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Interaction-induced properties, including the interaction energy itself, are difficult to compute using expli-
citly correlated basis functions since bases corresponding to noninteracting atoms are not defined in this case.
We propose a direct method of calculation in which no subtraction of exact or approximate atomic properties
is required. To test the method we computed the one-electron Darwin and mass-velocity contributions to the
interaction energy of two ground-state hydrogen atoms at separations close to the van der Waals minimum in
the triplet state. To verify the accuracy at larger distances, we also computed the constants determining the
asymptotic long-range behavior of the investigated contributions. Our results, obtained with a Gaussian gemi-
nal basis, appear to be more accurate than the results of earlier variational calculations employing explicitly
correlated exponential functions. When the same basis sets are employed, our method gives results very close
to the so-called “monomer-contraction method” proposed recently by Cencek et al. [W. Cencek et al., Phys.
Rev. Lett. 95, 23304 (2005)], which confirms the soundness of the latter approach. To extend the validity of
our calculations to very large interatomic separations R, we provide damping functions accounting for the
retardation effects and producing the correct 1/R’ long-range decrease of the computed relativistic corrections.
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I. INTRODUCTION

The interaction-induced property is defined as the change
of certain property of the system caused by the effect of
interatomic or intermolecular interactions. In this work we
shall consider only first-order properties given, via the
Hellmann-Feynman theorem, as the expectation value of ap-
propriate operators. Specifically, the interaction-induced
property AW corresponding to the operator W is defined as

AW = (YWIh) — (hs|Wa| o) — (bp|Wi| ). (1)

where ¢,, ¢p, and ¢ are the electronic wave functions for
the noninteracting monomers A and B (atoms or molecules)
and for the whole interacting system, respectively, while Wy,
X=A,B, is the operator of the same form as W, but with
summations over electrons and nuclei limited to particles
belonging to monomer X. The definition (1) is based on the
Born-Oppenheimer approximation; i.e., the nuclei of A and B
are fixed at the same positions as in the whole interacting
system AB. The quantity AW depends on the distance R be-
tween interacting monomers and possibly on their mutual
spatial orientation.

AW can be computed directly from its definition; how-
ever, for weakly interacting atoms and molecules, the final
result of the subtractions in Eq. (1) is usually several orders
of magnitude smaller than the errors with which the sub-
tracted expectation values are calculated. Thus, AW can be
expected to be accurate only if a significant cancellation of
these errors occurs. Such a cancellation indeed takes place
provided that (i) the electronic structure method used to ap-
proximate i is size consistent [1-3] and (ii) “basis-set con-
sistency” [4] in computing ¢, ¢4, and ¢ can be achieved
and an appropriate basis-set superposition correction can be
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applied [5,6]. These two conditions are fulfilled for certain
electronic structure methods based on the molecular orbital
model (e.g., for the single-reference Mgller-Plesset [1,2] or
coupled-cluster theories [7]). They are not fulfilled, however,
in a Rayleigh-Ritz-type variational calculation employing
explicitly correlated basis functions. This approach can be
viewed as by far the most accurate method to compute the
electronic energy [8], but it fails to be size consistent. This is
due to the fact that no unambiguous correspondence between
explicitly correlated dimer and monomer bases can be estab-
lished [9] which would enable even a numerical test of size
consistency. In practice for a given variationally optimized
function ¢ it is impossible to find monomer bases which
would make the right-hand side (rhs) of Eq. (1) vanish at
large R. This problem appears not only in calculations of
molecular properties [10], but also in variational calculations
of the interaction energy [11]—i.e., when the W, W,, and Wy
operators in Eq. (1) are replaced by appropriate electronic
Hamiltonians.

Two approaches to cope with this difficulty have been
proposed. In the first, brute force (BF) approach, all terms in
Eq. (1) are computed as accurately as possible, taking the
exact values of the monomer terms if available. This ap-
proach works very well when AW is not too small. It must
become inaccurate at large R, however, since AW does not
vanish in the limit of infinite R. In practice, the last two
monomer terms in Eq. (1) are always more accurate than the
first term. When the interaction energy is calculated from this
equation it becomes therefore too small [11] at large R and
unphysically positive asymptotically.

Another, more sophisticated and significantly more accu-
rate approach has been recently proposed by Cencek et al.
[9]. The main idea of this approach, referred to as the mono-
mer contraction (MC) method, is to extend the set of basis
functions y;, i=1,...,M, used to expand ¢, by a single func-
tion ¢, of the form
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=1y, (2)

where ¢, and ¢y are carefully optimized monomer wave
functions—fixed in further calculations—and II is a symme-
try projector assuring that ¢y, has the same exchange and spin
symmetry as . The trial function in the Rayleigh-Ritz varia-
tional calculations for ¢ is assumed in the form

M

¥= oo+ 2 CiXes (3)

i=1

and once the linear parameters ¢, are optimized, AW is com-
puted from Eq. (1). This procedure is not free from the for-
mal drawbacks of the BF method since the second term on
the rhs in Eq. (3) gives a nonvanishing contribution to AW
(and to the interaction energy) at infinite intermonomer sepa-
ration. Nevertheless, Cencek er al. have shown [9] that for
two helium atoms interacting at the equilibrium separation of
R=5.6 bohrs the MC method gives very good results pro-
vided that the monomer functions ¢, and ¢z employed are
of sufficiently good quality and the nonlinear parameters de-
fining basis functions y; are optimized in the presence of the
function ¢4, (i.e., ¢y is not added to a basis optimized earlier
without this function).

In the present communication we propose an alternative
method of computing AW, in which no subtraction of large
numbers is involved and which is intrinsically stable at large
R. Our method, referred to as the direct computation (DC), is
based on a formula which represents AW as a sum of small
contributions which vanish individually at large R when ar-
bitrary bases are used to compute i, ¢,, and ¢p. This for-
mula, given by Eq. (19) of Sec. II, is the main results of our
paper. It is derived in Sec. II under the assumption that W is
a well-defined Hermitian operator acting in the many-
electron Hilbert space. When ¢, ¢,, and ¢ are computed
using the full configuration interaction expansion and a com-
mon (dimer-centered) basis set, then Egs. (1) and (19) give
the same result.

