, the
size of otherwise extensive multiconfiguration expansions,
often with correlated pseudo-orbitals being employed to im-
prove the target states, can be reduced significantly.

The second feature is the use of B-splines as a numeri-
cally convenient, universal, and effectively complete basis to
expand the radial orbitals of interest. It turns out, however,
that the relativistic implementation of this basis poses new
challenges, particular in collision calculations. These will be
further discussed below.

In the spirit of the R-matrix method, the configuration
space is partitioned into two regions separated by the
R-matrix boundary at r=a. The latter is chosen in such a way
that the magnitude of the radial spinors describing the bound
electrons in the target is sufficiently small that exchange be-
tween the incident electron and any target electron outside
the R-matrix sphere is negligible. In the inner region, the
total scattering wave function is expanded in terms of a basis
set,

	k
N+1 = �

ij

cijkA�	i
N,uij� + �

m

dmk
m
N+1. �3�

Here 	i
N is the wave function of the N-electron target state i

while the uij form the R-matrix basis for the scattering elec-
tron. The 
m

N+1 functions, which must be included to com-
pensate for any orthogonality constraints imposed on uij, are
usually avoided in our case, but they can be used under spe-
cial circumstances. They are �N+1�-electron square-
integrable functions constructed by adding a valence electron
to a target state. The symbol A represents the angular cou-
pling and antisymmetrization between the incident projectile
and the target electrons. The coefficients cijk and dmk are
obtained by diagonalizing the �N+1�-electron Dirac-
Coulomb Hamiltonian �1�.

As mentioned above, a distinctive numerical feature of
the present method is the use of B-splines as a universal basis
to represent the scattering orbitals in the inner region of
r�a. B-splines of order k, defined on a knot sequence
	ti , i=1,2 , . . . ,n
, are piecewise polynomials of degree k−1,
which can be regarded as a complete basis for continuous
functions of class Ck−2 �27�. Such B-splines were introduced
to atomic structure calculations about 20 years ago and be-
came widely used due to their excellent numerical approxi-
mation properties. �See, for example, the review by Bachau
et al. �28�.� We implemented B-splines as the R-matrix basis
in our semirelativistic R-matrix code BSR �7� and often ob-
tained substantially improved results over previous calcula-
tions. The completeness of the B-spline basis is one of the
many practical advantages. As a specific example, no Buttle
correction to the R-matrix is needed in our implementation.
Furthermore, the surface amplitudes that determine the total
wave function at the boundary and are required for the evalu-
ation of the R-matrix, are given by the coefficient of the last
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spline. This is the only spline with a nonzero value at the
boundary.

In contrast to the nonrelativistic case, however, the direct
implementation of B-splines for the solution of the Dirac
equations encounters a problem related to the occurrence of
spurious states �29–34�. Fortunately, the wave functions of
these states oscillate rapidly, and hence they play a negligible
role in the summation over states in many-body perturbation
theory �MBPT�. For this very reason, these pseudosolutions
have been disregarded in practical atomic calculations based
on the MBPT �30�. However, since the presence of the spu-
rious states disturbs the spectrum, it worsens the conver-
gence properties of such basis-set calculations �31�. This is
of particular concern in R-matrix calculations, where one
needs the surface amplitudes for each solution. The appear-
ance of these kinds of pseudostates completely destroys the
R-matrix in the vicinity of such a state.

Several schemes for solving the problem of spurious
states have been presented to date. Most recently this prob-
lem was investigated in detail by Igarashi �32� who used a
variety of methods and boundary conditions. In particular, he
explored the use of B-splines of different order, kp and kq, as
a way of avoiding spurious solutions. In a subsequent paper
�33�, he concluded that “kinetic balance” also provided a
good basis. Rather than B-splines alone, combinations of the
form B��r���B�r� /r, with the prime denoting the first de-
rivative, are employed instead in this case. The kinetic bal-
ance basis, however, and even more so the dual kinetic bal-
ance approach proposed in Ref. �31�, is very difficult to
implement, particularly in multichannel R-matrix calcula-
tions, since different bases are needed for different values
of �. This makes such a basis impractical for calculations
with extensive multiconfigurational expansions.

