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We present an accurate computation of the g factors of the hyperfine states of the hydrogen molecular ion
H2

+. The results are in good agreement with previous experiments, and can be tested further by rf spectroscopy.
Their implication for high-precision two-photon vibrational spectroscopy of H2

+ is also discussed. It is found
that the most intense hyperfine components of two-photon lines benefit from a very small Zeeman splitting.
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I. INTRODUCTION

In �1�, we have studied the spectrum of two-photon rovi-
brational transitions in the hydrogen molecular ion H2

+. The
precise measurement �using a Doppler-free excitation geom-
etry� of the frequency of such transitions in a rf trap consti-
tutes a promising new method for determination of the
electron-to-proton mass ratio me /mp �2,3�. Our estimate of
transition rates with present-day experimental parameters has
shown the feasibility of such an experiment. In order to as-
sess the metrological merits of the method, it is essential to
evaluate the order of magnitude of systematic effects; if one
of them turns out to be a limiting factor, it is desirable to
calculate it precisely in order to subtract its effects from the
experimental data.

Among the systematic effects, the ac Stark shifts due to
the optical fields, blackbody radiation and rf trap potential
are expected to be small, due to the small dynamic polariz-
ability of the H2

+ ion �4�. The second-order Doppler effect
results in a shift and broadening of the line by about 10 kHz
in a typical Paul trap, but can be reduced by sympathetic ion
cooling �5�. The Zeeman shift is one of the most important
effects remaining to be investigated, especially if circular
polarization is used, resulting in the selection rule �MJ
= �2 for two-photon transitions. In the low magnetic field
regime, the hyperfine structure must be taken into account.
The g factors of the hyperfine levels have been calculated
long ago �6� but with an accuracy limited by an imperfect
knowledge of the hyperfine structure. A measurement of
g-factor ratios has been used by Richardson et al. to extract
improved values of the hyperfine Hamiltonian coefficients
�7�. We have recently determined these coefficients ab initio
with an improved relative accuracy of O��2�, corresponding
to the limit of the Breit-Pauli Hamiltonian �8�. The main aim
of the present work is to calculate the g factors with much
better accuracy than obtained so far. This high accuracy is, in
fact, not needed for optical spectroscopy experiments, where
the magnetic field is usually not controlled very precisely, so
that the uncertainty on the Zeeman shift will be limited by
the uncertainty on the magnetic field and its eventual fluc-
tuations. However, we think it is worthwhile to present these

precise values, because they can be tested in rf spectroscopy
experiments of the same type as described in �7�, which
would provide a good test of hyperfine structure calculations.

II. ZEEMAN HAMILTONIAN

Neglecting relativistic and radiative corrections, the linear
part of the Hamiltonian describing interaction of a H2

+ ion
with a magnetic field is given by

HZ = ge�B Se · B − gp�p I · B + �B Le · B

− �p�L1 + L2� · B , �1�

where ge and gp are, respectively, the electron and proton g
factors, �B=e /2me is the Bohr magneton, and Le ,L1 ,L2 are
the orbital momenta of the electron and both protons in the
center-of-mass frame. Se and I are the electron and nuclear
spins �see Ref. �1��. The magnetic field is assumed to be
oriented along Oz. In the ground electronic state 1s�g, the
main contribution to the g factor comes from the first term,
i.e., the electron magnetic moment, while the other terms are
about a factor of 1000 smaller. For the third term this can be
understood by noting that the rotation velocities of the elec-
tron and protons are of the same order; hence the terms in Le
and L1+L2 are of the same order.

In low magnetic fields, the hyperfine structure must be
taken into account, and the Zeeman Hamiltonian can be writ-
ten using the Landé factor �or g factor� of the hyperfine level
under consideration,

H̃Z = gJ�BJ · B , �2�

where J is the total angular momentum; note that the scalar
gJ becomes a tensor if relativistic and radiative corrections
are taken into account, in contradistinction with the atomic
case, due to the lack of central symmetry of the potential �9�.

