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Vibrational spectroscopy of H,": Precise evaluation of the Zeeman effect
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We present an accurate computation of the g factors of the hyperfine states of the hydrogen molecular ion
H,*. The results are in good agreement with previous experiments, and can be tested further by rf spectroscopy.
Their implication for high-precision two-photon vibrational spectroscopy of H,* is also discussed. It is found
that the most intense hyperfine components of two-photon lines benefit from a very small Zeeman splitting.
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I. INTRODUCTION

In [1], we have studied the spectrum of two-photon rovi-
brational transitions in the hydrogen molecular ion H,". The
precise measurement (using a Doppler-free excitation geom-
etry) of the frequency of such transitions in a rf trap consti-
tutes a promising new method for determination of the
electron-to-proton mass ratio m,/m, [2,3]. Our estimate of
transition rates with present-day experimental parameters has
shown the feasibility of such an experiment. In order to as-
sess the metrological merits of the method, it is essential to
evaluate the order of magnitude of systematic effects; if one
of them turns out to be a limiting factor, it is desirable to
calculate it precisely in order to subtract its effects from the
experimental data.

Among the systematic effects, the ac Stark shifts due to
the optical fields, blackbody radiation and rf trap potential
are expected to be small, due to the small dynamic polariz-
ability of the H," ion [4]. The second-order Doppler effect
results in a shift and broadening of the line by about 10 kHz
in a typical Paul trap, but can be reduced by sympathetic ion
cooling [5]. The Zeeman shift is one of the most important
effects remaining to be investigated, especially if circular
polarization is used, resulting in the selection rule AM,
= *2 for two-photon transitions. In the low magnetic field
regime, the hyperfine structure must be taken into account.
The g factors of the hyperfine levels have been calculated
long ago [6] but with an accuracy limited by an imperfect
knowledge of the hyperfine structure. A measurement of
g-factor ratios has been used by Richardson et al. to extract
improved values of the hyperfine Hamiltonian coefficients
[7]. We have recently determined these coefficients ab initio
with an improved relative accuracy of O(a?), corresponding
to the limit of the Breit-Pauli Hamiltonian [8]. The main aim
of the present work is to calculate the g factors with much
better accuracy than obtained so far. This high accuracy is, in
fact, not needed for optical spectroscopy experiments, where
the magnetic field is usually not controlled very precisely, so
that the uncertainty on the Zeeman shift will be limited by
the uncertainty on the magnetic field and its eventual fluc-
tuations. However, we think it is worthwhile to present these
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precise values, because they can be tested in rf spectroscopy
experiments of the same type as described in [7], which
would provide a good test of hyperfine structure calculations.

II. ZEEMAN HAMILTONIAN

Neglecting relativistic and radiative corrections, the linear
part of the Hamiltonian describing interaction of a H," ion
with a magnetic field is given by

HZ=ge/'LB Se.B_gplu’p I'B+IU’B LeB
_:u“p(L1+L2)'Bs (1)

where g, and g, are, respectively, the electron and proton g
factors, up=e/2m, is the Bohr magneton, and L,,L;,L, are
the orbital momenta of the electron and both protons in the
center-of-mass frame. S, and I are the electron and nuclear
spins (see Ref. [1]). The magnetic field is assumed to be
oriented along Oz. In the ground electronic state lso,, the
main contribution to the g factor comes from the first term,
i.e., the electron magnetic moment, while the other terms are
about a factor of 1000 smaller. For the third term this can be
understood by noting that the rotation velocities of the elec-
tron and protons are of the same order; hence the terms in L,
and L;+L, are of the same order.

In low magnetic fields, the hyperfine structure must be
taken into account, and the Zeeman Hamiltonian can be writ-
ten using the Landé factor (or g factor) of the hyperfine level
under consideration,

ﬁz=gJMBJ -B, (2)

where J is the total angular momentum; note that the scalar
gy becomes a tensor if relativistic and radiative corrections
are taken into account, in contradistinction with the atomic
case, due to the lack of central symmetry of the potential [9].