One should mention here that two other direct methods of
computing AW have been used in the literature. One possi-
bility is to generate the expansion of AW in powers of 1/R
(see, e.g., Refs. [12-14]). This expansion, asymptotic in the
Poincaré sense, gives very accurate results for very large R,
but is inadequate in the important region of the van der
Waals well when the exchange and overlap effects are im-
portant. Another possibility, proposed by Moszynski and col-
laborators [14—16], is to use the Hellmann-Feynman theorem
and the symmetry-adapted perturbation theory (SAPT) ex-
pansion for the interaction energy [17] to develop AW as an
infinite series in powers of the intermolecular interaction op-
erator. This method does account for the overlap and ex-
change effects and gives very good results in the region of
the van der Waals well [15,16]. It relies, however, on the
applicability of the perturbation theory (it has been imple-
mented through second order only) while our formula (19) is
nonperturbative and gives the exact result in the limit of a
large basis set.

To test our method we used the explicitly correlated
Gaussian geminal basis [ 18] to compute the relativistic mass
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velocity and one-electron Darwin contributions to the inter-
action energy of two ground-state hydrogen atoms at separa-
tions close to the van der Waals minimum in the triplet state.
These two contributions can be defined [19] via Eq. (1) with
W replaced by

Hmv == éazz p? (4)
and
Dl = gazz ZnE 5(rin)’ (5)

respectively, where a=1/137.036 is the fine-structure con-
stant, p; is the momentum of the ith electron, Z, is the charge
of the nth nucleus, r;, is the distance between the ith electron
and the nth nucleus, and &(r) is the three-dimensional Dirac
distribution. The mass-velocity and one-electron Darwin
terms, when added up, represent the so-called Cowan-Griffin
approximation [20] to the & relativistic correction to the
interaction energy. However, knowledge of the expectation
value of D, is needed to obtain the @, QED contribution to
the interaction energy. Therefore we considered the contribu-
tions from H,,, and D, separately, both at finite distances and
asymptotically at large interatomic separations R.

These small interaction energy components, considered
previously in Refs. [21] and [22], are of interest for contem-
porary research in the field of ultracold atomic collisions
[23,24] since the effects of small contributions to the inter-
action potential are enhanced by the very low collision ener-
gies giving rise to significant corrections to the scattering
length [25-27], to the dissociation energies of the long-
range, under-threshold states [26,28], or to the binding ener-
gies of atomic tritium clusters [29]. It turns out that even
when a small molecular system is considered it is not easy to
calculate the relativistic corrections to the interaction energy
precisely and, as we shall show, the results obtained in Refs.
[21] and [22] are not very accurate at large R.

The results of application of our method to the X 12; and
b 32;’ states of H, are reported in Sec. V. For a comparison
we also present results obtained with the same basis sets, but
using the BF and MC approaches, and, when possible, with
the literature data obtained with the Kolos-Wolniewicz basis
[30] (exponential functions times polynomials in all interpar-
ticle distances). We used an explicitly correlated Gaussian
basis set since the applicability of this basis extends also to
larger systems [8].

To better assess the accuracy at large interatomic separa-
tions we computed appropriate relativistic corrections to dy-
namic polarizability of hydrogen and obtained the leading
terms (through 1/R'?) in the asymptotic 1/R expansion of
the investigated corrections. The same relativistic dynamic
polarizabilities were employed to compute the damping
functions [31,32] accounting for the retardation effects. Thus
the interaction energy components obtained by us exhibit the
correct 1/R7 asymptotics and remain accurate at very large
interatomic separations R.

It should be noted that the mathematical derivation pre-
sented in Sec. II is not valid for the singular operators such
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as those given in Egs. (4) and (5). In the Appendix we show
that our method—i.e., Eq. (19)—remains valid for such op-
erators provided that the nonlinear parameters are not reop-
timized in computing the auxiliary, “first-order” functions
appearing in Eq. (19).

Throughout the paper atomic units are used.

II. THEORY

The wave function ¢ for an interacting system consisting
of subsystems (monomers) A and B is obtained by solving
the electronic Schrédinger equation

hip= e, (6)

with the nonrelativistic Hamiltonian
h= ]’l() +v, (7)

where hy=h,+hp is the sum of the monomer Hamiltonians
and v is the interaction operator collecting the Coulomb po-
tentials corresponding to interactions of electrons and nuclei
from monomer A with those from monomer B. The functions
¢4 and ¢y appearing in Eq. (1) are eigenfunctions of 4, and
hp, respectively, corresponding to eigenvalues e, and ep. The
eigenproblem for A,

hogp=eop, (8)

has a solution ¢=¢,dp and ey=e,+e5. We assume that the
eigenvalues e, e4, and ey are nondegenerate or can be treated
as nondegenerate by restricting our attention to a particular
representation of the common symmetry group of 4, h,, and
hB.

We introduce a formal expansion parameter A and define
the perturbed Hamiltonian

HO\) =h+\W. 9)

The operator W can be split, in a manner similar to that of
Eq. (7), as W=W,+ U, where W,=W,+ Wj is the intramono-
mer part of W and U=W-W, is the interaction contribution.
The whole perturbed Hamiltonian H(\) can hence be divided
into its intramonomer and interaction parts:

H(N) =Hoy(N) + V(N), (10)
where
Hy(\) = ho+ AW, (11)
and
VIN) =v+\U. (12)

We shall assume that the eigenfunctions and eigenvalues of
H(\) and Hy(N), defined by