Let us briefly recall the structure of hyperfine levels �for
more details, see �1��. For even values of L, the total nuclear
spin I is zero, and the total angular momentum is J=L+Se.
Each rovibrational level �v ,L� is split into two hyperfine lev-
els �v ,L ,J� with J=L�1 /2. For odd values of L, I is equal
to 1 and the coupling scheme is as follows: The total spin
F=Se+I �F=1 /2 or 3/2� which is not an exact quantum
number, and the total angular momentum J=L+F. J can
take the values L�3 /2, L�1 /2. If J=L�3 /2, the hyperfine*karr@spectro.jussieu.fr
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state is a pure F=3 /2 state �v ,L ,Se=1 /2, I=1,F=3 /2,J
=L�3 /2,MJ�. If J=L�1 /2, the hyperfine state is a linear
combination of F=1 /2 and F=3 /2 states,

�v,L,Se,I,F̃,J = L � 1/2,MJ�

� C1
��v,L,1/2,1,1/2,L � 1/2,MJ�

+ C3
��v,L,1/2,1,3/2,L � 1/2,MJ� . �3�

In the following, we evaluate the contribution of each term in
Eq. �1� to the g factor of the pure states �v ,L ,Se , I ,F ,J ,MJ�,
noted as gJ�v ,L ,F ,J� �if L is even, these notations are re-
placed by �v ,L ,Se ,J� and gJ�v ,L ,J�, respectively�. The ef-
fect of state mixing will be addressed in Sec. VII. The g
factor is divided into three contributions,

gJ�v,L,F,J� = g1�L,F,J� + g2�L,F,J� + g3�v,L,F,J� , �4�

where g1 is the contribution from the first term in Eq. �1�, g2
is the contribution from the second term, and g3 the contri-
bution from the last two terms. Note that the first two quan-
tities do not depend on the vibrational quantum number v,
because the Hamiltonian only involves spin operators. In
contradistinction, the last term contains orbital momentum
operators acting on the orbital wave function, which intro-
duces a slight dependence on v.

The standard angular algebra procedures used below can
be found in the literature, e.g., �10�.

III. CONTRIBUTION OF THE ELECTRON SPIN

Here, we evaluate the contribution to the g factor coming
from the first term in Eq. �1�. The Zeeman shift of a given
hyperfine level �v ,L ,Se , I ,F ,J ,MJ� due to this term is given
by

�E1 = ge�BB�v,L,Se,I,F,J,MJ�Se
z�v,L,Se,I,F,J,MJ� . �5�

From now on the dependence in v will not be noted, since Se
z

does not act on the orbital wave function. Application of the
Wigner-Eckart theorem to the vector operator Se yields

�L,Se,I,F,J,MJ�Se
z�L,Se,I,F,J,MJ�

=
1

	2J + 1
�L,Se,I,F,J��Se��L,Se,I,F,J��J1MJ0��JMJ�

=
MJ

	J�J + 1��2J + 1�
�L,Se,I,F,J��Se��L,Se,I,F,J� . �6�

The contribution to the g factor of the hyperfine level under
study is then

g1�L,F,J� = ge

�L,Se,I,F,J��Se��L,Se,I,F,J�
	J�J + 1��2J + 1�

. �7�

We now consider separately the cases of even and odd L.

A. Even values of L

In this case the intermediate angular momentum F is ir-
relevant since I=0, and one directly has J=L+Se. The re-
duced matrix element appearing in �7� is then obtained as

�LSeJ��Se��LSeJ� = �Se��Se��Se��− 1�J+L+Se+1�2J + 1�

�
Se 1 Se

J L J
� , �8�

where �Se��Se��Se�=	Se�Se+1��2Se+1�=	3 /2. One obtains
g1�L ,J� for the two possible values of J,

g1�L,L + 1/2� =
ge

2L + 1
,

g1�L,L − 1/2� = −
ge

2L + 1
. �9�

B. Odd values of L

In this case the total spin of nuclei is one: I=1. The re-
duced matrix element appearing in �7� is obtained in two
steps,

�Se,I,F��Se��Se,I,F� = �Se��Se��Se��− 1�F+Se+I+1�2F + 1�

�
Se 1 Se

F I F
� , �10�

�L,Se,I,F,J��Se��L,Se,I,F,J�

= �Se,I,F��Se��Se,I,F��− 1�J+L+F+1�2J + 1�
F 1 F

J L J
�

=	3

2
�− 1�J+L+1/2�2F + 1��2J + 1�

�
Se 1 Se

F I F
�
F 1 F

J L J
� . �11�

From this we obtain the factors g1�L ,F ,J� for all hyperfine
levels,

g1�L,1/2,L + 1/2� = −
ge

3

1

2L + 1
,

g1�L,1/2,L − 1/2� =
ge

3

1

2L + 1
,

g1�L,3/2,L + 3/2� = ge
1

2L + 3
,

g1�L,3/2,L + 1/2� =
ge

3

2L + 9

�2L + 1��2L + 3�
,

g1�L,3/2,L − 1/2� = −
ge

3

2L − 7

�2L − 1��2L + 1�
,

g1�L,3/2,L − 3/2� = − ge
1

2L − 1
. �12�
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IV. CONTRIBUTION OF THE NUCLEAR SPIN

In the same way, we evaluate the contribution from the
second term in Eq. �1�, which is nonzero only for odd values
of L. Similarly to Eq. �7�, the g factor associated with this
term is

g2�L,F,J� = − gp
me

mp

�L,Se,I,F,J��I��L,Se,I,F,J�
	J�J + 1��2J + 1�

. �13�

The reduced matrix element appearing in the above equation
is obtained similarly to Eq. �11�,

�L,Se,I,F,J��I��L,Se,I,F,J� = 	6�− 1�J+L+1/2�2F + 1��2J + 1�

�
 I 1 I

F Se F
�
F 1 F

J L J
� .