Let us briefly recall the structure of hyperfine levels (for
more details, see [1]). For even values of L, the total nuclear
spin / is zero, and the total angular momentum is J=L+S,.
Each rovibrational level (v,L) is split into two hyperfine lev-
els (v,L,J) with J=L*1/2. For odd values of L, I is equal
to 1 and the coupling scheme is as follows: The total spin
F=S,+I (F=1/2 or 3/2) which is not an exact quantum
number, and the total angular momentum J=L+F. J can
take the values L *+3/2, L= 1/2. If J=L=*3/2, the hyperfine
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state is a pure F=3/2 state |v,L,S,=1/2,1=1,F=3/2,]
=L*3/2,M,). If J=L=*1/2, the hyperfine state is a linear
combination of F=1/2 and F=3/2 states,

v,L,S,,LF,J=L*1/2,M,)
= Cy|v,L,1/2,1,1/2,L * 1/2,M )
+C5v,L,1/2,1,3/2,L = 1/2,M,).  (3)

In the following, we evaluate the contribution of each term in
Eq. (1) to the g factor of the pure states |v,L,S,,I,F,J,M,),
noted as g,(v,L,F,J) [if L is even, these notations are re-
placed by |v,L,S,,J) and g,(v,L,J), respectively]. The ef-
fect of state mixing will be addressed in Sec. VII. The g
factor is divided into three contributions,

8/,L,F,J) =g (L,F,J) + g,(L,F,J) + g3(v,L,F.J), (4)

where g, is the contribution from the first term in Eq. (1), g,
is the contribution from the second term, and g3 the contri-
bution from the last two terms. Note that the first two quan-
tities do not depend on the vibrational quantum number v,
because the Hamiltonian only involves spin operators. In
contradistinction, the last term contains orbital momentum
operators acting on the orbital wave function, which intro-
duces a slight dependence on v.

The standard angular algebra procedures used below can
be found in the literature, e.g., [10].

III. CONTRIBUTION OF THE ELECTRON SPIN

Here, we evaluate the contribution to the g factor coming
from the first term in Eq. (1). The Zeeman shift of a given
hyperfine level |v,L,S,,I,F,J,M;) due to this term is given
by

AE] = ge/.LBB<U,L,Se’I7F’J’MJ|S§

v,L.S,.LF.J,M}). (5)

From now on the dependence in v will not be noted, since S-
does not act on the orbital wave function. Application of the
Wigner-Eckart theorem to the vector operator S, yields

(L,S,,I,F,J,M,|S?

L’SgaI9F’J’M]>

[Sel

1
= T(L,SE,I,F,J L,S,,1,F,J)J1M 0| JM )
\ +

M,
=——(L,S,,ILF,J
VI +1)2J+1)

Sl

LaSwI’F5J>' (6)

The contribution to the g factor of the hyperfine level under
study is then

LS, IFJ\S,L,S,LF,J
gl(L,F,J)=ge< e : | e| e > (7)
VI+1D)QRI+1)

We now consider separately the cases of even and odd L.

A. Even values of L

In this case the intermediate angular momentum F is ir-
relevant since /=0, and one directly has J=L+§S,. The re-
duced matrix element appearing in (7) is then obtained as
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(LSINSILSS) = (SIS lIS )= 151 (27 + 1)
S, 1 S
>< e e , (8)
J L J

where (S,/|S,||S,)=S,(S,+1)(2S,+1)=13/2. One obtains
g1(L,J) for the two possible values of J,

g
LL+1/2)= ,
a1l )= L4

e(LL—1/2)=- 5 (9)
2L +1

B. Odd values of L

In this case the total spin of nuclei is one: /=1. The re-
duced matrix element appearing in (7) is obtained in two
steps,

<Se7I’F||Se||Se’I’F> = <Se||Se||Se>(_ 1)F+S0+1+1(2F+ 1)

S, 18,
X , (10)
F I F

<LsSe,IsFaJ

Sl

L9SgsI3F9J>

F1lF
|S,|[S,. LFY(= 1)1 (2 ) + 1){ }

=(S,.I,F
J L J

= \/g(— D*H202F +1)(27 +1)

{se I s}{p I F}
X . (11)
F I F||J L J

From this we obtain the factors g,(L,F,J) for all hyperfine
levels,

g 1
L12.L+1/2)=-8¢—

& )=
(L2 —1/2)=8— 1

B1tk, 2, T30+

1
L3/2,L+3/2)=g,——,
gi( ) 837 43

(L32.L+1/2)= S 2L+
,J3/2,L + ==
&1 3 2L+ 1)(2L +3)
8. 2L -7

L32,L-12)=-2¢—"""
a1 =3 QL-1)2L+1)