A practically feasible solution was recently proposed by
Froese Fischer and Zatsarinny �34�. They noticed that the
�B ,B�� and the �Bk ,Bk+1� functions are a numerically very
stable basis, thereby avoiding the occurrence of spurious so-
lutions. At the same time, this basis retains the simplicity and
effectiveness of the original B-spline basis and provides the
same accuracy as the kinetic balance bases proposed by Iga-
rashi �33�.

Based on these findings, we expand the radial functions
for the large and small components P�r� and Q�r� in separate
B-spline bases as

P�r� = �
i=1

np

piBi
kp�r� , �4�

Q�r� = �
i=1

nq

qiBi
kq�r� . �5�

Both B-spline bases are defined on the same grid, with the
same number of intervals, nv. Only in this case the calcula-
tions of various matrix elements and integrals of interest can
be performed with the same routines and at the same level of
required computational resources as in the case of a single
B-spline basis.

The coefficients pi and qi are found by diagonalizing the
total �N+1�-electron Hamiltonian inside the R-matrix box.
More specifically, using the B-spline basis leads to a gener-
alized eigenvalue problem of the form

Hc = ESc, �6�

where S is the overlap matrix between the basis functions. If
orthogonality conditions are imposed between the scattering
orbitals, S reduces to a banded matrix whose elements are
the overlaps between individual B-splines. In the general
case of nonorthogonal orbital sets, however, it has a more
complicated structure. The R-matrix basis functions for the
continuum electron are chosen to satisfy the boundary con-
ditions �4�

Qi�a�
Pi�a�

=
b + �

2ac
=  , �7�

where b is an arbitrary constant usually chosen as 0.
With nonzero solutions on the boundary, the interaction

matrix H in Eq. �6� becomes non-Hermitian. In R-matrix
theory, it is customary to apply a Bloch operator that en-
forces the boundary conditions as well as symmetry. We use
the Bloch operator suggested in Ref. �35�,

L = c��r − a�� − � �

�� − 1� �1 − ��/ ,
� , �8�

where  defines the boundary conditions �7� and � is an
arbitrary constant. In the present calculations we used
�=1 /2.

After adding the Bloch operator to the Hamiltonian, the
interaction matrix is reduced to symmetric form and can be
diagonalized readily to obtain the desired set of solutions.
From this finite set of solutions, an R-matrix relation can be
derived that connects the solutions in the inner and outer
regions. For a given energy E, this relation has the form

Pi�a� = �
j

Rij�E��2acQj�a� − �b + ��Pj�a�� , �9�

where the relativistic R-matrix is defined as

Rij�E� =
1

2a
�

k

Pik�a�Pjk�a�
Ek

N+1 − E
. �10�

Here the Ek
N+1 are the R-matrix poles while the Pik are the

surface amplitudes of 	k in channel i. We note that a more
rigorous expression for the R-matrix contains the correction
−�b+�� / ��b+��2+ �2ac�2�, first obtained by Szmytkowski
and Hinze �35�. This correction is due to the fact that the set
of relativistic basis functions �Pi ,Qi� is incomplete on the
surface r=a. In most realistic cases, however, it is small and
thus usually omitted.

The reactance matrix in the R-matrix method is defined
via the matching of the external and internal solutions at
r=a. In the external region, exchange between the scattered
electron and the target electrons is neglected. Consequently,
the channel wave functions satisfy a set of coupled differen-
tial equations described in detail in Ref. �36�. Except if
the target is very highly charged, the scattered electron
can be well described in a nonrelativistic framework. In the
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present calculations, therefore, we follow �2,3� and use the
nonrelativistic limit of the Dirac radial equations for the scat-
tered electron in the asymptotic region. In this case, the
matching procedure is identical to that used in the semirela-
tivistic BSR code �7�.