�14�

From this we deduce the factors g2�L ,F ,J� for all hyperfine
levels,

g2�L,1/2,L + 1/2� = − gp
me

mp

4

3

1

2L + 1
,

g2�L,1/2,L − 1/2� = gp
me

mp

4

3

1

2L + 1
,

g2�L,3/2,L + 3/2� = − gp
me

mp

2

2L + 3
,

g2�L,3/2,L + 1/2� = − gp
me

mp

2

3

2L + 9

�2L + 1��2L + 3�
,

g2�L,3/2,L − 1/2� = gp
me

mp

2

3

2L − 7

�2L − 1��2L + 1�
,

g2�L,3/2,L − 3/2� = gp
me

mp

2

2L − 1
. �15�

V. CONTRIBUTION OF THE ORBITAL MOMENTA

The contribution to the g factor coming from the third and
fourth terms in Eq. �1� is

g3�v,L,F,J� =
�v,L,Se,I,F,J��Le��v,L,Se,I,F,J�

	J�J + 1��2J + 1�

− 2
me

mp

�v,L,Se,I,F,J��L1��v,L,Se,I,F,J�
	J�J + 1��2J + 1�

,

�16�

where we have used that �L1�= �L2� due to the symmetry of
H2

+ with respect to the exchange of nuclei. The reduced
matrix elements appearing in the above expression are ex-
pressed as a function of reduced matrix elements involving
only the orbital wave function,

�v,L,Se,I,F,J��Li��v,L,Se,I,F,J�

= �− 1�J+L+F+1�2J + 1�
L 1 L

J F J
��v,L��Li��v,L� .

�17�

This expression is valid both for even and odd values of L �in
the first case F=Se=1 /2�. We finally obtain the factors
g3�v ,L ,F ,J� for all hyperfine levels, expressed as a function
of the orbital reduced matrix elements. For F=1 /2 levels
�both with even and odd L� we have

g3�v,L,1/2,L + 1/2� =
2	L

	L + 1�2L + 1�
��Ltot�� ,

g3�v,L,1/2,L − 1/2� =
2	L + 1

	L�2L + 1�
��Ltot�� , �18�

and for F=3 /2 levels �appearing only if L is odd� we have

g3�v,L,3/2,L + 3/2� =
2	L

	L + 1�2L + 3�
��Ltot�� ,

g3�v,L,3/2,L + 1/2� =
2�2L2 + 3L − 3�

	L�L + 1��2L + 1��2L + 3�
��Ltot�� ,

g3�v,L,3/2,L − 1/2� =
2�2L2 + L − 4�

	L�L + 1��2L − 1��2L + 1�
��Ltot�� ,

g3�v,L,3/2,L − 3/2� =
2	L + 1

	L�2L − 1�
��Ltot�� , �19�

where

��Ltot�� =
�v,L��Le��v,L�

	2L + 1
− 2

me

mp

�v,L��L1��v,L�
	2L + 1

. �20�

The orbital matrix elements �v ,L��Le��v ,L� and
�v ,L��L1��v ,L� have been calculated using the variational ap-
proach presented in �1�, for 0�v ,L�4. We used basis
lengths N=2000–3000, allowing a determination of the or-
bital momentum contribution g3 with 10−4 relative accuracy.
The results are shown in Table I.

VI. ROTATIONAL g FACTORS IN THE STRONG-FIELD
REGIME

These results allow a precise calculation of the rotational
g factor, which can be measured independently in a strong
magnetic field. In this regime, the different angular momen-
tum and spin vectors are decoupled, and the Zeeman Hamil-
tonian is usually written in the form

HZ = ge�BSe · B − gp�pI · B − grot�pL · B . �21�

Comparing this expression with Eq. �1�, one easily obtains
the expression of the rotational g factor for a rovibrational
level �v ,L�,
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grot�v,L� =
1

	L�L + 1��2L + 1�

2�v,L��L1��v,L�

−
mp

me
�v,L��Le��v,L�� = −

mp

me

��Ltot��
	L�L + 1�

.