¢1(L,3/2,L—3/2) =— (12)

Serr—1°
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IV. CONTRIBUTION OF THE NUCLEAR SPIN

In the same way, we evaluate the contribution from the
second term in Eq. (1), which is nonzero only for odd values
of L. Similarly to Eq. (7), the g factor associated with this
term is

s esdsd s

(L, F.J)=— " (13)

Pm, NI+ 1D)(Q2I+1)

The reduced matrix element appearing in the above equation
is obtained similarly to Eq. (11),

=\6(= /"2 QF + 1)(27 + 1)

><111 F1F
F S, F||\J L JJ|

(14)

s esdsd s s esdsd s

From this we deduce the factors g,(L,F,J) for all hyperfine
levels,

(L.1/2,L+1/2) med 1
k b + = - = 9’
82 S0 m, 320+ 1
L12L-1/2)=g et 1
8 8 m, 32041
(L,3/2,L +3/2) me 2
312,L+3/2) =—g,— ,
82 S, 2L+ 3
%% 2L+9

L3/2,L+1/2) =— =tz
g2l ) 80m, 3 2L+ 1)(2L +3)

m,?2 2L -7

g-(L,3/2,L-1/2) = gp 3m

m, 2
g,(L,3/12,L-3/2)=g,— (15)
m 2L 1

V. CONTRIBUTION OF THE ORBITAL MOMENTA

The contribution to the g factor coming from the third and
fourth terms in Eq. (1) is

sl d s s dsd s

T+ 12T+ 1)

g3(v,L,F,J) =

e’ e’

m,, VJ(J+ 1)(2J+ 1)

(16)

where we have used that (L;)=(L,) due to the symmetry of
H,* with respect to the exchange of nuclei. The reduced
matrix elements appearing in the above expression are ex-
pressed as a function of reduced matrix elements involving
only the orbital wave function,
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s lesdsd s

L 1 L
=_1J+L+F+12J+1
=1 ( )J oy

s s ds Ly

(17)

This expression is valid both for even and odd values of L (in
the first case F=S,=1/2). We finally obtain the factors
g3(v,L,F,J) for all hyperfine levels, expressed as a function
of the orbital reduced matrix elements. For F=1/2 levels
(both with even and odd L) we have

_
2VL
(0L 12, L+1/2) = ———(||L
83 VL+1Q2L+1) |
2\L+ 1
(0.L,1/2,L—1/2) = (18)
83 VLQL +

and for F=3/2 levels (appearing only if L is odd) we have

(0.1,3/2,L+3/2) = 2L

U’ b 9 -

83 VL+102L + 3)
2(2L* +3L-3)

g3(,L,3/12,L+1/2) =

L(L+ DL+ 1)L+ 3)

2L+ L-4)
VL(L+1)2L-1)(2L+ 1)

g3(v,L,3/2,L—1/2) =

2VL+1
\r
g3(v.L.3/2,L-3/2) = —=—(|L (19)
VL(2L-1)
where
,L||L,||v,L)y _m, v, v,
(Lol = — —2—— . (20)
V2L + 1 m, 2L+ 1
The orbital matrix elements and

proach presented in [1], for 0=v,L=4. We used basis
lengths N=2000-3000, allowing a determination of the or-
bital momentum contribution g5 with 10~ relative accuracy.
The results are shown in Table I.

VI. ROTATIONAL g FACTORS IN THE STRONG-FIELD
REGIME

These results allow a precise calculation of the rotational
g factor, which can be measured independently in a strong
magnetic field. In this regime, the different angular momen-
tum and spin vectors are decoupled, and the Zeeman Hamil-
tonian is usually written in the form

HZ:geMBSe'B_gplu“pI'B_grot/-LpL'B' (21)

Comparing this expression with Eq. (1), one easily obtains
the expression of the rotational g factor for a rovibrational
level (v,L),
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TABLE I. Reduced matrix elements of L, and L, (divided by y2L+1) for all rovibrational levels (v,L)
of H,* with 0=v,L=4. The deduced value of {|[L,|) [defined in Eq. (20)] is indicated in the third column.
The last column contains the values of the rotational g factors deduced from Eq. (22).

