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We report a calculation of all two-loop quantum electrodynamics corrections with closed fermion loops for
the n=1 and n=2 states of H-like ions and for a wide range of the nuclear charge numbers Z=1-100. The
calculation is performed to all orders in the binding-strength parameter Z«, with the exception that in a few
cases the free-loop approximation is employed in the treatment of the fermion loops. Detailed comparison is
made with previous Za-expansion calculations and the higher-order remainder term to order a?(Za)° is

identified.
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I. INTRODUCTION

Highly charged ions are often considered as the ideal test-
ing ground for investigating the strong-field regime of
bound-state quantum electrodynamics (QED). They feature a
strong static Coulomb field of the nucleus and have a simple
electronic structure, which can be accurately determined in
ab initio theoretical calculations. In this respect, the ultimate
investigation object is the H-like uranium, the heaviest natu-
rally occurring element. Measurements of the 1s Lamb shift
in H-like uranium have progressed drastically during last de-
cades [1,2], having achieved an accuracy of 4.6 eV [3],
which corresponds to a fractional error of 1.7% with respect
to the total QED contribution. Further advance anticipated in
the future will make such experiments sensitive to the two-
loop QED effects.

Even higher precision is achieved for heavy Li-like ions.
Measurements of the 2py,;,-2s transition energies [4-8]
have lately reached a fractional accuracy of 0.03% with re-
spect to the total QED contribution. This corresponds to a
10% sensitivity of the experimental results to the two-loop
QED effects. These measurements provide an excellent pos-
sibility for the identification of the two-loop Lamb shift and
for testing the bound-state QED up to second order in « in
the strong-field regime (« is the fine-structure constant). The-
oretical description of Li-like ions is more complicated than
that of H-like ions, which is due to the presence of additional
electrons. For heavy systems, the electron-electron interac-
tion is weak (as compared to the electron-nucleus interac-
tion) and can be successfully treated by perturbation theory.
AD initio calculational results for the effects of the electron
correlation and the screening of one-loop QED corrections
are already available for Li-like ions [9,10]; their accuracy is
sufficient for identification of the two-loop QED effects.

The detailed theoretical understanding of the two-loop
QED effects is also necessary for the interpretation of high-
precision experimental data in the low-Z region. The most
prominent example here is hydrogen. Its spectroscopy can
nowadays be realized with a relative accuracy on the level of
10714 [11,12]. The theoretical understanding of the 1s and 2s
Lamb shift in hydrogen is still limited, to a large extent, by
the two-loop QED effects [13].
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The subject of our present interest is the set of the two-
loop QED corrections (also referred to as the two-loop Lamb
shift), graphically represented in Fig. 1. These corrections
have been intensively investigated within the perturbative
expansion in the binding-strength parameter Za [14-17] (Z
is the nuclear charge number). The results of these studies,
however, do not provide reliable information about the mag-
nitude of the two-loop Lamb shift in heavy ions, where the
parameter Za approaches unity. A nonperturbative (in Za)
evaluation of the whole set of the two-loop diagrams is
needed for the interpretation of experimental results avail-
able in the middle- and high-Z region.

Numerical all-order calculations of the two-loop correc-
tions started in late 1980s [18—23] and dealt with the dia-
grams with the closed fermion loops [Figs. 1(d)-1(k)]. An
evaluation of the three remaining diagrams [Figs. 1(a)-1(c)],
referred to as the two-loop self-energy diagrams, turned out
to require considerable efforts. It was accomplished in a se-
ries of investigations [24-31] for the nuclear charge numbers
Z=10 for the ground state and Z=60 for the n=2 states.
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FIG. 1. Two-loop one-electron QED corrections. Gauge-
invariant subsets are referred to as SESE (a)-(c), SEVP (d)-(f),
VPVP (g)-(i), and S(VP)E (k).
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The goal of this work is to perform a detailed investiga-
tion of all two-loop diagrams with the closed fermion loops
[Figs. 1(d)-1(k)], extending previous evaluations to cover
the whole region of the nuclear charge numbers Z=1-100
and all n=1 and n=2 states. The first results of our calcula-
tion were presented in Ref. [31]. At present, our intention is
to achieve high numerical accuracy in the low-Z region. This
will allow us to make a detailed comparison with the pertur-
bative calculations and to isolate the nonperturbative remain-
der to order @?(Za)®, which is of experimental interest for
hydrogen. Our calculation will be performed to all orders in
the binding-strength parameter Za, but an approximation
will be made in the treatment of the fermion loops in the
diagrams in Figs. 1(h)-1(k). This approximation, referred to
as the free-loop one, consists in keeping the leading nonva-
nishing term of the expansion of the fermion loop in terms of
the binding potential. In the one-loop case, it corresponds to
the Uehling potential and yields the dominant contribution
even for high-Z ions. To perform a nonperturbative calcula-
tion of the diagrams in Figs. 1(h)-1(k) without the free-loop
approximation is a difficult and a so far unsolved problem.

The paper is organized as follows. In Sec. II, we describe
our approach to the evaluation of the one-loop self-energy
and vacuum-polarization corrections, which is used as a ba-
sis for treatment of the two-loop corrections. In Sec. III, we
discuss the evaluation of individual two-loop corrections
with closed fermion loops, present our numerical results, and
compare them with the data obtained within the perturbative
Za-expansion approach. In Sec. IV, we summarize our re-
sults.

The relativistic units (A=c=1) are used in this paper.

II. ONE-LOOP QED CORRECTIONS

We start with presenting some basic formulas for the first-
order self-energy and vacuum-polarization corrections that
will be needed below in addressing the two-loop corrections.

A. Self-energy

The one-loop self-energy (SE) correction to the Lamb
shift can be represented as a matrix element of the renormal-
ized SE operator 2.,

AEgg = (a|y"Sk(e,)a), (1)

where 2p=3—8m, dm is the one-loop mass counterterm, g,
is the energy of the reference state, 3 is the unrenormalized
SE operator,

2(e,x1,%,) = Ziayof doa,G(e - w,x1,X;)a,D""(w,x,),

2)

G is the Dirac-Coulomb Green function G(g)=[e—-"H(l
—i0)]™', H is the Dirac-Coulomb Hamiltonian, D*” is the
photon propagator, *=(1, @), and x,,=x,—x,. It is assumed
that the above expressions are regularized in a covariant way
and that the limit that removes the regularization is properly
approached.