�22�

The values of rotational g factors are given in the last column
of Table I. They are improved with respect to the previous
calculation performed within the adiabatic approximation by
Rebane and Zotev �13�. Note that the slight dependence of
grot on L is neglected in the approach followed in that paper.

Loch et al. �11� measured the rotational g factor of H2
+,

averaged over the vibrational levels v=4–6 and the rota-
tional levels L=1–3, to grot=0.920�40�. Extending our cal-
culations to the v=5–6 levels, and assuming the vibrational
state populations reported in �11�, we find grot=0.8688, dif-
fering from the experimental value by 1.28�.

VII. EFFECT OF THE STATE MIXING

We now must take into account the fact that for odd L,
some of the hyperfine eigenstates are not pure states with a
well-defined value of F, but linear combinations of F=1 /2
and F=3 /2 states �see Eq. �3��. The various contributions to
the g factor �denoted g̃J from now on� are changed in the
following way:

g̃J�v,L,F̃,J� = g̃1�v,L,F̃,J� + g̃2�v,L,F̃,J� + g̃3�v,L,F̃,J� ,

�23�

with

g̃1�v,L,F̃,L � 1/2�

= �C1
��2g1�L,1/2,L � 1/2� + �C3

��2

�g1�L,3/2,L � 1/2� + 2C1
�C3

�ge

�
�L,Se,I,1/2,L � 1/2��Se��L,Se,I,3/2,L � 1/2�

	J�J + 1��2J + 1�
,

g̃2�v,L,F̃,L � 1/2�

= �C1
��2g2�L,1/2,L � 1/2� + �C3

��2

�g2�L,3/2,L � 1/2� − 2C1
�C3

�gp
me

mp

�
�L,Se,I,1/2,L � 1/2��I��L,Se,I,3/2,L � 1/2�

	J�J + 1��2J + 1�
,

g̃3�v,L,F̃,L � 1/2� = �C1
��2g3�v,L,1/2,L � 1/2�

+ �C3
��2g3�v,L,3/2,L � 1/2� .

�24�

The contribution g3 does not contain any crossed terms, be-

TABLE I. Reduced matrix elements of Le and L1 �divided by 	2L+1� for all rovibrational levels �v ,L�
of H2

+ with 0�v ,L�4. The deduced value of ��Ltot�� �defined in Eq. �20�� is indicated in the third column.
The last column contains the values of the rotational g factors deduced from Eq. �22�.

L v �v ,L��Le��v ,L� / 	2L+1 �v ,L��L1��v ,L� / 	2L+1 ��Ltot�� grot

0 0 0 0

0 0.615�10−4 0.70708 −0.7087�10−3 0.9201

1 0.686�10−4 0.70707 −0.7015�10−3 0.9108

1 2 0.763�10−4 0.70707 −0.6938�10−3 0.9008

3 0.847�10−4 0.70706 −0.6855�10−3 0.8900

4 0.937�10−4 0.70706 −0.6764�10−3 0.8782

0 1.069�10−4 1.22469 −1.2271�10−3 0.9198

1 1.193�10−4 1.22469 −1.2146�10−3 0.9105

2 2 1.328�10−4 1.22468 −1.2012�10−3 0.9004

3 1.473�10−4 1.22467 −1.1867�10−3 0.8896

4 1.630�10−4 1.22466 −1.1710�10−3 0.8778

0 1.521�10−4 1.73197 −1.7344�10−3 0.9193

1 1.698�10−4 1.73197 −1.7167�10−3 0.9100

3 2 1.889�10−4 1.73196 −1.6977�10−3 0.8998

3 2.095�10−4 1.73195 −1.6776�10−3 0.8889

4 2.318�10−4 1.73193 −1.6547�10−3 0.8771

0 1.980�10−4 2.23597 −2.2375�10−3 0.9187

1 2.209�10−4 2.23596 −2.2146�10−3 0.9092

4 2 2.457�10−4 2.23595 −2.1898�10−3 0.8991

3 2.725�10−4 2.23593 −2.1629�10−3 0.8881

4 3.015�10−4 2.23592 −2.1339�10−3 0.8761
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cause the corresponding Hamiltonian acts only on orbital
variables, and cannot couple F=1 /2 states to F=3 /2 states.
The mixing coefficients C1

�, C3
� are given in �12�. It only

remains to calculate the crossed reduced matrix elements ap-
pearing in the above expression. We have