(h+AW)¥(N\) =E\,R)V(N) (13)
and
(ho+ AWp)D(N) = Ey(N)D(N), (14)

exist for sufficiently small N and have power series expan-
sions around A=0. This happens when the operator W is
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Hermitian on a dense domain and bounded relative to & [33].
This condition is fulfilled by the operators used in the Ap-
pendix to regularize the relativistic perturbations of Egs. (4)
and (5). Perturbations describing interactions with an exter-
nal electromagnetic fields are not bounded relative to 4, but
are usually less singular than those of Egs. (4) and (5). They
can be treated using a regularization similar to that applied in
the Appendix. All eigenfunctions in Egs. (6), (8), (13), and
(14) depend also parametrically on R, but the information on
this dependence is suppressed for notational brevity. We pick
up those solutions of Eqgs. (13) and (14) which approach ¢
and ¢ when A —0—i.e., satisfy W(0)=¢ and ®(0)=¢. We
shall have to differentiate W(\) and ®(\), so we assume that
these eigenfunctions are unique (i.e., nondegenerate after re-
solving possible symmetries) when a normalization is fixed.
To make our notation more transparent the wave functions
and operators dependent on the perturbation W or W, are
always denoted by uppercase letters while those independent
of these perturbations by lowercase letters. The wave func-
tions dependent on the interaction operators v or U are de-
noted by ¢ or W and those independent of those operators
(describing noninteracting monomers) by ¢ or ®.

Applying the Hellmann-Feynman theorem to Egs. (9) and
(11) one can express the expectation values entering Eq. (1)
through the eigenvalues of H(\) and Hy(\):

IE(\,R)
Wi = — — 15
(Wl ) | (15)
and
IEG(N
(DalWa|pa) + {b5|Wg|bp) = (| Wy| ) = %
A=0
(16)
Subtracting Eq. (16) from Eq. (15) we find that
AW= J[E(\,R) — Ep(\)] W)
N =0

The difference E(N,R)—Ey(\) can be computed directly

from the equation

(@O)lo + AUW (V)
(@M[F(N) 7

E(\,R) - Eo(\) = (18)
which can be easily proved by projecting Eq. (13) against
®(N), replacing h+\W by ho+AWy+v+AU, and using Eq.
(14).

Straightforward differentiation of the rhs of Eq. (18) leads
(after setting A=0) to

1
AW = ——[(|U[¢h) + (D[ — e |4h) + (Dlv — ;| ¥ )],

(¢l
(19)
where e, is the interaction energy of monomers,
(S|
e =e—ep= <¢|(!/> B (20)

while qfl =((9\P/(‘7)\))\:0 and (I)1=[(9(I)()\)/(9)\])\=0
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The derivative functions W, and @, can be obtained from
the Rayleigh-Schrodinger perturbation theory as the first-
order corrections to ¢ and ¢ due to the perturbations W and
W,, respectively. They satisfy the equations

(h=e)¥=(E =Wy (1)

and
(ho—eg)®1=(Eg— Wo) b, (22)
where  &=(IE/N)=o=(P|W|¢) and  Ey=(IEn/ IN)y=o

=(¢|W,|p). Equation (22) is separable, and its solution can
be written in the form

Dy =P+ Dybg, (23)

where ®y, X=A,B, satisfies the single-monomer equation
(hy—ex)Px=(Ex—Wx)®y, with Ex=(bx|Wx|¢x).

One can verify that each of the functions U¢, v®,, and
v ¢ as well as the interaction energy e, itself vanish at infinite
intermonomer separation. Thus each of the individual contri-
butions in Eq. (19) goes to zero at large R and this property
holds for any basis employed to represent the wave functions
appearing in Eq. (19). Note that the function W, defined by
Eq. (21), does not grow with increasing R even if ¢ is as-
ymptotically degenerate at infinite R since the excited, as-
ymptotically degenerate states differ from ¢ by symmetry
and do not contribute to V.

Since the operators h—e and hy—ey are positive definite,
the solutions of Egs. (21) and (22) can be conveniently ob-
tained by expanding ¥ and @, in a suitable basis set and
optimizing both linear and nonlinear parameters using the
Hylleraas variational principle. This procedure is justified if
Wi and Wy¢ are well-defined square-integrable functions
belonging to the domain of % and h, respectively. This con-
dition is obviously not fulfilled by highly singular perturba-
tions like those given in Egs. (4) and (5). We show in the
Appendix that Eq. (19) gives correct results also for such
operators provided that the Hylleraas variational procedure
of solving Egs. (21) and (22) involves the linear minimiza-
tion only.

III. ASYMPTOTIC BEHAVIOR OF THE COWAN-GRIFFIN
CONTRIBUTION TO THE INTERACTION ENERGY

To assess the accuracy of our method at large interatomic
separations R and to provide an asymptotically correct ana-
Iytical fit of the Cowan-Griffin contribution to the interaction
energy, we computed constants determining the large-R be-
havior of the mass-velocity and one-electron Darwin relativ-
istic corrections defined via Eq. (1) with W replaced by the
operators H,,, and D; of Egs. (4) and (5). It is well known
that at large interatomic distances the nonrelativistic interac-
tion energy of spherically symmetric atoms can be expanded
as an asymptotic series in negative powers of R:

E(R)=—CeR = CRB—C1oR7°+ORY).  (24)

One can easily show that the relativistic corrections consid-
ered by us can be expanded in a similar way:
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AW == 8CeR™® = 5CsR™S - 6C 1R+ O(R™'), (25)

where 8C,, are constants of the order of . Note that some
contributions to the interaction energy predicted by the Breit-
Pauli Hamiltonian decay less rapidly than 1/RS and cannot
be represented by Eq. (25).

For n=10 the nonrelativistic C,, coefficients can be ob-
tained from the atomic polarizabilities computed at imagi-
nary frequencies [34]:

Co=2G(1.1), (26)
T
Csg= EG(l,z), (27)
T
Clo=26(1.3) + 26(2.2), (28)
T T
where
G(k,l) = f alio)qiv)dw. (29)
0

We assumed here that the interacting atoms are identical and
are in the same quantum state. In Eq. (29), ;(iw) denotes the
2!-pole dynamic polarizability defined as

a(io) = (4| Q1R (iw) Q| da) + c.c., (30)

where Q,, is the electric 2-pole moment operator,

4 / R

and R(iw) stands for the resolvent p,(hy—es+iw)™!, py=1
—|p4){4| being the projector on the space of excited eigen-
functions of hy.