PHYSICAL REVIEW A 77, 062510 (2008)

In order to facilitate the numerical evaluation of the above
expressions, one needs to explicitly eliminate divergences
from the SE operator. A popular method of doing this [32] is
based on the expansion of the SE operator in terms of the
binding field,

2=2(O>+2(1)+2(2+), (3)

where the indices 0 and 1 indicate the total number of inter-
actions with the binding Coulomb field and the index (2+)
labels the term generated by =2 such interactions. Only the
first two terms of the expansion are divergent; all diver-
gences can be shown to vanish in the difference 2 — &m. The
divergent parts are regularized by working in an extended
number of dimensions and evaluated in momentum space,
see Ref. [33] for details. We mention that the first-order ex-
pansion term 3 is usually represented as a product of the
time component of the standard vertex operator I'*(p,,p,)
and the Coulomb potential Vi,

E(D(Pl’l?z) = FO@I»PZ)VC(IIH —P2|)- (4)

The energy shifts induced by (the final parts of) the three
terms on the right-hand-side of Eq. (3) are referred to as the
zero-, one-, and many-potential terms, respectively,

AEgz = AES) + AEW + AEZY (5)
where
AEGE = (2 o O )P, (6)
d]
AEQ = | 2 fé b )TVl @y, (1)

AEG = f deydey i, (x )32 (64,2 1,20 P(x),  (8)

where g=p,-p,, U,=¢ ", Vc(q)——471'Zoz/|q|2 is the Cou-
lomb potential in momentum space, E )(p) is the finite part
of the subtracted free SE operator 3, 0)(p) om, IU'f(py,py) is
the finite part of the vertex operator I'*(p,,p,); and p, p,,
and p, are four vectors with the time component fixed by
p'=p=pJ=¢,. The operator 3 is obtained from Eq. (2)
by the substitution G— G?*), where the index (2+) denotes,
as usual, two or more interactions with the binding Coulomb
field.

In the extended number of dimensions, D=4-2g, the free
SE operator 3 is given by

&k 1y (p—k+m)y”
emPi* (p-k?-m* "~

3O(p) = - dmiau® )

where p=p”v, and u is the auxiliary mass parameter intro-
duced in order to keep the proper dimension of the interac-
tion term in the Lagrangian. The momentum integration in
Eq. (9) is simple; it is described, e.g., in Appendix A of Ref.
[28]. Omitting terms of order € and higher, one obtains
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C 2
2(0)(p)—6m=—a—5(15—m)+ﬁ[Zm(l+ p lnp>
41re 4 1-p

—lsﬂ(u p lnp)}, (10)
I-p

where p=(m>-p?)/m* and C.=I'(1+€)(4m)(u>/m?)¢. The
operator 21(,30) in Eq. (6) is the finite part of the right-hand-side
of Eq. (10) when € approaches zero.

The free vertex operator I'“ is

o dPk 1
T(py.py) = — 4miau PR
ﬁl—k+m [52—&+m
Xy, V.
§ (p1—k)*=m*" (py—k)*-m*

(11)

The momentum integration is performed by using the stan-
dard technique (see, e.g., Appendix A of Ref. [28]). Omitting
terms of order € and higher, one obtains

aC, al3 ! N“(xb)
re« = e dxdy| ———
(p1.p2) dme’ 477_[270("‘[0 X )’< D
+2x)ﬂlnD):|, (12)

where N%(xb) =y, (p,—xb+m)y*(hy—xb+m)y’, b=yp,;+(1
—-y)p,, and D:xb2+m2—yp%—(l—y)p%. The operator I'y in
Eq. (6) is the finite part of the right-hand-side of Eq. (12)
when € approaches zero.

Out of the three terms in Eq. (5), the third one (AEg 2+)) is
the most difficult to evaluate numerically. To a large extent,
this is due to the partial-wave expansion that inevitably ap-
pears in the evaluation of the function G*). The conver-
gence of this expansion is rather good for the ground state of
high-Z ions (provided that radial integrations are carried out
first), but quickly worsens when Z is decreased and (or) the
principal quantum number n is increased. An approach to
overcome this difficulty was suggested in Ref. [34]. It is
based on the separation of the (=2)-potential Green function
G2 into two parts,

G (e,x1,%5) = G (e,x1,%,) +[G?(e,x,x,)
G((42+>(89x1’x2)]9 (13)

where G'**) yields an approximation to G®*) in the region
where x;=~x, and the energy argument is far away from a
pole. This separation is related to the one used in Ref. [35]
for the identification of ultraviolet divergent parts of the SE
operator in coordinate space. The function Ga2+) is given by

G£12+)(8’x1’x2) = G(O)(S + anl’xZ) - G(O)(S’xl’x2)

J
-0 —GYEx x , 14
SEO N ERE)| a9
where G© is the free Dirac Green function and
=2Za/(x;+x,). The function fo” has two important prop-
erties: (i) It can be easily expressed both in the closed form
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and in the partial-wave expansion form and (ii) it depends on
angular variables through x;,=x;—x, only. These features
ensure that the numerical evaluation of expressions with
G(2+) is rather simple. The main reason to introduce the aux-
1hary function G (%) is that the separation (13) improves the
convergence of the partial-wave expansion. It was demon-
strated in Ref. [34] that the substitution of the difference
G2-G% into (the high-energy part of) Eq. (8) improves
the convergence of the partial-wave expansion drastically
and allows one to obtain reasonably accurate results for the
SE correction at Z=1 with employing just about 30 partial
waves. This approach was extensively used in the present
work for the evaluation of the two-loop corrections. Its usage
allowed us to obtain accurate numerical results for the whole
region of the nuclear charge numbers Z=1-100 in calcula-
tions of the diagrams in Figs. 1(d)-1(f) and 1(k).