L v @LIL/v.L)/\2L+1 (. Ll|Lylo, Ly 2L+ 1 (Il 8ot
0 0 0 0
0 0.615x107* 0.70708 -0.7087 X 1073 0.9201
1 0.686x 1074 0.70707 -0.7015%x 1073 0.9108
1 2 0.763x 1074 0.70707 -0.6938 %1073 0.9008
3 0.847Xx 1074 0.70706 -0.6855x 1073 0.8900
4 0.937x 1074 0.70706 —-0.6764x 1073 0.8782
0 1.069 X 1074 1.22469 -1.2271x1073 0.9198
1 1.193x 1074 1.22469 -1.2146x 1073 0.9105
2 2 1.328 X 1074 1.22468 -1.2012% 1073 0.9004
3 14731074 1.22467 -1.1867x 1073 0.8896
4 1.630x 1074 1.22466 -1.1710%x 1073 0.8778
0 1.521x 107 1.73197 —-1.7344x 1073 0.9193
1 1.698 X 10~* 1.73197 -1.7167x 1073 0.9100
3 2 1.889x 1074 1.73196 -1.6977x 1073 0.8998
3 2.095x 10~* 1.73195 -1.6776 X 1073 0.8889
4 2.318x 107 1.73193 —1.6547 %1073 0.8771
0 1.980x 1074 2.23597 —2.2375% 1073 0.9187
1 2.209% 10~* 2.23596 -2.2146% 1073 0.9092
4 2 2.457%x 107 2.23595 -2.1898 X 1073 0.8991
3 2.725%X 1074 2.23593 -2.1629%x 1073 0.8881
4 3.015x 107 2.23592 -2.1339x 1073 0.8761
Grod0,L) = — (2<v,L||L1| v,L) g/, L, F.J)=g,w,L,F,J)+g(v,LF,J)+gv,L,F.J),
VL(L+1)(2L+1) (23)
e L U’L>> __mp (el with
¢ Me NL(L+1) 2, (v, LE,L *+ 1/2)
(22)

The values of rotational g factors are given in the last column
of Table I. They are improved with respect to the previous
calculation performed within the adiabatic approximation by
Rebane and Zotev [13]. Note that the slight dependence of
8rot ON L is neglected in the approach followed in that paper.

Loch et al. [11] measured the rotational g factor of H,",
averaged over the vibrational levels v=4-6 and the rota-
tional levels L=1-3, to g,,,=0.920(40). Extending our cal-
culations to the v=5-6 levels, and assuming the vibrational
state populations reported in [11], we find g,,,=0.8688, dif-
fering from the experimental value by 1.280.

VII. EFFECT OF THE STATE MIXING

We now must take into account the fact that for odd L,
some of the hyperfine eigenstates are not pure states with a
well-defined value of F, but linear combinations of F=1/2
and F'=3/2 states [see Eq. (3)]. The various contributions to
the g factor (denoted g; from now on) are changed in the
following way:

=(C7)°g (L,1/2,L = 1/2) + (C3)?
Xgi(L,3/2,L +1/2) +2C; C g,

y (L,S,,1,1/2,L = 1/2||S,||L,S,.1,3/2,L + 1/2)
V(T + 12T +1)

i

% (v,L,F,L +1/2)
=(C7)g(L,1/2,L = 1/2) +(C3)?

Xgy(L,3/2,L +1/2) -2C; C5 gp—me
m
P

y (L,S,,1,1/2,L = 1/2||1||L,S,,1,3/2,L * 1/2)
VI +1)(2J+ 1)

s

F3(W,LF,L = 1/2) = (C))g3(0,L, 1/2,L + 1/2)
+(C3)?g5(v.L.3/2,L * 1/2).
(24)

The contribution g3 does not contain any crossed terms, be-
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TABLE II. g factors of all hyperfine states for the rovibrational levels (v,L) with L=0,2,4 and 0=<v
=4. The fourth column is the contribution from the electron spin magnetic moment, the fifth one is the
contribution from orbital momenta, and the last one is the total value of g,(v,L,J). All digits are converged.

The relative theoretical accuracy on all contributions (and on g) is O(a?).