It has been shown in Ref. [31] that the three leading co-
efficients in the asymptotic expansion of Eq. (25) can be
expressed via atomic polarizabilities and the leading correc-
tions to these polarizabilities induced by the perturbation W,,.
Specifically, the coefficients 6C,, n=10, can be obtained
from Egs. (26)—(28) provided that the G(k,l) integrals are
replaced by the integrals

6G(k,l) = J [ (iw)day(iw) + ayliow) Say(iw)]dw,
0

(32)

where Sa(iw) is the correction to the 2/-pole polarizability
induced by the perturbation W, (in our case by the H,,, or
the D, operator):

daiw) = = (4| QiR (iw)(Wy — (W) R(iw) Q| a)
= 2(a| Q10 R(i0) Q1oRoWal|pa) + c.c., (33)

with R standing for lim,_,; R(w).

We computed the polarizabilities entering Eq. (32) em-
ploying the Hylleraas variational principle to obtain the first-
order perturbed function R(iw)Q;y¢,4 and the second-order
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TABLE I. 1/R expansion coefficients for the mass-velocity and
Darwin relativistic corrections to the ground-state potential of H,.
The terms SCY%9 and SCY;° represent quadrupole-quadrupole and
dipole-octupole contributions to 8Cy,, respectively. The sum of
those terms gives the total 6Cj.

Hmv Dl
S8Cel —46,6002853381 34,685544399
S8Cq/ -1107,27044690 824,58297664
5C%q/a2 -12112,4495896 9031,1335032
5C%°/ a? —22427,22527 16914,43043

one RyQ;yR(iw)Qyh,. The radial parts of trial functions
were expanded as polynomials in r times a single exponen-
tial with an exponent optimized at w=0. This exponent was
not reoptimized when computing the second-order function.
Polynomials up to 256th order were used (multiple-precision
arithmetic was applied), although after performing these cal-
culations we found that somewhat shorter, 160-term expan-
sions would be sufficient for the level of precision presented
in Table I. All figures shown in this table appear to be con-
verged. The 6Cg constant corresponding to the D; perturba-
tion was obtained earlier by Jamieson, Dalgarno, and
Wolniewicz [22] using a different computational procedure.
Their value of 6C4(D,)/a?, equal to 28.29a2, differs signifi-
cantly from the result of present calculation given in Table I
and equal to 34.6855.... The reason for this disagreement is
not clear to us. We verified, however, that our value agrees
much better with the finite-R results presented in Sec. V and
with data computed independently by Przybytek [35].

The known values of 6C, allow us to construct asymp-
totically correct analytical fits of the relativistic corrections
computed at finite distances. We provide fits for both the
total Cowan-Griffin energy and for its one-electron Darwin
part since the latter is needed to compute the o, Lamb-shift
contribution to the interaction energy. We found it sufficient
to use a relatively simple function depending on three non-
linear (@, B, and 7) and two (triplet-state) and six or seven
(singlet-state) linear parameters (A, ... ,Aq):
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2 oc,
AWR) = e FPRY AR~ D fu(pR)—2,
k=0 n=6,8,10 R

(34)

where f,(x)=1-e(1+x+x%/2!+---+x"/n!) is the Tang-
Toennies [36] damping function. The fit of the relativistic
corrections to the energy of the b 32; state was obtained
using our data points exclusively (eight equally spaced
points between R=5.0 bohrs and R=12 bohrs), and since no
points were computed for R<<5 bohrs, it cannot be reliably
used for shorter distances. In the case of the fit of the rela-
tivistic corrections to the energy of the ground, X 'Eg state,
our values were used for R=35 bohrs and the published re-
sults of Wolniewicz [21] were adopted for R<5 bohrs. This
fit is therefore valid also in the chemical minimum region
and for R as small as 0.6 bohr. The singlet fits for both
one-electron Darwin and Cowan-Griffin corrections give er-
rors smaller than 3% for all interatomic distances, while trip-
let fits give errors smaller than 2% or 5% in the case of
one-electron Darwin and Cowan-Griffin corrections, respec-
tively. All fit parameters are given in Table II.

It is well known that Eq. (34) cannot correctly represent
the relativistic part of the interaction energy at very large R.
As a result of the retardation of electromagnetic interactions,
the interaction energy between neutral atoms falls off as R~/
for R larger than the wavelength corresponding to the aver-
age atomic excitation energy [37]. The same retardation
damping influences the Cowan-Griffin contributions to the
interaction energy. According to the relativistic generaliza-
tion of the Casimir-Polder theory [31,32] the mass-velocity
and one-electron Darwin terms are damped at large R ac-
cording to the following switching function (from R™6 to
R7):

)

2
AWep(R) = - —Gf a,(iw) da,(iw)e > RP(wRa)dw,
7R 0

(35)

where P(x)=x*+2x>+5x>+6x+3. Using the computed val-
ues of a;(iw) and da,(iw) we evaluated Eq. (35) for a wide

TABLE II. Fit parameters for the Cowan-Griffin and Darwin relativistic corrections to the potential

energy curves of the X 'E; and b *3? states of Hy.

Singlet Triplet
Heg D, Heg D,

7 3,2240848630 1,8119548084 1,4391114051 1,2433907106
o 0,0139216369 0,0807340145 0,0426274892 0,0489429063
B 1,9846801684 0,9482917942 0,7753660481 0,6231832266
Ay -3,5520673072 9,1015168917 -0,8951390715 1,0973431033
Ay —114,4209333380 —11,3897287746 0,0824707410 -0,1019331893
A, 101,6653888345 8,3552717753
Aj —44,4601360103 -3,1599596525
Ay 10,8428717265 0,4930955043
As —1,2530014130 -0,0281535413
Ag 0,0571850859
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TABLE III. Fit parameters for the retardation damping func-
tions, Eq. (37), corresponding to the “nonrelativistic” Casimir-
Polder energy, go(x), to the Cowan-Griffin correction, g,(x), and to
one-electron Darwin, gp;(x), relativistic corrections for the X 12+

and b 37 states of Hj.