B. Vacuum polarization

The one-loop vacuum-polarization (VP) potential consists
of two parts, which are commonly referred to as the Uehling
and the Wichmann-Kroll ones, see the review [36] for de-
tails,

Uyp(r) = Uyen(r) + Uwk(7r). (15)
The expression for the Uehling potential is given by

2y (o0
Uyen(r) == Z;:WZL dr'r' p(r")[Ko(2m|r = r')
- Ko(m|r+r'))], (16)
where
Ky(x) = f‘” dte_)“<l2 + LS) \e”l‘le, (17)
| r 2t

and the nuclear-charge density p(r) is spherically symmetric
and normalized by the condition [drp(r)=1. The Wichmann-
Kroll potential is conveniently expressed in terms of the VP
charge density p{i(r),

Uwk(r) = JdV"’/Z_PVP(/) (18)

where r—=max(r,r"). The VP charge density can be written
as

2 o]
p3H(r) = —aReE |K|f do Tr fo”(iw, rr), (19)
™ K 0

where Gf” denotes the radial part of the electron propagator
that contains three and more interactions with the binding
Coulomb field and « is the relativistic angular quantum num-
ber. It was shown [37,38] that no spurious terms arise in a
numerical evaluation of Eq. (19) if the expansion over « is
terminated by a finite cutoff parameter.

According to the Furry theorem, all parts of the electron
propagator that contain an even number of interactions with
the binding field yield a vanishing contribution to the VP
charge density. Thus, in numerical evaluations, the function
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G®* in Eq. (19) can be substituted by G\>*), which is con-
veniently expressed as

G (w,x,y) = f dz2° G w,x,2)V(2)[G (0,2,y)
0

- Gw,z.y)]. (20)

where G, is the radial part of the bound-electron propagator,
Gf?) is the radial part of the free electron propagator, and
V(z) is the binding potential.

Formulas (16)—(20) were employed for the numerical
evaluation of the one-loop VP potential in this work, using
the numerical procedure developed in Refs. [38,39]. The Ue-
hling potential was calculated with the Fermi model of the
nuclear-charge distribution, whereas for the Wichmann-Kroll
potential, the spherical shell model [p(r) « &(r—R)] was em-
ployed. The summation over « in Eq. (19) was extended up
t0 | Kyax = 10.

We mention that in the case when high numerical accu-
racy is not needed and the finite nuclear size correction may
be disregarded, the Wichmann-Kroll potential can be conve-
niently evaluated by employing analytical approximation for-
mulas reported in Ref. [40].

III. TWO-LOOP QED CORRECTIONS

The two-loop contributions to the energy shift are conve-
niently represented in terms of the dimensionless function
F(Za) defined by

2 4
AE=m(3> CLp 1)
a n

where n is the principal quantum number.

A. Self-energy in the Coulomb potential modified
by the vacuum polarization

We start our consideration of the two-loop corrections
with the set of the three diagrams in Figs. 1(d)-1(f). This set
is gauge invariant and can be regarded as the one-loop SE
correction in the combined field of the nuclear Coulomb and
the VP potential. The corresponding energy shift will be re-
ferred to as the SEVP correction in the following.

Formal expressions for the SEVP correction can be ob-
tained by considering the first-order perturbation of the one-
loop SE correction by the VP potential (15). Perturbations of
the reference-state wave function, the binding energy, and
the electron propagator give rise to the irreducible, the reduc-
ible, and the vertex contributions, respectively. The irreduc-
ible part is

AES p=(al Y2 r(e,)|8a) + (8alY'Sp(e,)a),  (22)

where 3 is the renormalized SE operator, and |da) is the
first-order perturbation of the reference-state wave function
|a) by Uyp. The reducible part is given by

J
AErselfzjvp = <a| va|a) (a| 'yO%ER(S)M) s (23)

SZSa

and the vertex part is
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[’

doS (ny|Uyp|ny)ans| e, a0, D*(w)|nya)
(ga_ w_gn])(ga_ w—& )

ver  _ A
AEgyp= Ztaj ,
—00 nlnz ﬂz

(24)

where the summation over n; , goes over the Dirac spectrum,
and the virtual-state energies are assumed to have a small
imaginary addition, &,— g,(1-i0).

The problem of calculating the SE correction in the pres-
ence of the perturbing potential has been extensively studied
in the literature, see, e.g., Refs. [41-44]. In this work, we
employ the general scheme developed in our previous study
[45] for the case of the SE correction to the hyperfine split-
ting. Several modifications were introduced into the scheme,
among them the inclusion of the finite nuclear size effect.
This modification was essential, first, because the effect is
significantly enhanced by the singular behavior of the VP
potential and, second, because the extended nuclear charge
distribution removes the logarithmic singularity of the point-
nucleus Uehling potential, which simplifies numerical inte-
grations considerably. Even with the extended nuclear size,
the usage of extremely fine grids was required in the nuclear
region, in order to achieve a high controllable accuracy in
radial integrations.

In actual calculations, the Fermi model of the nuclear-
charge distribution was employed for the evaluation of the
reference-state wave function and the Uehling potential,
whereas the electron propagator(s) inside the SE loop and the
Wichmann-Kroll potential were calculated with the spherical
shell model [p(r) < 8(r—R)]. For systems with Z<10, we
neglected the nuclear-size dependence in the electron propa-
gators. The values of the root-mean-square (rms) radii of the
nuclear-charge distribution were taken from Ref. [46] in
most cases. For uranium, we used the value (#2)!2
=5.8569(33) fm obtained in the recent reevaluation of ex-
perimental data [47]. In the case of fermium (Z=100), there
is no experimental results available, so we used the interpo-
lation formula from Ref. [48] and assigned a (conventional)
uncertainty of 1% to the resulting value. The rms radii used
in the present investigation are listed in the second column of
Table 1.