�L,Se,I,F,J��Se��L,Se,I,F�,J� = ��− 1�J+L+2F�+3/2
Se 1 Se

F� I F
�

��Se��Se��Se� ,

�L,Se,I,F,J��I��L,Se,I,F�,J� = ��− 1�J+L+3/2
 I 1 I

F� Se F
�

��I��I��I� , �25�

with

� = 	�2F + 1��2F� + 1��2J + 1�
F 1 F�

J L J
� . �26�

From these expressions one may finally obtain

�L,1/2,1,1/2,L � 1/2��Se��L,1/2,1,3/2,L � 1/2�

=
	8

3

	L�L + 1�
	2L + 1

,

�L,1/2,1,1/2,L � 1/2��I��L,1/2,1,3/2,L � 1/2�

= −
	8

3

	L�L + 1�
	2L + 1

. �27�

VIII. FINAL RESULTS AND DISCUSSION

Our results are summarized in Tables II–IV, where all
contributions are summed up in order to obtain the g factors
for all hyperfine levels. The accuracy of this calculation can
be limited by several factors.

The first one is the variational calculation of the orbital
momentum reduced matrix elements appearing in expression
�16� of g3, the relative accuracy of which is 10−4. This results
in a numerical uncertainty of less than 10−7 on the final
g-factor values.

The second limitation comes from the coefficients of the
hyperfine Hamiltonian, which are known with a relative ac-
curacy as O��2��5�10−5. The mixing coefficients defined
in �3� are affected by this uncertainty, resulting in an uncer-
tainty comprised between 5�10−7 and 5�10−6 for the final

values of g̃�L , F̃ ,J�, depending on the magnitude of the cor-
rections due to state mixing. This uncertainty does not affect
the hyperfine states which are pure states �i.e., all states of
even L, and states of odd L with F=3 /2 and J=L�3 /2�.

TABLE II. g factors of all hyperfine states for the rovibrational levels �v ,L� with L=0,2 ,4 and 0�v
�4. The fourth column is the contribution from the electron spin magnetic moment, the fifth one is the
contribution from orbital momenta, and the last one is the total value of gJ�v ,L ,J�. All digits are converged.
The relative theoretical accuracy on all contributions �and on gJ� is O��2�.

L v J g1�L ,J� /ge g3�v ,L ,J� gJ�v ,L ,J�

0 1/2 +1 0 2.0023193

0 3/2 −1 /5 −6.011�10−4 −0.4010650

5/2 +1 /5 −4.008�10−4 0.4000631

1 3/2 −1 /5 −5.950�10−4 −0.4010589

5/2 +1 /5 −3.967�10−4 0.4000672

2 2 3/2 −1 /5 −5.885�10−4 −0.4010523

5/2 +1 /5 −3.923�10−4 0.4000716

3 3/2 −1 /5 −5.814�10−4 −0.4010452

5/2 +1 /5 −3.876�10−4 0.4000763

4 3/2 −1 /5 −5.737�10−4 −0.4010375

5/2 +1 /5 −3.824�10−4 0.4000814

0 7/2 −1 /9 −5.559�10−4 −0.2230358

9/2 +1 /9 −4.447�10−4 0.2220352

1 7/2 −1 /9 −5.502�10−4 −0.2230301

9/2 +1 /9 −4.402�10−4 0.2220398

4 2 7/2 −1 /9 −5.441�10−4 −0.2230240

9/2 +1 /9 −4.352�10−4 0.2220447

3 7/2 −1 /9 −5.374�10−4 −0.2230173

9/2 +1 /9 −4.299�10−4 0.2220500

4 7/2 −1 /9 −5.302�10−4 −0.2230101

9/2 +1 /9 −4.241�10−4 0.2220558
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Finally, and most importantly, relativistic and radiative
corrections, as considered by Hegstrom in the strong-field
regime in �9�, are not included. This limits the relative accu-
racy to O��2��5�10−5.

To summarize, the accuracy of our results is O��2��5
�10−5. Inclusion of the leading-order QED corrections
would improve it to O��3��3�10−7. Such accuracy would
appear to be hard to meet in rf experiments with weak mag-
netic fields. g-factor measurements on H2

+ with an accuracy
in the ppm range were achieved in strong magnetic fields,
using spin-dependent charge-exchange techniques �11�.

We have nevertheless given the g-factor values with seven
digits. Although all digits are not significant, this is helpful
for understanding the order of magnitude of various effects,
such as the variation as a function of v and L, or the impor-
tance of corrections due to state mixing. For example, it can
be seen that state mixing acts on the value of the orbital
contribution g3 at the level of 10−6 at most, so this effect may
be neglected at the present level of accuracy.