L v J gi(L.J)/g, gw,L,J) g,(v,L,J)
0 12 +1 0 2.0023193
0 32 -1/5 -6.011x 107 -0.4010650
5/2 +1/5 —-4.008 X 107 0.4000631
1 32 -1/5 -5.950x 10™* -0.4010589
5/2 +1/5 -3.967 %X 107 0.4000672
2 2 32 -1/5 -5.885x 107 -0.4010523
5/2 +1/5 -3.923x107* 0.4000716
3 32 -1/5 -5.814x 107 -0.4010452
5/2 +1/5 -3.876 X 107 0.4000763
4 32 -1/5 -5.737x 107 -0.4010375
5/2 +1/5 -3.824 %107 0.4000814
0 772 -1/9 -5.559x 107 -0.2230358
9/2 +1/9 —4.447 %107 0.2220352
1 712 -1/9 -5.502%x 107 -0.2230301
9/2 +1/9 —4.402% 107 0.2220398
4 2 712 -1/9 —5.441 %107 -0.2230240
9/2 +1/9 —4.352x 107 0.2220447
3 712 -1/9 —5.374%107* -0.2230173
9/2 +1/9 —4.299 % 1074 0.2220500
4 712 -1/9 -5302x107* -0.2230101
9/2 +1/9 —4.241 %107 0.2220558

cause the corresponding Hamiltonian acts only on orbital
variables, and cannot couple F=1/2 states to F=3/2 states.
The mixing coefficients C;, C; are given in [12]. It only
remains to calculate the crossed reduced matrix elements ap-
pearing in the above expression. We have

(L,S.,L.F,J

|Se||L,Se,I,F',J)=a(— 1)J+L+2F’+3/2 Se 1 Se
F' I F

X(Sel[SelISe)

(L,S,,I,F,J

Y

L,S,,LF',J)=a(-1)*+32 I 11
F' S, F

x|, (25)

with

az\r(2F+1)(2F’+1)(2]+1){I; ; i} (26)

From these expressions one may finally obtain

(L,1/2,1,1/2,L = 1/2||S,||L,1/2,1,3/2,L = 1/2)

_\BNLL+1)

:,
3 2L +1

(L,1/2,1,1/2,L = 1/2||1]

L,1/2,1,3/2,L = 1/2)

VS VL(L+ 1)
3 2L +1

VIII. FINAL RESULTS AND DISCUSSION

Our results are summarized in Tables II-1V, where all
contributions are summed up in order to obtain the g factors
for all hyperfine levels. The accuracy of this calculation can
be limited by several factors.

The first one is the variational calculation of the orbital
momentum reduced matrix elements appearing in expression
(16) of g;, the relative accuracy of which is 10~*. This results
in a numerical uncertainty of less than 107 on the final
g-factor values.

The second limitation comes from the coefficients of the
hyperfine Hamiltonian, which are known with a relative ac-
curacy as O(a?)~5X 107, The mixing coefficients defined
in (3) are affected by this uncertainty, resulting in an uncer-
tainty comprised between 5X 107 and 5 X 107° for the final

values of g(L,f ,J), depending on the magnitude of the cor-
rections due to state mixing. This uncertainty does not affect
the hyperfine states which are pure states (i.e., all states of
even L, and states of odd L with F=3/2 and J=L*3/2).
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TABLE III. g factors of all hyperfine states for the rovibrational levels (v,L) with L=1 and 0=<v =4. The fourth column is the
contribution from the electron spin magnetic moment, the fifth one is the contribution from the nuclear spin magnetic moment, and the sixth
one is the contribution from orbital momenta. All three terms are calculated without taking state mixing into account. The seventh column
is the sum of these contributions. Columns 8—10 are the corrected values of the three contributions obtained by taking state mixing into
account. The last column is the final value of the g factor. All digits are converged. The relative theoretical accuracy for all contributions is