The calculational results for the SEVP correction for the
Ls, 2s, 2py)5, and 2p;), states of H-like ions are presented in
Table I, expressed in terms of the function F(Za) defined by
Eq. (21). Our results are in good agreement with the values
reported previously for uranium, lead, and ytterbium in Ref.
[20]. The uncertainty specified in the table includes the nu-
merical error and the estimated errors due to the models of
the nuclear charge distribution and due to uncertainties of the
rms radii. The model dependence of the results was esti-
mated by switching between the Fermi, the uniform, and the
spherical-shell models in evaluations of the Uehling potential
and the wave functions; the largest deviation was taken as
the error due to the nuclear model. The error due to the
uncertainty of the nuclear radius was obtained by repeating
the calculations with the rms radii varied within the error
bars specified in the table. All three errors were added qua-
dratically. In Table I and in the tables that follow, the omitted
uncertainty means that the expected error is smaller than the
last significant digit specified.
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TABLE 1. Energy shifts due the SEVP correction, in units of F(Za). Uncertainties specified include the
estimated errors due to the nuclear charge distribution models and the values of the rms radius.

V4 (V2 (fm) ls 2s 2pin 2p3pn
1 0.879(9) 0.01474(2) 0.01459(2) —-0.000025 —-0.000022
2 1.676(3) 0.02993(2) 0.02945(4) —-0.000086 —-0.000076
3 2.43(3) 0.04519(3) 0.04430(5) -0.000175 —-0.000152
5 2.41(3) 0.07546(4) 0.07355(6) -0.000414 —-0.000352
7 2.558(7) 0.10508(3) 0.10208(7) -0.000715 —-0.000597
10 3.005(2) 0.14804(3) 0.14351(5) -0.001242 —-0.001008
15 3.189(2) 0.21618(3) 0.20961(4) -0.002206 -0.001700
20 3.476(1) 0.28099(5) 0.27394(5) —-0.003130 —-0.002265
25 3.706(2) 0.34394(4) 0.33841(6) —-0.003868 -0.002577
30 3.929(1) 0.40649(5) 0.40497(6) —0.004269(1) —-0.002529(1)
35 4.163(2) 0.47012(3) 0.47570(6) —-0.004161(1) —-0.002025(1)
40 4.270(1) 0.53642(4) 0.55290(5) —-0.003332(1) —-0.000974(4)
45 4.494(2) 0.60687(3) 0.63898(5) ~0.001500(1) 0.000711(2)
50 4.654(1) 0.68338(3) 0.73709(5) 0.001724(2) 0.003116(6)
55 4.804(5) 0.76802(3) 0.85095(4) 0.006884(2) 0.00634(1)
60 4.912(2) 0.86337(4) 0.98540(4) 0.014770(3) 0.010449(6)
65 5.1(2) 0.9723(7) 1.1463(8) 0.02653(2) 0.015548(8)
70 5.311(6) 1.09812(5) 1.34094(6) 0.043840(4) 0.02171(1)
75 5.34(1) 1.2478(2) 1.5827(2) 0.069408(9) 0.029019(10)
80 5.463(2) 1.42573(5) 1.8834(2) 0.107174(8) 0.037514(4)
83 5.521(3) 1.55007(6) 2.1010(2) 0.138236(10) 0.043186(7)
90 5.71(5) 1.905(2) 2.751(3) 0.2488(2) 0.05798(3)
92 5.857(3) 2.0238(4) 2.9786(8) 0.29400(2) 0.06251(1)
100 5.86(6) 2.650(4) 4.224(8) 0.5871(8) 0.08183(6)
It is instructive to compare our nonpertubative results  evaluation are G, (a)=-13.2(4), G, (a)=-11.7(4),

with the ones obtained within the Za-expansion approach.
The Za expansion of the SEVP correction reads as

2(Za)5

- 7{050 +(Za)In’[(Za)*lagy

AEggyp= m(—)
ar

+ (Za)In[(Za)2lag, + (Za)G(Za)}, (25)

where the function G(Za) is the higher-order remainder,
G(0a)=agy. The results known for the coefficients of this
expansion are [14,49-52]

asn = 1.920 5765]9, (26)
4
agy = E‘SI,O’ (27)
16(2 32(3 1 1
ag) =E(§+ln 2)51’0— E(Z-'- 4?—;+ v+ W(n)
8 n’-1
—Inn|d- ET%- (28)

The higher-order remainder G(Za) was inferred from our
numerical results for the SEVP correction and plotted in
Fig. 2. For hydrogen, the results of our direct numerical

Gzpm(a)=—0.034, and Gng/z(a)=0.015. For the normalized
difference of the 2s and 1s states and for the fine-structure
difference, these values are consistent with the analytical re-

T
90 100

0 10 20 30 40 50 60 70 80
Nuclear charge number Z

FIG. 2. Higher-order remainder G(Z«) for the SEVP correction.
Errors due to the model of the nuclear-charge distribution and the
rms radii are not shown.
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sults a60(2s) - 6160( 1 S) =1.491 199 and 6160(2[73/2) —6160(2[71/2)
=1/20 [52].

B. Two-loop vacuum polarization

The two-loop VP correction is represented by the dia-
grams in Figs. 1(g)-1(i). (The term the “two-loop VP will
be abbreviated as “VPVP” in the following.) It will be con-
venient to split our evaluation of the VPVP correction into
two parts, considering separately the diagram in Fig. 1(g)
and the remaining two diagrams in Figs. 1(h) and 1(i).

1. Diagram (g) in Fig. 1

The correction induced by the diagram in Fig. 1(g) can be
regarded as the second-order perturbation contribution in-
duced by the one-loop VP potential Uyyp,

2 <a| UVP|”><”|UVP|a> '

AE\/P\/P,g = (29)

n#a €~ &y

The numerical evaluation of this correction is relatively
simple. It was carried out by employing the general scheme
developed for the VP potential and described in Sec. II B.
The summation over the Dirac spectrum was performed by
the dual-kinetic-balance basis set method [53].