To our knowledge, the magnetic moments of the H2
+ hy-

perfine states in a weak magnetic field have been investi-

gated only by Richardson, Jefferts, and Dehmelt in 1968 �7�.
They give a few ratios of g factors between different hyper-
fine states, which we have reported in Table V together with
the result of our calculation. Note that the experimental val-
ues are averaged over the vibrational states v�4. In our
evaluation, we have taken the vibrational states v=5–8 into
account, and assumed that their relative populations �deter-
mined by the creation process by electron impact ionization
of H2 at room temperature� are the same as measured in Ref.
�14�. Good agreement is obtained in all cases.

We now use these results to evaluate the Zeeman shift and
splitting of the two-photon transitions �v=0,L�→ �v�=1,L�
envisaged for high-precision spectroscopy of the H2

+ ion.
For illustration, we choose a magnetic field of the order of
the earth field, B=5�10−5 T. As explained in the introduc-
tion, the accuracy of our calculation is more than sufficient
for this purpose. The leading relativistic corrections which
we have neglected correspond to a shift of order �2�BB
�35 Hz, well below the present goal accuracy of spectros-
copy experiments. The frequency shift �	 of a two-photon

TABLE III. g factors of all hyperfine states for the rovibrational levels �v ,L� with L=1 and 0�v�4. The fourth column is the
contribution from the electron spin magnetic moment, the fifth one is the contribution from the nuclear spin magnetic moment, and the sixth
one is the contribution from orbital momenta. All three terms are calculated without taking state mixing into account. The seventh column
is the sum of these contributions. Columns 8–10 are the corrected values of the three contributions obtained by taking state mixing into
account. The last column is the final value of the g factor. All digits are converged. The relative theoretical accuracy for all contributions is
O��2�.

v F̃ J g1 /ge mp / meg2 / gp g3 gJ�v ,L , F̃ ,J� g̃1 /ge mp / me g̃2 / gp g̃3 g̃J�v ,L , F̃ ,J�

1/2 1/2 +1 /9 +4 /9 −6.682�10−4 +0.2231638 +0.0629313 +0.3932396 −6.667�10−4 +0.1265381

3/2 −1 /9 −4 /9 −3.341�10−4 −0.2241660 −0.1172298 −0.4506607 −3.340�10−4 −0.2364365

0 3/2 1/2 +5 /9 −10 /9 +3.341�10−4 +1.1093536 +0.6037354 −1.0599063 +3.326�10−4 +1.2059793

3/2 +11 /45 −22 /45 −1.336�10−4 +0.4878350 +0.2505632 −0.4826727 −1.337�10−4 +0.5001054

5/2 +1 /5 −2 /5 −2.005�10−4 +0.3990466 +0.3990466

1/2 1/2 +1 /9 +4 /9 −6.614�10−4 +0.2231705 +0.0648181 +0.3953621 −6.600�10−4 +0.1303292

3/2 −1 /9 −4 /9 −3.307�10−4 −0.2241627 −0.1170219 −0.4504461 −3.307�10−4 −0.2360162

1 3/2 1/2 +5 /9 −10 /9 +3.307�10−4 +1.1093503 +0.6018486 −1.0620288 +3.293�10−4 +1.2021916

3/2 +11 /45 −22 /45 −1.323�10−4 +0.4878363 +0.2503552 −0.4828872 −1.323�10−4 +0.4996898

5/2 +1 /5 −2 /5 −1.984�10−4 +0.3990486 +0.3990486

1/2 1/2 +1 /9 +4 /9 −6.541�10−4 +0.2231778 +0.0667416 +0.3975158 −6.529�10−4 +0.1341944

3/2 −1 /9 −4 /9 −3.271�10−4 −0.2241590 −0.1168072 −0.4502248 −3.270�10−4 −0.2355819

2 3/2 1/2 +5 /9 −10 /9 +3.271�10−4 +1.1093466 +0.5999250 −1.0641825 +3.258�10−4 +1.1983300

3/2 +11 /45 −22 /45 −1.308�10−4 +0.4878378 +0.2501405 −0.4831085 −1.309�10−4 +0.4992607

5/2 +1 /5 −2 /5 −1.962�10−4 +0.3990508 +0.3990508

1/2 1/2 +1 /9 +4 /9 −6.463�10−4 +0.2231857 +0.0687069 +0.3997057 −6.451�10−4 +0.1381439

3/2 −1 /9 −4 /9 −3.231�10−4 −0.2241551 −0.1165853 −0.4499964 −3.231�10−4 −0.2351330

3 3/2 1/2 +5 /9 −10 /9 +3.231�10−4 +1.1093427 +0.5979598 −1.0663724 +3.220�10−4 +1.1943845

3/2 +11 /45 −22 /45 −1.293�10−4 +0.4878393 +0.2499186 −0.4833369 −1.293�10−4 +0.4988172