go(R) ng(R) 22(R)
a, 0.0852707493 0.0385312061 0.0734452185
as 0.0027739117 0.0016078309 0.0021816008
by 0.7981387616 0.4165462412 0.7538308635
b, 0.1532803616 0.0664522585 0.1283453068
by 0.0149724066 0.0052372139 0.0114005996
by 0.0004863867 0.0002184200 0.0003381225

range of R values and fitted it very accurately to the rational
function

AWcp(R) = - SCeR™g(aR), (36)

where

1+ bx + ayx* + asx®

g(x) = (37)

1+ bl.x + b2x2 + b3x3 + b4.x4 '

The coefficients a; and b;, optimized to reproduce the rhs of
Eq. (35) with a relative error smaller than 107*, are presented
in Table III together with similar coefficients needed to fit the
conventional “nonrelativistic” Casimir-Polder interaction en-
ergy [given by Eq. (35) with Sa; replaced by «a;/2] with the
function Ecp(R)=—C¢R°gy(aR). In Table III we also list the
coefficients, denoted by gp;, describing the retardation of the
Darwin part of the Cowan-Griffin (CG) energy [defined via
Egs. (35)—-(37) with the polarizability correction da;(iw) re-
placed by its Darwin component], since these coefficients are
needed to correctly eliminate the unphysical 1/R® decay of
the o® (Lamb-shift) contribution to the interaction energy.

Using Eq. (35) or (36) for R larger than a certain splicing
distance R, and Eq. (34) for R smaller than R, is not conve-
nient since such a procedure would be ambiguous (there is
no natural choice of R;) and the resulting potential would be
nonanalytic. Therefore we propose to use an additive retar-
dation correction to Eq. (34), consistent with Eq. (35) and
free from the problems mentioned above. To obtain this cor-
rection we note that the expansion of AWp(R) in powers of
the fine-structure constant « has the form

AWcp(R) = = SCeR™ + O(a), (38)

where the first term is of the order of o and the term de-
noted by O(a*) collects contributions of the fourth and
higher order in @. Equation (35) may be viewed as a selec-
tive summation of certain QED terms up to infinite order in
a. What is new in comparison with Eq. (34), which itself is
of the second order in «, are the o and higher-order terms
given by AWcp(R)+SCcR™. These terms represent the
needed additive retardation correction
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Wre=[1 - g2(aR)]OCeR™ (39)
to be added to Eq. (34) to remove the unphysical R° decay
of AW(R). To avoid some loss of accuracy arising when
oW, is added to AW(R) at large R, we propose that only
-g,(aR)5C¢R®—i.e., the whole AWcp(R) term of Eq.
(36)—is added to AW(R) and the addition of SC4R™® is taken
care of by replacing the damping function fs(x) in Eq. (34)
with fg(x)=1=(1+x+x2/2!---x%/6!)e™™. The resulting con-
tribution to the interatomic potential is now unambiguous
and remains analytic at all values of R greater than R=0.

IV. COMPUTATIONAL DETAILS

We have performed calculations of the mass-velocity and
one-electron Darwin contributions to the interaction energy
of hydrogen atoms in the lowest singlet (X 12+) and triplet
(b 32+) electronic states. For each 1nterat0m1c separation
considered by us, the spatial part of the nonrelativistic wave
function ¢ was represented as an expansion in the basis of
Gaussian geminals of the form

7;=(1 £1)(1 £ P)exp(- air%A - al-'rgA
—ﬂi’”m :8 ”23 ')’ir%z)’ (40)

where r,c is the distance between the electron k and nucleus
C and ry, is the interelectronic separation. The operator P
stands for the permutation of electrons and I for the inversion
through the center of the dimer. The sign + is used for the
singlet and — for triplet state. When the exponents a;, ¢/, B;,
B, and v; are not constrained and assume different values
for different i, then the basis given in Eq. (40) is complete in
the uniform convergence [38] and the Sobolev space [39]
topologies, which guarantees that the basis set (40) can be
used in a computation of the expectation value of the Dirac
distribution.

To describe correctly the dissociation into the 1s atomic
states of hydrogen, we have also added to our basis set the
Heitler-London function

o= (1= P)h1s(r14) h15(r2p). (41)

The ¢, orbital in the above function was approximated by a
contraction of 25 primitive Gaussian functions with expo-
nents carefully optimized on the ground-state energy of the
hydrogen atom.

For each interatomic distance all exponents «;, @, B, B3,
and v; in all 7; functions were variationally optimized on the
total nonrelativistic energy of the dimer. The optimization
procedure was performed in the presence of the “frozen”
function. Three basis sets, composed of 128, 256, and 512
geminal functions, were obtained in this way, These bases
will be referred to as B128, B256, and B512, respectively.
The nonrelativistic interaction energies resulting from this
optimization are given in Tables IV and V. For the singlet
state our energies are practically as good as the best pub-
lished data—also shown in the tables. For the triplet state
and the van der Waals minimum region, our energies appear
to be the most accurate to date.
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TABLE IV. Nonrelativistic interaction energies for the X 12;
state of H, (in millihartree).
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TABLE V. Nonrelativistic interaction energies for the b 3 po
state of H, (in millihartree).

R Basis 128 Basis 256 Basis 512 Ref. [22] R Basis 128 Basis 256 Basis 512 Ref. [22]
5 -3.7856033  -3.7856480  —-3.7856532  —-3.785656 5 1.3127756 1.3127477 1.3127452 1.312747
6 —-0.8356870  -0.8357017  —-0.8357037  —0.835707 6 0.1865612 0.1865534 0.1865521 0.186553
7 -0.1979021 —-0.1979081 -0.1979128  -0.197914 7 -0.0040028  -0.0040047  -0.0040052  —0.003987
8 —-0.0555937  -0.0556002  —0.0556042  —0.055605 8 -0.0202194  -0.0202208  -0.0202209  -0.020214
9 -0.0197788  -0.0197805  -0.0197814  —0.019782 9 -0.0135166  -0.0135169  -0.0135175  -0.013517
10 -0.0087549  —-0.0087553  —0.0087555  —0.008755 10 -0.0076733  -0.0076736  —0.0076738  —0.007674
11 —-0.0045051 —0.0045057  -0.0045059  —0.004506 11 —0.0043228  -0.0043228  —-0.0043229  —-0.004323
12 -0.0025458  —0.0025458  —0.0025458  —0.002546 12 -0.0025153  -0.0025154  -0.0025154  —0.002515

V. NUMERICAL RESULTS AND DISCUSSION

We present the results of three types of calculations. The
first one, referred as the BF calculation, is based on Eq. (1)
with the exact atomic values subtracted. The second one,
referred as the MC scheme, is defined precisely in Sec. I; cf.
the paragraph containing Egs. (2) and (3). In the MC ap-
proach all nonlinear parameters are optimized in the presence
of the “zeroth-order function™ ¢,. The third one, referred as

the DC, amounts to computing the expression (19).