The numerical values of the energy shifts induced by the
diagram in Fig. 1(g) are presented in Table II for the n=1
and n=2 states of H-like ions. The results are expressed in
terms of the function F(Za) defined by Eq. (21). Good agree-
ment is found with the previous evaluations of this correc-
tions [20,22]. Our calculation accounts for the extended
nuclear charge distribution (with the Fermi model employed
for the Uehling potential and the wave functions and the
spherical shell model, for the Wichmann-Kroll potential).
The uncertainties listed in the table include the numerical
error as well as the estimated errors due to the models of the
nuclear charge distribution and due to the uncertainties of the
values of the rms radii. The estimation of errors was done
similarly to that for the SEVP correction.

The higher-order part of the correction can be identified
by taking into account its Za expansion of the form

AEypyp = m( %)2@”;‘3[)5{6450 +(Za)In[(Za) ?ag,
+(Za)G(Za)}, (30)
where [14,49,54]
23w
aso=—m51,0s (31
ag =— Efsz,o, (32)

and G(Za) is the higher-order remainder, G(0a)=aq,. The
remainder G(Za) inferred from our numerical results is plot-
ted in Fig. 3. The results for hydrogen are G, (a)=-0.115,
Goy(@)=-0.059, |G, ()] <107, and |G, ()| <107,
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TABLE II. Energy shifts induced by the VPVP diagram in Fig.
1(g), in units of F(Za). The uncertainties specified include the es-
timated errors due to the nuclear charge distribution models and due
to the rms radii.

z Ls 2s 2p1p 2p3p

1 —0.000490 —0.000487

2 -0.001018 —-0.001006

3 -0.001578 -0.001552

5 -0.002784 -0.002716

7 -0.004092 -0.003967 —0.000001

10 -0.006231 —-0.005995 —0.000002

15 —-0.010260(1) —0.009803(1) —0.000009

20 —-0.014896(1) -0.014216(1) —0.000026 —0.000001
25 —-0.020225(2) -0.019375(2) —0.000060 —0.000002
30 —-0.026376(3) —0.025480(3) —0.000124 —0.000003
35 —-0.033524(5) —-0.032796(5) —0.000235 —0.000005
40 —0.041928(8) —0.041708(8) —0.000421 —0.000007
45 —-0.05185(1) —-0.05265(1) -0.000727 —0.000010
50 —-0.06374(2) -0.06631(2) —-0.001218(1) —0.000015
55 —-0.07810(3) —-0.08356(3) —-0.001998(1) —0.000021
60 —-0.09568(5) —-0.10566(6) —-0.003233(2) —0.000029
65 -0.1173(2) —-0.1342(3) -0.00518(1) —0.000039
70 —-0.1441(1) -0.1713(1) -0.008238(7) -0.000051
75 —-0.1785(2) —-0.2212(2) -0.01313(1) —0.000067
80 -0.2221(3) —-0.2880(4) —-0.02094(3) —0.000085
83 —-0.2542(4) —-0.3393(5) -0.02778(4) —0.000099
90 —-0.3522(9) —-0.505(1) -0.0543(1) -0.000136
92 —-0.3865(9) —-0.566(1) -0.0658(1) -0.000149
100 —0.583(3) ~0.935(4)  -0.1482(6)  —-0.000209

2. Diagrams (h) and (i) in Fig. 1

We now consider the energy shift induced by the dia-
grams in Figs. 1(h) and 1(i). Its leading (in Za) part can be
obtained within the free-loop approximation, i.e., keeping the

e i 57 S S e
] a.
-0.54
;_\16\ ]
~ i
S o .
] 2Py, °
2p3/2 N
-1.54 \\
i .
T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Nuclear charge number Z

FIG. 3. Higher-order remainder G(Za) induced by the diagram
in Fig. 1(g).
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first nonvanishing term in the expansion of the fermion loop
in terms of the binding potential. The corresponding expres-
sion was derived long ago in the classical paper by Killén
and Sabry [55]. Later, it was rederived by a number of other
techniques [56-58]. According to the Furry theorem, correc-
tions to the Killén-Sabry (KS) potential are suppressed by a
factor of (Za)?, so that this potential is supposed to yield a
dominant contribution even in the medium-Z region. In the
present investigation, diagrams in Figs. 1(h) and 1(i) will be
approached within the free-loop approximation only. In order
to stress this fact, we will use the label “KS” in the formulas
below.

In the free-loop approximation, the correction induced by
the diagrams in Figs. 1(h) and 1(i) is given by the expecta-
tion value of the Killén-Sabry potential,

AE%SJVP,M = (a|Visla). (33)

For a spherically symmetric nuclear charge distribution, the
Kaillén-Sabry potential can be conveniently written in the

form [59]
A
Vis(r) =— Ef dr'r' p(r")[Lo(2m|r - r'|)
rJo
—Ly2m|r+ '], (34)
where
° 2\
Lolx) = =542 "ot "o ) V!
4 2 5 2
(9— ? _5_91‘ )ln(t+ \,’t —1)
( 12— )w -1 1In[8#(>-1)]
x 3y° — I —
( ) (y—(i )1n(y +Vy —1)
- —ln[8y(y —1)])} (35)
\y

and the nuclear charge density is normalized by [drp(r)=1.

The results of our numerical evaluation of the energy shift
due to the Killén-Sabry potential are listed in Table III. The
numerical values presented agree well with the results of the
previous studies [18,19]. Our calculation was carried out
with employing the Fermi model for the nuclear charge dis-
tribution. The values for the rms radii and their uncertainties
are listed in Table I. The uncertainties specified in Table III
for our numerical results include the numerical error as well
as the errors due to the nuclear-charge distribution model and
due to uncertainties of the rms radii. The error due to the
nuclear model was estimated by taking the difference of the
results obtained with the Fermi and the uniform model.