III. APPLICATION: ELECTRON SCATTERING FROM
NEUTRAL CS

The Cs atom, in the ground and low excited states, has the
relatively simple configurations �1s2

¯5p6��nl�2L. In most
previous calculations, therefore, Cs was modeled as a quasi-
one-electron atom with one active electron above the closed
Xe-like inert core of a Cs+ ion. A phenomenological one-
electron core polarization potential was usually added to ac-
count for the core-valence correlation. Although such a
potential simplifies the calculations significantly and can pro-
vide accurate excitation energies and oscillator strengths, the
question always remains how well the model potential can
simulate all core-valence correlation, including nondipole
contributions. In the present approach, we therefore choose
to include the core-valence correlation ab initio by adding
target configurations with an excited core. All target states
were generated with the B-spline box-based close-coupling
method described in Ref. �37�. This method also provides a
systematic way of constructing pseudostates, which are im-
portant for the e-Cs collision problem, especially at “inter-
mediate” incident energies from about one to a few times the
ionization threshold.

Specifically, the calculation of the target states included
the following steps. We started by generating the core orbit-
als from a Dirac-Fock calculation for Cs+ and then obtained
valence nl orbitals for Cs with the Cs+ core frozen. Next, the
core-valence correlation was simulated by adding the
5s25p5n̄�n̄�� and the 5s5p6n̄�n̄�� configurations, where the
bar indicates a correlated rather than a physical orbital. All
Dirac-Fock calculations for the core and the correlated orbit-
als were performed with the GRASP2K relativistic atomic
structure package �38�. Different sets of correlated orbitals
n̄� were optimized separately for the lowest state of each
symmetry with target electronic angular momentum �nl�J�.
Since the mean radii for the n̄� orbitals are between the mean
radii of the core and the valence orbitals, this method allows
us to incorporate the core-valence correlation with a rela-
tively small number of configurations. Then, the entire spec-
trum of Cs was recalculated using the B-spline box-based
expansion

��5s25p6nl;J�� = A���5s1/2
2 5p1/2

2 5p3/2
4 ���n���J�

+ ai��5s1/2
2 5p1/2

2 5p3/2
3 n̄�n̄��;J��

+ bi��5s1/2
2 5p1/2

1 5p3/2
4 n̄�n̄��;J��

+ ci��5s1/25p1/2
2 5p3/2

4 n̄�n̄��;J�� ,

�11�

where A again denotes the antisymmetrization operator. The
unknown large and small radial components for the outer
valence electron, ��n��, were expanded in the B-spline basis
as shown in Eqs. �4� and �5�. The coefficients of the B-spline

expansions, pi and qi, together with the coefficients for the
correlated configurations, ai, bi, and ci, were found by diago-
nalizing the Dirac-Coulomb Hamiltonian �1� with the addi-
tional requirement that the wave functions vanish at the
boundary. Note that we do not impose orthogonality of the
valence orbitals n� to the correlated orbitals n̄� in the above
procedure. This speeds up the convergence of the expansion
�11� and yields accurate binding energies with a relatively
small number ��50� of correlated configurations for each
symmetry.

The number of physical states that we can generate in this
method depends upon the size a of the R-matrix box. We
chose a=50 a0, which allowed us to obtain a good descrip-
tion for all low-lying bound states of Cs up to 9s. Along with
these physical states, we also generated a set of pseudostates
for each symmetry, with the lowest states representing the
remaining bound states and the others representing the con-
tinuum. Note that the resulting pseudostates also contain the
core-excited states with configurations 5s25p5n�n�� and
5s5p6n�n��, which lie in the Cs continuum spectrum.