The results obtained for the D; and H,,, corrections to the
interaction potential of the X 'S* state of H, are collected in
Tables VI and VII, respectively. The results for the b 32:
state are given in Table VIII (Darwin correction) and Table
IX (mass-velocity correction).

The behavior of the obtained results is very similar in all
four cases. For all interatomic separations and all basis sets,
results coming from the MC and DC calculations are fully
consistent. The difference between them is usually negligible
and in only very few instances exceeds 0.1%. This agree-
ment appears to be independent of the size of the employed

TABLE VI. One-electron Darwin correction to the interaction energy of the IE; state (in a?
X millihartree).

R Method Basis 128 Basis 256 Basis 512 Ref. [21] Ref. [22]

5 BF -19.5014 -19.4127 —-19.4070 -19.197 -19.207
MC —19.3242 -19.2355 —-19.2298
DC —19.3242 -19.2355 —19.2298

6 BF -5.3701 -5.3841 -5.3674 -5.162 -5.161
MC -5.1929 -5.2069 -5.1902
DC -5.1929 -5.2069 -5.1906

7 BF —1.5340 —-1.5333 —-1.5339 -1.357 -1.351
MC —-1.3568 -1.3561 -1.3567
DC —-1.3568 -1.3561 -1.3567

8 BF -0.56224 —-0.56059 —-0.56426 —-0.393 —-0.383
MC —-0.38503 —-0.38338 —-0.38705
DC —0.38505 —-0.38338 —-0.38706

9 BF —-0.30943 —-0.30822 —-0.30653 —-0.126 -0.129
MC —-0.13222 —-0.13101 —-0.12932
DC —-0.13222 —-0.13083 —-0.12932

10 BF —-0.23305 —-0.23093 —-0.23067 —-0.057 —-0.052
MC —0.05583 —-0.05372 —-0.05346
DC —0.05584 —-0.05370 —-0.05346

11 BF -0.20417 —-0.20223 —-0.20311 -0.023 -0.025
MC —-0.02696 —-0.02502 —-0.02590
DC —-0.02697 —-0.02505 —-0.02588

12 BF —0.19481 -0.19117 -0.19167 -0.012 -0.014
MC —-0.01760 —-0.01396 —-0.01446
DC —-0.01760 —-0.01398 —-0.01446
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TABLE VII. Mass-velocity correction to the interaction energy
in the IE; state (in o2 X millihartree).

PHYSICAL REVIEW A 77, 062514 (2008)

TABLE VIIIL. One-electron Darwin correction to the interaction
energy in the’S} state (in ® X millihartree).

R Method Basis 128 Basis 256  Basis 512 Ref. [21] R Method Basis 128+ Basis 256+ Basis 512+ Ref. [22]

5 BF 27.5334 27.3692 27.3582 27.138 5 BF 6.0489 6.0185 6.0265 6.203
MC 27.3562 27.1919 27.1810 MC 6.2262 6.1957 6.2038
DC 27.3562 27.1919 27.1809 DC 6.2262 6.1957 6.2037

6 BF 7.3125 7.3410 7.3097 7.075 6 BF 1.1165 1.1271 1.1263 1.321
MC 7.1353 7.1638 7.1325 MC 1.2938 1.3043 1.3035
DC 7.1353 7.1638 7.1397 DC 1.2938 1.3043 1.3034

7 BF 2.0069 2.0051 2.0068 1.816 7 BF -0.0587 -0.0567 -0.0556 0.101
MC 1.8296 1.8279 1.8296 MC 0.1186 0.1205 0.1213
DC 1.8296 1.8265 1.8296 DC 0.1186 0.1205 0.1213

8 BF 0.69193 0.68862 0.69605 0.512 8 BF -0.25207 —-0.25000 -0.25069 -0.075
MC 0.51471 0.51140 0.51882 MC -0.07486 -0.07279 -0.07348
DC 0.51475 0.51140 0.51925 DC -0.07486 -0.07280 -0.07348

9 BF 0.35581 0.35340 0.35001 0.170 9 BF —-0.24354 —0.24489 —0.24375 -0.060
MC 0.17859 0.17617 0.17278 MC —-0.06633 -0.06768 -0.06654
DC 0.17859 0.17618 0.17277 DC —-0.06633 —-0.06768 —-0.06654

10 BF 0.25374 0.24950 0.24899 0.072 10 BF -0.21704 -0.21520 -0.21923 —-0.040
MC 0.07651 0.07227 0.07177 MC -0.03983 -0.03799 —-0.04202
DC 0.07651 0.07224 0.07177 DC —-0.03982 -0.03798 —-0.04200

11 BF 0.21404 0.21015 0.21189 0.034 11 BF -0.20014 -0.20066 —-0.20093 -0.025
MC 0.03682 0.03293 0.03467 MC -0.02293 -0.02345 -0.02372
DC 0.03684 0.03299 0.03470 DC -0.02317 -0.02347 -0.02372

12 BF 0.20302 0.19575 0.19674 0.019 12 BF —-0.19061 —-0.19126 -0.19126 -0.014
MC 0.02580 0.01853 0.01952 MC —-0.01340 -0.01405 -0.01404
DC 0.02580 0.01858 0.01952 DC -0.01344 -0.01404 -0.01404

basis set and does not deteriorate at larger R, despite the fact
that the calculated corrections become then rather small in
absolute value. The observed agreement confirms the sound-
ness of the MC procedure. In contrast, the results obtained in
the BF calculations differ significantly from the DC and MC
results. The difference increases dramatically with the inter-
atomic separation. For R=5 bohrs the difference between
the BF and DC calculations varies from only about 0.6% (for
the H,,, correction to singlet state) to about 3% (for the D,
correction to triplet state), but for the largest considered in-
termolecular separation (R=12 bohrs) the BF and DC re-
sults differ by one order of magnitude.