The Za expansion of the Kéllén-Sabry contribution reads
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TABLE III. Energy shifts due to the Killén-Sabry potential, in
units of F(Za). The uncertainties specified include the estimated
errors due to the nuclear charge distribution models and due to the
rms radii.

z Ls 2s 2p1p 2p3p

1 —1.002032 —1.002067 —0.000014 —0.000004
2 -0.992369 -0.992509 —0.000056 —0.000015
3 -0.983258 -0.983568 -0.000125 —-0.000034
5 -0.966493 -0.967341 -0.000344 —0.000093
7 -0.951435 -0.953071 —0.000670 -0.000179
10 -0.931629 -0.934898 —0.001360 —0.000354
15 -0.904993(1) -0.912148 —0.003055 —0.000757
20 —0.885141(1) -0.897624(1) -0.005471 -0.001287
25 —0.871198(1) —0.890494(1) —0.008683 -0.001927
30 —-0.862607(2) -0.890315(2) -0.012801 —0.002669
35 —0.859040(3) —0.896935(3) -0.017978 —0.003504
40 —0.860403(4) —-0.910519(5) -0.024416 —0.004426
45 —0.866633(6) —0.931345(7) -0.032384 —0.005431
50 —0.877972(8) —-0.960119(9) —0.042236 -0.006517
55 —0.89473(1) -0.99776(1) —0.054441 -0.007684
60 -0.91747(2) -1.04561(2) -0.069624(1) —0.008931
65 —-0.9468(3) —1.1053(4) -0.08862(1) -0.010259
70 —-0.98346(4) —1.17895(4) -0.112569(2) -0.011673
75 -1.02957(7) —-1.27069(9) -0.143102(5) -0.013175
80 —-1.08601(7) —-1.38369(9) —-0.182409(7) -0.014770
83 —-1.12595(8) —1.4642(1) -0.21150(1) -0.015775
90 —1.2402(5) —1.6988(8) -0.30171(8) -0.018267
92 —1.2784(2) -1.7791(2) —-0.33488(3) -0.019020
100 —1.476(1) ~2.201(2) ~0.52023)  —0.022227

(Za)*

KS
AEVPVP,hi = ( ;)

+ (Za)"In[(Za) Hag, + (Za)*G(Za)}, (36)

e —{aw + (Za)as,

where the function G(Z«) is the higher-order remainder. The
results for the first terms of the Za expansion are
[14,49,54,60,63]

82
as= "3 — > (37)
(—45 S 2) P (38)

07130690 63" 63 )T
ag =20, (39)

The higher-order remainder G(Za) inferred from the Kéllén-
Sabry contribution is plotted as a function of the nuclear
charge number Z in Fig. 4. For hydrogen, the results for the
Killén-Sabry remainder term are G (a)=-2.642, G,(«a)
=-3.303, G2P1/z(a)=_o‘263’ and G2p3/2(a)=—0.073.

062510-7



YEROKHIN, INDELICATO, AND SHABAEV

0.0 B T e S S S S S 2 S &
ML A A A A A A A
AoAaal A

-0.5 e

G(Ze)

Nuclear charge number Z

FIG. 4. Higher-order remainder G(Za) induced by the Kéllén-
Sabry contribution.

Our numerical results for the higher-order remainder for
the total VPVP correction exhibit good agreement with the
analytical values obtained in Ref. [52] for the normalized
difference of the 2s and 1s states and for the fine-structure
difference. Indeed, for the VPVP remainder, our calculation
yields G,(a)—G,(a)=-0.605 and G2p3/2(a)—G2pl/z(a)
=0.190, to be compared with the analytical results of
aen(25) —ag(1s)=-0.611365 and  ag(2p3/2) —aeo(2p1)2)
=0.189 815, correspondingly.

A complete evaluation of the VPVP correction beyond the
free-loop approximation is a difficult problem [especially, for
the diagram in Fig. 1(i)] and has not been carried out up to
now. For the diagram in Fig. 1(h), the calculation is easier
and can be performed by a generalization of methods devel-
oped for the one-loop VP correction. For uranium and lead,
such a calculation was reported in Ref. [23]. The numerical
values obtained for this diagram for the contribution beyond
the free-loop approximation turned out to be rather small; it
is expected that the corresponding contribution from the dia-
gram in Fig. 1(i) is much larger. In the absence of a direct
calculation, we estimate the theoretical uncertainty of the
VPVP correction due to the omitted part beyond the free-
loop approximation by multiplying the absolute value of the
Killén-Sabry contribution by a factor of (Za)?.

C. Vacuum-polarization insertion into the self-energy photon
line

In this section, we address the correction induced by the
SE diagram with the VP insertion into the photon line, de-
picted by Fig. 1(k). The corresponding shift of the energy
will be referred to as the S(VP)E correction. The leading (in
Za) part of this correction can be again obtained within the
free-loop approximation. Unlike the VPVP contribution,
however, corrections to the free-loop approximation in this
case are suppressed only by the first power of Za. The lead-
ing term beyond this approximation is known from perturba-
tive calculations [49,64]. An all-order calculation of the
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S(VP)E correction beyond the free-loop approximation is a
difficult problem and has not been performed so far. In the
present investigation, we will approach the S(VP)E correc-
tion within the free-loop approximation only.

The evaluation of the S(VP)E correction within the free-
loop approximation can be performed by a generalization of
the method for the one-loop SE correction described in Sec.
IT A. The S(VP)E correction is represented by a sum of the
zero-, one-, and many-potential terms,

0 i 2
AEgypgq = AE(S\ZPE,a + AE(S\)/PE,a + AE(S\;rlgE,aa (40)

[Pt}

where the subscript “a” indicates the free-loop approxima-
tion. Formulas for the three terms above can be obtained
from the corresponding expressions in Sec. I A by replacing
the standard photon propagator by the “dressed” one, ob-
tained by inserting the renormalized one-loop VP tensor into
the photon line. In D=4-2¢ dimensions, the replacement is
given by [21,65]