In the present calculations we included 110 B-splines of
order 8 for the large component and 111 B-splines of order 9
for the small component. The different B-spline orders for
the two components guarantee the absence of spurious solu-
tions in the generated Cs spectrum �34�. We used a semiex-
ponential grid for the B-spline knot sequence. The relatively
large number of splines is due to the fact that we employed a
finite-size nuclear model with a Fermi potential. In order to
correctly describe this potential near the nucleus, we needed
to define a very fine knot sequence at small r, with the first
nonzero knot at r1=10−8. The resulting excitation energies of
the target states agree with experiment within 10 meV for all
states up to �5f�5/2,7/2

F .
The number of B-splines and the R-matrix radius in the

scattering calculations were chosen the same as in the calcu-
lation of the target bound states. Our main scattering model
�12CC� contains 12 target states, namely the six bound states
�6s�2S1/2, �6p�2P1/2,3/2, �5d�2D3/2,5/2, and �7s�2S1/2 of Cs to-
gether with six pseudostates. The latter were selected from
the entire spectrum based on the strongest dipole connection
to the ground state. We numerically calculated partial-wave
contributions up to J=50. The calculations of the cross sec-
tion and all other scattering parameters of interest were then
carried out in the same way as in standard R-matrix treat-
ments. In order to check the convergence of the close-
coupling expansion, we also performed calculations with two
extended scattering models for low partial ways up to
J=15. Specifically, these were a 20-state �20CC� model, in-
cluding only bound states but going up to �5f�2F5/2,7/2, and a
30-state �30CC� model that added another 10 pseudostates
lying in the continuum.

IV. RESULTS AND DISCUSSION

Figure 1 compares our predicted total cross section for
electron collisions with Cs in its �6s�2S1/2 ground state with
several experimental data sets and some recent theoretical
results. We see close agreement of our results with the abso-
lute experimental data over a wide range of incident energies
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between 0.5 eV to 100 eV. For energies above 10 eV, all the
theoretical results displayed are very close to each other, but
they slightly exceed the experimental values. For energies
above 100 eV �not shown in the figure�, there is very close
agreement between experiment and theoretical predictions
from a nonrelativistic CCC model �42�. Hence, cross sec-
tions in this region can be considered as having been reliably
established. However, there are noticeable discrepancies at
energies below 10 eV. Our results seem to agree somewhat
better with the experimental data of Visconti et al. �39� than
those obtained in the 40-state semirelativistic Breit-Pauli
R-matrix �BPRM� or the nonrelativistic CCC method, espe-
cially regarding the energy dependence of the total cross sec-
tion. However, there is only one set of experimental data
available in this energy regime, and hence it seems prema-
ture to draw definite conclusions. It would be highly desir-
able to have additional experimental data, as well as RCCC
predictions.

The discrepancies between the CCC and the Breit-Pauli
results are most likely due to structure differences. Note that
structure approximations for the target states can become
equally important to those made in a collision model. Both
the CCC and the Breit-Pauli calculations used a frozen
Hartree-Fock core together with phenomenological one-
electron and two-electron core polarization potentials to de-
scribe the valence and the projectile electrons. On the other
hand, we employed extensive CI expansions with open-core
configurations in the present calculations. These allow for an
ab initio description of core-polarization effects, including
nondipole contributions. We found a fast convergence of the
results for the total cross section with respect to the number
of target states included in the close-coupling expansion,
with differences between the 12CC, 20CC, and 30CC results
of about 1%–2%. This is not unexpected, since the total cross
section is the angle-integrated sum of elastic, excitation, and

ionization cross sections. It is likely one of the least sensitive
parameters to the details of a collision model.