5/2 +1 /5 −2 /5 −1.939�10−4 +0.3990532 +0.3990532

1/2 1/2 +1 /9 +4 /9 −6.377�10−4 +0.2231942 +0.0707213 +0.4019394 −6.367�10−4 +0.1421927

3/2 −1 /9 −4 /9 −3.189�10−4 −0.2241508 −0.1163546 −0.4497592 −3.188�10−4 −0.2346661

4 3/2 1/2 +5 /9 −10 /9 +3.189�10−4 +1.1093384 +0.5959453 −1.0686061 +3.179�10−4 +1.1903399

3/2 +11 /45 −22 /45 −1.275�10−4 +0.4878410 +0.2496879 −0.4835741 −1.276�10−4 +0.4983563

5/2 +1 /5 −2 /5 −1.913�10−4 +0.3990557 +0.3990557
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transition �v ,L , F̃ ,J�→ �v� ,L , F̃� ,J�� in the magnetic field B
is

2h�	 = �MJ�g̃J�v�,L,F̃�,J�� − MJg̃J�v,L,F̃,J���BB .

�28�

If circular polarization is used, the selection rule is MJ�−MJ
=2. MJ can take the possible values −J ,−J+1, . . . ,J−2 so

that the shift of the line center �corresponding to MJ=−1� is

2h�	 = �g̃J�v,L,F̃,J� + g̃J�v�,L,F̃�,J����BB . �29�

In the case of linear polarization, the selection rule is MJ�
−MJ=0, and MJ can take the possible values −J ,−J
+1, . . . ,J. There is no global shift, and the Zeeman splitting
between extreme values of MJ is

TABLE IV. Same as Table III, for the rotational level L=3.

v F̃ J g1 /ge mp / meg2 / gp g3 gJ�v ,L , F̃ ,J� g̃1 /ge mp / meg̃2 / gp g̃3 g̃J�v ,L , F̃ ,J�

1/2 5/2 +1 /21 +4 /21 −5.722�10−4 +0.0953558 +0.0264523 +0.1686545 −5.719�10−4 +0.0529071

7/2 −1 /21 −4 /21 −4.292�10−4 −0.0963571 −0.0566485 −0.1996746 −4.291�10−4 −0.1144649

0 3/2 3/2 −1 /5 +2 /5 −8.011�10−4 −0.4000481 −0.4000481

5/2 +1 /105 −2 /105 −4.864�10−4 +0.0185254 +0.0306905 +0.0027741 −4.867�10−4 +0.0609740

7/2 +5 /63 −10 /63 −3.815�10−4 +0.1580499 +0.0883945 −0.1495318 −3.816�10−4 +0.1761576

9/2 +1 /9 −2 /9 −3.338�10−4 +0.2214701 +0.2214701

1/2 5/2 +1 /21 +4 /21 −5.664�10−4 +0.0953616 +0.0272667 +0.1695181 −5.661�10−4 +0.0545462

7/2 −1 /21 −4 /21 −4.248�10−4 −0.0963528 −0.0563438 −0.1993583 −4.247�10−4 −0.1138494

1 3/2 3/2 −1 /5 +2 /5 −7.929�10−4 −0.4000400 −0.4000403

5/2 +1 /105 −2 /105 −4.814�10−4 +0.0185303 +0.0298762 +0.0019104 −4.817�10−4 +0.0593457

7/2 +5 /63 −10 /63 −3.776�10−4 +0.1580538 +0.0880898 −0.1498480 −3.777�10−4 +0.1755504

9/2 +1 /9 −2 /9 −3.304�10−4 +0.2214735 +0.2214735

1/2 5/2 +1 /21 +4 /21 −5.601�10−4 +0.0953679 +0.0280999 +0.1703997 −5.598�10−4 +0.0562234

7/2 −1 /21 −4 /21 −4.201�10−4 −0.0963480 −0.0560290 −0.1990321 −4.200�10−4 −0.1132134

2 3/2 3/2 −1 /5 +2 /5 −7.841�10−4 −0.4000311 −0.4000313

5/2 +1 /105 −2 /105 −4.761�10−4 +0.0185357 +0.0290430 +0.0010288 −4.763�10−4 +0.0576802

7/2 +5 /63 −10 /63 −3.734�10−4 +0.1580580 +0.0877750 −0.1501742 −3.735�10−4 +0.1749233

9/2 +1 /9 −2 /9 −3.267�10−4 +0.2214772 +0.2214772

1/2 5/2 +1 /21 +4 /21 −5.533�10−4 +0.0953747 +0.0289535 +0.1713009 −5.530�10−4 +0.0579423

7/2 −1 /21 −4 /21 −4.150�10−4 −0.0963429 −0.0557027 −0.1986944 −4.149�10−4 −0.1125539