o(a?).
v ﬁ J gl/ge mp/megZ/gp 83 gJ(U,L,F,J) gl/ge mp/me§2/gp §3 §J(U,L,f,1)
172 172 +1/9 +4/9 —-6.682X 10™*  +0.2231638  +0.0629313  +0.3932396  —6.667 X 10™*  +0.1265381
32 -1/9 -4/9 -3.341X107*  -0.2241660 -0.1172298 -0.4506607 —3.340X 107* -0.2364365
0 32 172 +5/9 -10/9 +3.341x10™*  +1.1093536  +0.6037354  —1.0599063  +3.326X10™*  +1.2059793
32 +11/45 -22/45 -1.336X10™*  +0.4878350 +0.2505632  -0.4826727 -1.337Xx10™* +0.5001054
52 +1/5 -2/5 -2.005x10™*  +0.3990466 +0.3990466
17212 +1/9 +4/9 —-6.614x10™*  +0.2231705  +0.0648181  +0.3953621  —6.600X 10™*  +0.1303292
32 -1/9 -4/9 -3307x10™*  -0.2241627 -0.1170219  -0.4504461  -3.307X10™* -0.2360162
1 32 172 +5/9 -10/9 +3.307x10™*  +1.1093503  +0.6018486  —1.0620288  +3.293X10™*  +1.2021916
3/2  +11/45 -22/45 -1.323x10™*  +0.4878363  +0.2503552  -0.4828872 -1.323x10™* +0.4996898
52 +1/5 -2/5 ~-1.984x10™*  +0.3990486 +0.3990486
172 172 +1/9 +4/9 —-6.541x10™*  +0.2231778  +0.0667416  +0.3975158  —6.529X10™*  +0.1341944
32 -1/9 -4/9 -3271x10™*  -0.2241590 -0.1168072  -0.4502248 -3.270X10™* -0.2355819
2 32 172 +5/9 -10/9 +3.271x107*  +1.1093466  +0.5999250  —1.0641825  +3.258X10™*  +1.1983300
32 +11/45 —22/45 -1.308X 10™*  +0.4878378  +0.2501405  -0.4831085 —1.309X107*  +0.4992607
52 +1/5 -2/5 -1.962X 10™*  +0.3990508 +0.3990508
172 12 +1/9 +4/9 -6.463X 10™*  +0.2231857  +0.0687069  +0.3997057  —6.451X10™*  +0.1381439
32 -1/9 -4/9 -3.231X10™* -0.2241551 -0.1165853  -0.4499964  -3.231X10™* -0.2351330
3 32 172 +5/9 -10/9 +3.231X107%  +1.1093427  +0.5979598  —1.0663724  +3.220X 107*  +1.1943845
32 +11/45 —22/45 -1.293X10™*  +0.4878393  +0.2499186  -0.4833369 —1.293X107* +0.4988172
52 +1/5 -2/5 -1.939X 10™*  +0.3990532 +0.3990532
172 12 +1/9 +4/9 -6.377X10™*  +0.2231942  +0.0707213  +0.4019394  —6.367 X 107™*  +0.1421927
32 -1/9 -4/9 -3.189X 10™*  -0.2241508 -0.1163546  -0.4497592  -3.188X 107™* -0.2346661
4 32 12 +5/9 -10/9 +3.189X 107™*  +1.1093384  +0.5959453  —1.0686061  +3.179X 10+  +1.1903399
3/2  +11/45 -22/45 —1.275X107™*  +0.4878410 +0.2496879  -0.4835741 —1.276X107* +0.4983563
52 +1/5 -2/5 -1.913x10™*  +0.3990557 +0.3990557

Finally, and most importantly, relativistic and radiative
corrections, as considered by Hegstrom in the strong-field
regime in [9], are not included. This limits the relative accu-
racy to O(a?) ~5X 107,

To summarize, the accuracy of our results is O(a?)~5
X 107. Inclusion of the leading-order QED corrections
would improve it to O(a®) ~3 X 1077, Such accuracy would
appear to be hard to meet in rf experiments with weak mag-
netic fields. g-factor measurements on H," with an accuracy
in the ppm range were achieved in strong magnetic fields,
using spin-dependent charge-exchange techniques [11].

We have nevertheless given the g-factor values with seven
digits. Although all digits are not significant, this is helpful
for understanding the order of magnitude of various effects,
such as the variation as a function of v and L, or the impor-
tance of corrections due to state mixing. For example, it can
be seen that state mixing acts on the value of the orbital
contribution g5 at the level of 10~ at most, so this effect may
be neglected at the present level of accuracy.