Angle differential cross sections �DCS�, on the other
hand, provide a more rigorous test for scattering calculations.
Figure 2 shows the DCS for energies around 1 eV. In this
energy range, a previous fully relativistic Dirac R-matrix cal-
culation by Thumm and Norcross �22� did not reproduce the
experimental angular dependence, particularly regarding the
minima for scattering angles around 130° at incident ener-
gies of 0.8, 1.0, and 1.2 eV. In the various panels, the relative
experimental data of Gehenn and Reichert �43� were normal-
ized to our results at ��90°. Except for the minima men-
tioned above, which our results exhibit in excellent accor-
dance with experiment, the agreement between the two sets
of theoretical results is good. We suspect that the remaining
discrepancies are once again due to differences in the struc-
ture model, and they are more likely to show up when the
numbers are small. Note that Thumm and Norcross also
modeled the e-Cs collision complex as a quasi-two-electron
system, where two active electrons �the scattered electron
and the valence electron of the target� interact with the target
core through semiempirical Thomas-Fermi-type and core-
polarization potentials. Interestingly, a nonrelativistic two-
state close-coupling calculation by Karule �15� �not shown�
also agreed very well with experiment at these low energies.
This agreement, however, seems somewhat fortuitous, since
there are significant deviations between Karule’s predictions
and experiment for energies around 2 eV and higher. For the
latter energies, both the present calculations and those of
Ref. �22� show very close agreement with each other and
also with experiment.

An even more detailed test of theory is provided by vari-
ous spin-asymmetry parameters that describe the scattering
of �possibly� spin-polarized electrons from �possibly� spin-
polarized atoms. For elastic e-Cs collisions, results from

FIG. 1. �Color online� Total electron scattering cross section
from the �6s�2S ground state of Cs. The present 12-state DBSR
results are compared with various sets of experimental data
�39–42�, as well as predictions from a 40-state semirelativistic
Breit-Pauli R-matrix calculation �19� �BPRM� and a nonrelativistic
CCC model �42�.

FIG. 2. �Color online� Angle differential cross section for elastic
e-Cs collisions at 0.8, 1.0, 1.2, and 1.4 eV. The relative experimen-
tal data of Gehenn and Reichert �43� �•� were normalized to the
present 12-state DBSR results �solid line� at the scattering angle of
90°. Also shown are the fully relativistic five-state R-matrix results
of Thumm and Norcross �22� �dashed-dotted line�.
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such experiments were reported by Baum et al. �13,14�.
Along with the relative DCS for incident energies from 3 eV
to 25 eV, they measured the set of spin-asymmetry param-
eters A1, A2, and Ann. These describe, respectively, the left-
right asymmetry in the scattering of an initially unpolarized
electron beam after scattering from a polarized target with
polarization vector perpendicular to the scattering plane �A1�,
a similar left-right asymmetry if the incident electron beam is
polarized �again perpendicular to the scattering plane� but
the target is unpolarized �A2�, and finally the angle-resolved
asymmetry in the scattering intensity for antiparallel vs par-
allel orientations of both the electron and the target polariza-
tions �Ann�. As noted by Farago �44�, Ann is most sensitive to
electron exchange effects and can already be nonzero in a
nonrelativistic model of e-Cs collisions. On the other hand,
A2 requires the spin-orbit interaction for the projectile elec-
tron, while A1 requires both the spin-orbit interaction
and electron exchange to be important. Consequently, any
nonrelativistic collision model, such as the CCC calculations
reported in Ref. �16�, will yield exactly zero for both A1 and
A2. Interestingly, the latter model produced excellent results
for the DCS and Ann at the same time. This is mostly due to
the cancellation of small differences in the various partial
cross sections that make up these asymmetries �19�.

Figure 3 exhibits our results for 4 eV and compares them
with experiment as well as BPRM �19� and �for the DCS and
Ann only� nonrelativistic CCC �16� predictions. The 12-state
DBSR results agree better with the CCC than the BPRM
numbers and reproduce the angular dependence of all experi-
mental data in a very satisfactory way. We note that a recent
relativistic distorted-wave calculation by Ahmed et al. �24�
also yielded good agreement for the A2 parameter and the
angular dependence of the DCS for a number of energies.
However, the absolute DCS values often differed signifi-
cantly from the present DBSR and the CCC results. Unfor-

tunately, no RDW results for A1 and Ann, nor for the total
cross section, were presented.