1 aC, . " 2(1-2%43)
S—— ———m*| dz .
k* +i0 4 o [m*=k*(1-2%)/4-i0]"*

(41)

where C.=(4m)T(1+ €) u’¢/m*e.
The zero-potential term is represented by

AESO\)/PEa f (2 )3 lpa(p)EVPR a’p) lﬁa(l’)’ (42)

where the free dressed SE operator E is obtained from Eq
(9) by the substitution (41), and its renormahzed part EVPR
is the finite part of the difference E —5m when € ap-
proaches zero. Applying the standard technique for the
evaluation of momentum 1ntegrals (see, e.g., Appendixes of
Ref. [28]), the difference 3\))—&m is conveniently repre-

sented as
(aC)2( 2,13 5% 8712)(]5
41 3& T 9e 54

2 1 2 2
1-27/3
+(1) 8f A Ut L)
47 0 -z

x(1-22)Y +4(1 -x)
(1= +4(1-x)"
(43)

SO(p) -

X[(1 =x)p—2m]In

where Y=x(1-p)+p and p=(m*-p?)/m>.
The one-potential term is given by

dp, dp,
@) 2w

XVel@) ,(p2), (44)

where ', is the finite (when €—0) part of the time com-
ponent of the dressed vertex operator 'y, which is obtained
from the one-loop vertex operator I'*, Eq. (11), by the sub-
stitution (41). Evaluating the momentum integrations, we ob-
tain the following representation for the operator I'{p:

AE(Sl\aPE,a = l;ba(pl)r(\)/P,R(sa’pl ;Sa’pZ)
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re o )_(ace>27a<i 13 ﬂgﬂ
VRPLPY = T 3& 9¢ 54 9

=) | axdya{1-%
i) [ e (1-5

( 4N*(xb)
x(1=22)D +4m*(1 - x)

8y  x(1-2z*)Dim*+4(1 -x)
o2 20 - +4(1-x)

), (45)

where D=xb*+m>—yp>—(1-y)p3, b=yp;+(1-y)p,, and
N¥k)=y,(b,—k+m)y*(Pp,—k+m)y”. Using the Ward iden-
tity, it is easy to check that the divergent parts of Egs. (45)
and (43) (i.e., terms ~€ ' and €2) cancel each other in the
total expression for the energy shift. This is the justification
of our definition of the renormalized parts of the operators
2&91)) and I'yp, which consists just in dropping out the diver-
gent part of Egs. (43) and (45).

The numerical evaluation of the zero- and one-potential
terms is similar to that for the one-loop SE correction but is
more time consuming, due to the presence of additional in-
tegrations over Feynman parameters. In order to achieve
high numerical accuracy for the one-potential term in the
low-Z region, we had to identify the contribution of Eq. (45)
at p;=p, and evaluate it separately. The subtraction of this
contribution in Eq. (44) makes the integrand to be a smooth
function at ¢g=0, which simplifies numerical integrations
considerably.

The many-potential term is given by

AEG ) = 2ia f de f dx dx, D w,x 1) Y (x e,

X G(2+)(8a - w’xl»x2) av(//a(xZ) . (46)

This formula differs from the expression for the many-
potential part of the one-loop SE correction only by the
dressed photon propagator D4, which reads

o0

a 20 +1
DG;(wstZ) = ; dt\"tz -1 3[4 D’U'V(a),xlz;th) .
1

(47)

D*"(w,x;\) is the propagator of the photon with a mass A,
whose expression in the Feynman gauge is

exp(ivw? = A2 +i0 x,,)

D*"(w,x2;\) = g (48)

41X,
It is easy to see that the numerical calculation of the many-
potential term falls naturally into two steps: (i) the evaluation
of the many-potential part of the one-loop SE correction with
an effective photon mass A=2mr and (ii) the numerical inte-
gration over 7 as given by Eq. (47). There is even a certain
simplification as compared to the one-loop case. It is a com-
mon approach to deform the contour of the w integration in
Eq. (46), separating it into the low-energy and the high-
energy part (see, e.g., Ref. [33] for details). In the case of the
S(VP)E correction, the contribution induced by the low-

PHYSICAL REVIEW A 77, 062510 (2008)

TABLE IV. Energy shifts due the S(VP)E correction evaluated
within the free-loop approximation and for the point nucleus, in

units of F(Za).

Z 1s 2s 2P 2p3)n

1 0.140459(4)  0.140465(3) —0.005228(2) 0.002615(2)
2 0.139002(4)  0.139026(2) —0.005226(1) 0.002615(1)
3 0.137650(4)  0.137705(2) —0.005223(1) 0.002615(1)
5 0.135219(4)  0.135370(2) —0.005212(1) 0.002614(1)
7 0.133099(3)  0.133390(4) —0.005196(3) 0.002612(3)
10 0.13042(1)  0.13100(1)  —0.00516 0.00260

15 0.12708(1) ~ 0.12835(1)  —0.00507 0.00259

20 0.12493(1)  0.12715(1)  —0.00492 0.00258

25 0.12381 0.12727 —-0.00471 0.00255

30 0.12366 0.12866 —-0.00442 0.00252

35 0.12444 0.13134 —-0.00403 0.00249

40 0.12615 0.13536(1)  —0.00350 0.00246

45 0.12882 0.14085(1)  —0.00280 0.00242

50 0.13254 0.14801(1)  —0.00187 0.00237

55 0.13742 0.15711(1) —-0.00064 0.00232

60 0.14362 0.16851(1) 0.00098 0.00226

65 0.15137 0.18271(1) 0.00314 0.00220

70 0.16099(1)  0.20042(1) 0.00603 0.00213

75 0.17291(1)  0.22260(1) 0.00994 0.00205

80 0.18773(1)  0.25059(2) 0.01528 0.00197

83 0.19835(1)  0.27097(2) 0.01943 0.00191

90 0.22987(2)  0.33285(3) 0.03322 0.00177

92 0.24110(2) 0.35535(3) 0.03863 0.00172
100 0.30064(3)  0.47842(6) 0.07124(1) 0.00152

energy part of the contour vanishes identically, which is due
to the condition on the effective photon mass A =2m.