Tables VI-VIII list also the results of earlier calculations
by Wolniewicz [21] and by Jamieson er al. [22] performed
using the Kolos-Wolniewicz basis [30] and the BF approach.
The BF approach is this case accurate at large R since the
Kolos-Wolniewicz basis includes the exact, nonexpanded,
asymptotic function . Our results agree better with the
later, more accurate calculations of Ref. [22]. We believe that
at larger R our calculations are more accurate than those of
Refs. [21] and [22] since they agree somewhat better with
the asymptotic expansion of the relativistic corrections, vide
infra.

To examine the accuracy of the interaction energies at
larger values of R, we plotted the values of R°a™>AW(R) for

various approximations to the corrections AW(R) and com-
pared the results with the plot of the function

— 8Cya % = 8Cya ®R™> — 8C,ga 2R, (42)

where 6C,, n=6,8, 10, are the coefficients (given in Table I)
determining the asymptotic behavior of the Darwin or mass-
velocity contributions. Figures 1-4 present results of this
comparison. It is clearly seen that the BF method fails dra-
matically at the distances of the van der Waals minimum and
that the MC and DC methods give practically identical re-
sults. The results obtained using the Kolos-Wolniewicz basis
[21,22], when available, are similar to our results, although
the differences are visible. The most significant difference is
observed for the Darwin correction in the singlet state when
the results from Ref. [21] start to deviate from the exact
asymptotics at the largest values of R. Figure 1 shows also
that our value of the constant 5C¢(D;)/ a?>=34.6855..., given
in Table I, is more consistent with the finite-R results than the
value 28.29 obtained in Ref. [22].

To show that the agreement between the MC and DC
values is not trivial in Figs. 1 and 2, we present also results
obtained with a simplified MC procedure, denoted by MC”,
in which the ¢ function is added to a previously optimized
geminal basis set. As this previously optimized basis set, we
used a very carefully optimized 1200-term Gaussian geminal
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TABLE IX. Mass-velocity correction to the interaction energy
in the *3? state (in o X millihartree).

R Method Basis 128 Basis 256 Basis 512
5 BF —8.7988 -8.7339 —8.7494
MC -8.9760 -8.9111 -8.9267
DC -8.9761 -8.9112 —8.9266
6 BF -1.6130 -1.6339 -1.6323
MC -1.7902 -1.8111 -1.8095
DC -1.7902 -1.8111 -1.8101
7 BF 0.0224 0.0186 0.0170
MC —-0.1548 -0.1587 -0.1602
DC -0.1548 -0.1587 -0.1602
8 BF 0.28384 0.27971 0.28109
MC 0.10662 0.10249 0.10387
DC 0.10661 0.10249 0.10388
9 BF 0.26793 0.27063 0.26834
MC 0.09070 0.09340 0.09111
DC 0.09070 0.09341 0.09108
10 BF 0.23042 0.22674 0.23477
MC 0.05320 0.04951 0.05754
DC 0.05319 0.04868 0.05748
11 BF 0.20763 0.20865 0.20920
MC 0.03040 0.03143 0.03197
DC 0.03090 0.03146 0.03173
12 BF 0.19495 0.19624 0.19623
MC 0.01773 0.01902 0.01900
DC 0.01780 0.01899 0.01900

basis for the singlet state provided to us by Cencek [40]. This
basis set gives subnanohartree accuracy at each value of
R—i.e., gives significantly more accurate nonrelativistic in-
teraction energies than our largest 512-term basis. The results
obtained when this 1200-term basis is extended with the
Gaussian representation of , function used in our work are
shown in Figs. 1 and 2 (the MC* results). Despite the high
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FIG. 1. Asymptotic behavior of D correction to the interaction
energy of the 12; state obtained with a set of 512 basis functions.
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FIG. 2. Asymptotic behavior of H,, correction to the interaction
energy of the 12; state obtained with a set of 512 basis functions.

quality of the original basis, these results are seen to be very
poor at larger values of R. This clearly demonstrates that it is
critically important to optimize the nonlinear parameters
with the “zeroth-order” function ¢ included. This conclu-
sion agrees with the observation made in Ref. [9].

As can be seen in Tables VI and IX, the basis-set conver-
gence is not monotonic. This prevented us from using a
basis-set extrapolation to obtain recommended values of the
CQG relativistic energies. Therefore, we used the values com-
puted with the largest, 512-term basis to obtain our analytical
fits, Eq. (34). We estimate that our fitting functions, defined
by the parameters given in Table II, represent the exact o’
relativistic corrections with errors smaller than 0.1% at small
R and reaching up to about 1% at the distances of the attrac-
tive part of the van der Waals minimum. At still larger dis-
tances the errors decrease because of the practically exact
form of the asymptotic expansion used in Eq. (34).

VI. SUMMARY

We proposed a method to directly compute the interac-
tion-induced properties for weakly interacting monomers.
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FIG. 3. Asymptotic behavior of D; correction to the interaction
energy of the 32; state obtained with a set of 512 basis functions.
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FIG. 4. Asymptotic behavior of H,,, correction to the interaction
energy of the '3 3% state obtained with a set of 512 basis
functions.

We applied it in Gaussian geminal calculations of the
Cowan-Griffin relativistic corrections to the interaction en-
ergy in the ground singlet and the lowest triplet states of the
hydrogen molecule. The proposed method gives results
which are very close to those obtained using the so-called
monomer contraction method proposed recently by Cencek
and collaborators [9], confirming thereby the validity of the
latter method.