As mentioned above, Fursa and Bray �23� recently re-
ported the development of the fully relativistic RCCC
method. They also used elastic electron scattering from the
ground state of cesium, this time at the single collision en-
ergy of 7 eV, to demonstrate the capability of their approach.
This is a particularly difficult collision energy for theory
�about twice times the ionization threshold�, at which cou-
pling effects to the continuum are likely to be most impor-
tant. Figure 4 shows results at this energy. We note excellent
agreement between the present DBSR and the RCCC results
for the DCS as well as the “relativistic” spin asymmetries A1

and A2, and there is also very satisfactory agreement with the
experimental data of Baum et al. �14�. There seems to be a
small shift of about 5°−10° in the second minimum of the
DCS around 135° and, consequently, the angular range over
which the spin asymmetries vary substantially. Both of these
models represent a significant improvement over the BPRM
calculations for these parameters.

Interestingly, the situation is slightly different for the “ex-
change asymmetry” Ann, where the RCCC and the BPRM
calculations show very good agreement with experiment
while the DBSR results lie somewhat below the experimen-
tal data in the angular range from 50° to 70°. We performed
extensive checks to track down the origin of this relatively
small discrepancy and found a very slow convergence for the
Ann parameter with the number of states in the close-coupling
expansion. The 12-state results differed significantly from
the 30-state DBSR results shown in Fig. 4. This is the big-
gest calculation that could be performed with our currently
available computational resources. These findings indicate
the importance of channel coupling at this particular energy.

FIG. 3. �Color online� Angle differential cross section and asym-
metry parameters for elastic electron scattering from Cs at 4 eV. The
experimental data of Baum et al. �14� �•� are compared with the
present 12-state DBSR results �solid line� and those from a semire-
lativistic BPRM �14� �dashed-dotted line� and a nonrelativistic CCC
calculation �16� �dashed line�.

FIG. 4. �Color online� Angle differential cross section and asym-
metry parameters for elastic electron scattering from Cs at 7 eV. The
experimental data of Baum et al. �14� �•� are compared with the
present 30-state DBSR results �solid line� and those from a semire-
lativistic BPRM �14� �dashed-dotted line� and a fully relativistic
RCCC calculation �23� �dashed line�.
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V. SUMMARY AND OUTLOOK

In this paper, we have introduced a Dirac-based version of
the B-spline R-matrix method. The present DBSR approach
retains all the advantages of the previous semirelativistic ver-
sion, including its generality as an all-electron code and the
flexibility associated with the use of nonorthogonal orbital
sets. Not only valence and core-valence correlations, but also
relativistic effects are now treated ab initio by employing the
many-electron Dirac-Coulomb Hamiltonian.

Our first test case, elastic electron collisions from Cs at-
oms, revealed good qualitative agreement with previous re-
sults obtained in less sophisticated approximations. When
differences occurred in the details, substantial improvement
in the agreement between theory and experiment was gener-
ally achieved. The present results also agree very well with
those generated recently in a fully relativistic convergence
close-coupling approach �23�, thereby providing an indepen-
dent consistency check for the two methods and the expected
assurance that core-valence correlations can be approximated
well by a core-potential approach for this particular collision
system.

For electron energies above the ionization threshold, the
present calculations reveal a slow convergence, both for
angle differential cross sections and asymmetry parameters.
In order to achieve convergence with the number of states
included in the close-coupling expansion, we should ideally
include all pseudostates with energies below and even
slightly above the collision energies of interest. This will
require the diagonalization of large interaction matrixes,
whose rank could quickly exceed 50 000 and will make it
impractical to run the code on serial machines. In addition to
further additional tests on more complex systems such as Xe,
Au, and Hg, parallelization of the DBSR complex will
therefore be the next major step in our development of the
package.
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