3 3/2 3/2 −1 /5 +2 /5 −7.746�10−4 −0.4000216 −0.4000217

5/2 +1 /105 −2 /105 −4.703�10−4 +0.0185415 +0.0281893 +0.0001276 −4.705�10−4 +0.0559739

7/2 +5 /63 −10 /63 −3.689�10−4 +0.1580625 +0.0874487 −0.1505119 −3.689�10−4 +0.1742735

9/2 +1 /9 −2 /9 −3.227�10−4 +0.2214812 +0.2214812

1/2 5/2 +1 /21 +4 /21 −5.459�10−4 +0.0953821 +0.0298308 +0.1722248 −5.457�10−4 +0.0597089

7/2 −1 /21 −4 /21 −4.094�10−4 −0.0963374 −0.0553637 −0.1983442 −4.094�10−4 −0.1118686

4 3/2 3/2 −1 /5 +2 /5 −7.643�10−4 −0.4000113 −0.4000115

5/2 +1 /105 −2 /105 −4.640�10−4 +0.0185477 +0.0273121 −0.0007963 −4.642�10−4 +0.0542209

7/2 +5 /63 −10 /63 −3.639�10−4 +0.1580674 +0.0871097 −0.1508622 −3.640�10−4 +0.1735986

9/2 +1 /9 −2 /9 −3.184�10−4 +0.2214855 +0.2214855

TABLE V. g-factor ratios of some hyperfine states of H2
+.

Ratio Calculated Measured �7�

gJ�L=1, F̃=1 /2,J=3 /2� /gJ�L=1,F=3 /2,J=5 /2� 0.5855 0.584�3�

gJ�L=1, F̃=3 /2,J=3 /2� /gJ�L=1,F=3 /2,J=5 /2� 1.2463 1.241�6�

gJ�L=1, F̃=1 /2,J=3 /2� /gJ�L=3,F=3 /2,J=9 /2� 1.0549 1.051�5�
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h�	 = �g̃J�v�,L,F̃�,J�� − g̃J�v,L,F̃,J��J�BB . �30�

We have shown in �1� that the most intense hyperfine com-
ponents are those between pairs of homologous spin states,
�F ,J�→ �F ,J�, and only these components are considered in
the following. In this case, we benefit from an almost com-
plete cancellation �to 1% or better� between the g factors of
the initial and final states, so that the Zeeman splitting is very
small �compared to the global shift observed in circular po-
larization�. Note that such cancellation will also take place
for relativistic corrections, so that the theoretical uncertainty
is also reduced. In estimating the uncertainties, we have as-
sumed cancellation to 1%.

The cases L=1,2 ,3 are compared in Table VI for the
cases of circular and linear excitation polarizations. When
circular polarization is used, the two-photon transition lines

are typically shifted by a few hundreds of kHz. This does not
represent in itself a limitation of experimental accuracy,
since it is possible to take the average of measurements in �+
and �− polarizations. However, it also means that magnetic
field fluctuations of the order of 10 mG result in a line broad-
ening of order 1–10 kHz. If one wishes to improve the res-
olution beyond this limit, active control and stabilization of
the magnetic field is required �15�. Together with larger tran-
sition probabilities as discussed in �1�, this brings a strong
argument in favor of using linear polarizations. Unfortu-
nately, optical isolation of the laser source from feedback by
the enhancement cavity is at present only possible with a
polarizer followed by a quarter-wave plate, which imposes
working with circular polarizations �1�. One solution is to
add a transverse magnetic field, which must be sufficiently
strong to separate the three components �MJ=0, �2. It can
be seen from Table VI that a field in the 10−5−10−4 T range
�depending on the transition� is enough to obtain a separation
of the order of 100 kHz, i.e., clearly resolved components
assuming a linewidth of a few kHz �1�.

Finally, the Zeeman splitting is extremely small �a few
Hz� when the states involved in the two-photon transition are
pure states, while it is of a few kHz in other cases. This
makes such transitions especially attractive from the metro-
logical point of view.

IX. CONCLUSION

We have obtained improved values of g factors of the
hyperfine states of the hydrogen molecular ion, which are in
good agreement with experiment. The achieved accuracy is
O��2��5�10−5. The accuracy on the rotational g factors
has also been improved by use of a variational method al-
lowing to take the full three-body dynamics into account. We
have used these results to evaluate the Zeeman shift and
splitting of several two-photon vibrational transition lines,
and shown that transitions involving pure hyperfine states
�i.e., all states of even L, and states of odd L with F=3 /2 and
J=L�3 /2� benefit from a very small Zeeman splitting.
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