To assess the accuracy of the obtained relativistic correc-
tions, we computed the constants determining their large-R
asymptotic behavior. These constants were used to obtain an
analytic fit representing the computed corrections and valid
in a wide range of interatomic distances. To extend the va-
lidity of this analytical fit to very large interatomic separa-
tions, we computed the damping functions accounting for the
retardation and producing the correct 1/R7 decrease of the
interaction energy.

Is should be pointed out that the proposed method can be
used not only to calculate corrections coming from relativis-
tic operators, but also, in a more general context, to obtain
arbitrary first-order molecular properties of weakly interact-
ing atoms.
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APPENDIX

In this appendix we prove the validity of Eq. (19) for
singular operators—e.g., those expressible through Dirac dis-
tributions. For such operators W, defined by Eq. (21), or &,
defined by Eq. (22), are not ordinary functions and cannot be
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computed using the conventional approximation techniques
valid for functions belonging to a suitable Hilbert space.
Nevertheless, if we formally solve Egs. (21) and (22) by
minimizing the corresponding Hylleraas functionals

JW]=(Tlh-e|¥) -2 Re(T|E, - W]y, (A1)

J[®]=(Dhy— eg| D) — 2 Re(D|Ey - Woly),  (A2)
with square-integrable trial functions W and ®, and subse-
quently insert the resulting “approximations” for W, and ®,
into Eq. (19), then we obtain the correct answer for AW in
the limit of an infinite basis set. Specifically, if the basis set
Xi» i=1,...,9%, employed to expand W is complete, the last
term in Eq. (19) will be obtained as the K— o limit of the
sequence

SK=<¢|U_€1|\I~'K>» (A3)

where
K
Wy = E CiXis

i=1

(Ad)

and the coefficients c; are determined from the set of K linear
equations

(il — el W) = (xil& - Wiy, (A5)

i=1,...,K, resulting from the minimization of the functional
(A1) with the trial function (A4). We assume here that the
square-integrable basis functions y; are fixed—i.e., that the
nonlinear parameters defining them are not reoptimized dur-
ing the calculations. When W is a distribution, the functional

(A1) is not bounded from below and the sequence ¥ is not
convergent. One can say that the sequence Sy is obtained
from the variational collapse procedure controlled somehow
by the fact that the nonlinear parameters are not optimized.

To prove that the procedure described above converges to
AW, we have to make the rhs of Eq. (19) mathematically
meaningful also when W is a distribution and W, or ®@, are
not well defined. We can do that by appropriate regulariza-
tion of W. This means that the matrix elements (f|W|g) are
interpreted as n— o limits of (f|W"|g), where W is a se-
quence of well-defined Hilbert space operators. It is well

—nr2

known that the sequence 6")(r)=(n/m)¥2e™  regularizes
the Dirac distribution. For the p* operator we can use the
sequence of operators (p*)™=np*/(n+p*), defined in the
momentum space and Fourier transformed back to the posi-
tion space. The operators 6" (r) and (p*)® are bounded, so
the derivations of Sec. I become legitimate if W is replaced
by the operator W constructed from these operators. AW is
then well defined by computing the rhs of Eq. (19) with W
replaced by W and taking the limit n— o at the very end.
Specifically the last term in Eq. (19) is defined as the n
—o limit of the sequence of matrix elements (v
—el|\I’(1”)), where ‘I’(I”) is a solution of Eq. (21) in which W is
replaced by W,

To show that (@|lv—e,|¥,) defined by this regularization
procedure can be obtained as the K— oo limit of the Sk ap-
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proximants of Eq. (A3), we introduce an auxiliary function
Y, satisfying the equation

(h—e)ip=(e;-v)¢

and the normalization condition (i, |#)=0. Using Eq. (A6)
and subsequently Eq. (21) with W replaced by W\"), we can
write

(plo— ey | W) == (gl — e[ W) = (g W = £0] ),
(A7)

where £ =(y|W\")| ). Taking the n— o limit of the extreme
sides of Eq. (A7), we find

(Plv — 1| W)= (g | W, - E |,

where the rhs of Eq. (A8) can now be computed directly
without regularization [i.e., using the usual definition
(¢|o(r) )= " (0)410) or (B|p*|)=(p*B|p*P)].

Equation (A6) is a linear inhomogeneous equation with a
well-defined square-integrable function on the right-hand
side and a positive-definite operator on the left-hand side.
The solution of this equation can be obtained by the minimi-
zation of the Hylleraas functional of the form of Eq. (Al)
with (£,— W)y replaced by (e;—v)¢. Unlike the functional
of Eq. (Al) the functional corresponding to Eq. (A6) is
bounded from below and the sequence of approximants gen-
erated by the variational procedure converges to the exact
solution i,. If the basis set employed to expand ¢, is the
same as that employed to compute the (divergent) sequence

(A6)

(A8)
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\f’K, the sequence of variational approximations to i, is
given by

K
JIK: E dixi» (A9)
i=1

where the linear coefficients d; are determined from the set
of K linear equations

(xilh = el ) = (xiler — v] ), (A10)

i=1,...,K. Since 17/,( converges to ¢; when K— <o, the series

of matrix elements Tyx=(iJx|W,—&|#) must converge to
(|W,=&,|) and, in view of Eq. (A8), to (plv—e,|¥,).

To relate Ty and S we consider the matrix element
(dglh—e|Wy). In view of Eq. (A5) this matrix element is
equal to (¢g|E;—W,|)=—T. On the other hand, using Eq.
(A10) we can represent {x|h—e| W) as (ple;—v|¥g)=—S.
Thus, Sx=Tg. This shows that the sequence of approximants
Sk resulting from the divergent (collapsing) variational pro-
cedure based on the functional (A1) converges to {¢lv
—e,|¥)—i.e., to the “right result.” In the same way one can
prove that the second term on the rhs of Eq. (19) can be
computed by minimizing the functional of Eq. (A2). This
completes the proof that Eq. (19), combined with a formal
variational solution of Egs. (21) and (22), gives the correct
value of AW also when W is a distribution operator.
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