The results of our numerical evaluation of the S(VP)E
correction for the n=1 and n=2 states of H-like ions are
presented in Table IV. Our numerical results are in good
agreement with the data obtained previously for the 1s state
[20,21] and with the 2s and 2p,,, values for Z=92 from Ref.
[20]. Our calculation was performed within the free-loop ap-
proximation and for the point nuclear model. The uncertainty
specified in the table is the numerical error only. We estimate
the theoretical uncertainty due to uncalculated terms beyond
the free-loop approximation by multiplying the absolute
value of the correction by a factor of 3(Za). This factor
arises as a ratio of the leading-order contribution beyond
the free-loop approximation for the 1s state,
-0.386m(a/ m)*(Za)® [49], and the leading-order contribu-
tion within this approximation, 0.142m(a/m)*(Za)* [60].

The inclusion of the finite nuclear size (FNS) effect is not
necessary at present for the S(VP)E correction, since it is
expected to yield a much smaller contribution than the error
due to the free-loop approximation. The relative contribution
of the FNS effect on the S(VP)E correction can be estimated
by taking the relative values of this effect for the one-loop
SE correction. To the leading orders in Za and In R, the
relative value of the FNS-SE effect for the ns states is
[61,62]
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FIG. 5. Higher-order remainder G(Za) for the S(VP)E correc-
tion within the free-loop approximation.

- (§ 41 2) (Za)z(g f)l b
5FNS__a Zo 4— n + - 4_6 n( /R) N

(49)

where b=exp[1/(2y)-y-5/6], y=\1-(Za)*, y=0.557 is
the Euler constant, and R is the nuclear radius. Analogous
formulas for the np;, and np;, states can be found in Ref.
[62]. Numerical values of Spyg are within 3% for the whole
region of the nuclear charge numbers.

The Za expansion of the S(VP)E correction within the
free-loop approximation reads

207 N4
AEgypg = m( %) %{040 +(Za)as,
+ (Za)’In[(Za) *ag; + (Za)*G(Za)}, (50)

where the function G(Za) is the higher-order remainder. The
results for the first terms of the Za expansion are
[14,49,60,63,64]

_( l+ﬁ>5+(£ f)
@0=\"g1 216/ \ 36 3
JG+1)=1(I+1)-3/4

1-8,), 51
I(1+1)(21+ 1) (1= ) 1)
aso=—0.229 0538, (52)
a
ag = ?51@ (53)

The higher-order remainder G(Za) inferred from our numeri-
cal results is plotted in Fig. 5. For hydrogen, our results are
G ,(@)=0.93(6), G,(a)=1.04(5), G2ﬂ1/2(a):0'02(4)’ and
G2p3/2(a)=0.01(3). These values are consistent with the
Za-expansion results for the normalized difference of the 2s
and 1s states and for the fine-structure difference [52],
aep(25) —ag(15)=0.109 999 and  ag(2p3;2) —ago(2p112)
=-0.013 435.
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For completeness, we specify also the result for the lead-
ing term of the Za expansion known for the S(VP)E correc-
tion beyond the free-loop approximation [49,64],

Z(Za)s

l’l3

AEgyps, = m<3> [-0386 155,].  (54)
au

IV. CONCLUSION

In the present investigation, we performed calculations of
the part of the two-loop Lamb shift induced by the diagrams
in Figs. 1(d)-1(k). Numerical results were obtained for the
n=1 and n=2 states and for the whole region of the nuclear
charge numbers Z=1-100. The diagrams in Figs. 1(d)-1(g)
were calculated rigorously to all orders in Za, whereas for
the diagrams in Figs. 1(h)-1(k), the fermion loops were ap-
proximated by their leading Za-expansion contribution. An
estimate was given for the higher-order terms thus omitted.
The finite nuclear size effect was accounted for in the evalu-
ations of all diagrams except for the diagram in Fig. 1(k).
The latter diagram was calculated with the point nuclear
model; an estimate of the finite nuclear size effect was sup-
plied.

In the low-Z region, our numerical results were employed
for the identification of the nonperturbative remainder
G(Za), which incorporates all orders in the Za expansion
starting with a?(Za)®. For hydrogen, the net result for the
two-loop diagrams with closed fermion loops is

Gyy(a)=—15.0(4)(2.2), (55)
Goy(a) =—14.0(4)(2.2), (56)
Gop, (@) =~ 0.28(4), (57)
Gy, (@) == 0.05(3), (58)

where the first error quoted is the numerical uncertainty. The
second error (if given) is due to contributions beyond the
free-loop approximation. We estimate them for the ns states
as 1 [in units of G(Za)] for the VPVP correction and as 2 for
the S(VP)E diagram (which arises as a typical coefficient of
0.2 enhanced by the first power of logarithm). It is interest-
ing to note that the dominant part of the remainder term for
the ns states is due to the SEVP correction [Figs. 1(d)-1(f)].

In order to get the complete results for the two-loop Lamb
shift, one should combine the numerical values obtained in
the present work with the contribution due to the two-loop
self-energy [Figs. 1(a)-1(c)]. Its all-order calculation was ac-
complished in our previous investigations, in Refs. [27-30]
for the 1s state and Z= 10 and in Ref. [31] for the n=2 states
and Z=60. Combined together, our calculations yield results
for the total two-loop QED correction, which improve the
total theoretical accuracy of the 1s Lamb shift [27] and that
of the 2pyy3,—2s transition energy in heavy Li-like ions
[31].

Still, the project of the calculation of the two-loop Lamb
shift is far from being finished. There are several reasons for

062510-10



TWO-LOOP QED CORRECTIONS WITH CLOSED FERMION ...

this. First, the results of the all-order calculation of the two-
loop self-energy correction for the 1s state in the low-Z re-
gion [29] do not agree well with the Za-expansion result of
Ref. [16]. Second, the calculation [31] for the n=2 states was
performed in the high-Z region only. Third, a part of the
two-loop diagrams with closed fermion loops is presently
calculated within the free-loop approximation only. Each of
these points represents a difficult problem and all of them
should be solved before the calculation of the Lamb shift to
order a? is completed.
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