To our knowledge, the magnetic moments of the H," hy-
perfine states in a weak magnetic field have been investi-

gated only by Richardson, Jefferts, and Dehmelt in 1968 [7].
They give a few ratios of g factors between different hyper-
fine states, which we have reported in Table V together with
the result of our calculation. Note that the experimental val-
ues are averaged over the vibrational states v>4. In our
evaluation, we have taken the vibrational states v=5-8 into
account, and assumed that their relative populations (deter-
mined by the creation process by electron impact ionization
of H, at room temperature) are the same as measured in Ref.
[14]. Good agreement is obtained in all cases.

We now use these results to evaluate the Zeeman shift and
splitting of the two-photon transitions (v=0,L)— (v'=1,L)
envisaged for high-precision spectroscopy of the H," ion.
For illustration, we choose a magnetic field of the order of
the earth field, B=5X 107 T. As explained in the introduc-
tion, the accuracy of our calculation is more than sufficient
for this purpose. The leading relativistic corrections which
we have neglected correspond to a shift of order o’uzB
~35 Hz, well below the present goal accuracy of spectros-
copy experiments. The frequency shift Av of a two-photon
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TABLE 1V. Same as Table III, for the rotational level L=3.

v F J gilge  myimg,lg, g3 g,(v.L,F.J) gi/g. m,Im.g,lg, g g,(.L,F.J)
112 52  +1/21 +4/21 -5.722X 107 +0.0953558  +0.0264523  +0.1686545 —-5.719X107*  +0.0529071

72 -1/21 -4/21 —4292X 107 =0.0963571 —-0.0566485 —0.1996746 —4.291X107%  —0.1144649

0 32 32 -1/5 +2/5 —8.011X 107  —0.4000481 -0.4000481
512 +1/105 -2/105 —4.864X 107  +0.0185254  +0.0306905  +0.0027741 —4.867X 107+  +0.0609740

72 +5/63 -10/63 —3.815X 107  +0.1580499  +0.0883945 —0.1495318 —-3.816X 10  +0.1761576

92  +1/9 -2/9 -3.338%x 107 +0.2214701 +0.2214701

12 52  +1/21 +4/21 —5.664X 107 +0.0953616  +0.0272667 +0.1695181 —5.661 X 107*  +0.0545462

72 -1/21 -4/21 —4248X 107 -0.0963528  —0.0563438  —0.1993583 —4.247X10™*  —0.1138494

1 32 32 -1/5 +2/5 ~7.929%x 107 —0.4000400 —0.4000403
512 +1/105 -2/105 —4814x107*  +0.0185303  +0.0298762  +0.0019104 —4.817X107*  +0.0593457

72 +5/63 -10/63 3776 X 107*  +0.1580538  +0.0880898  —0.1498480 —3.777X10™*  +0.1755504

92 +1/9 -2/9 -3304Xx 107 +0.2214735 +0.2214735

12 52  +1/21 +4/21 -5.601 X107 +0.0953679  +0.0280999  +0.1703997 —5.598 X 10™*  +0.0562234

72 -1/21 -4/21 —4201X107*  -0.0963480 —0.0560290 —0.1990321 —4.200X 10* —0.1132134

2 32 32  -1/5 +2/5 ~7.841X 104  —0.4000311 ~0.4000313
512 +1/105 -2/105 —4761X107*  +0.0185357  +0.0290430  +0.0010288 —4.763 X 10™*  +0.0576802

72 +5/63 -10/63 —3.734X107*  +0.1580580  +0.0877750  —0.1501742 —-3.735X107*  +0.1749233

92 +1/9 -2/9 —3267X107*  +0.2214772 +0.2214772

12 52  +1/21 +4/21 ~5.533%x107%  +0.0953747  +0.0289535  +0.1713009 —-5.530X 10™*  +0.0579423

72 -1/21 -4/21 —4.150X 1074 —0.0963429  -0.0557027 —0.1986944 —4.149X 10  —0.1125539

332 32  -1/5 +2/5 ~7.746X107%  —-0.4000216 -0.4000217
512 +1/105 -2/105 —4703X 107 +0.0185415  +0.0281893  +0.0001276 —4.705X107*  +0.0559739

72 +5/63 -10/63 ~3.689X107*  +0.1580625  +0.0874487 —0.1505119 —3.689X 1074  +0.1742735

92  +1/9 -2/9 —3227X107*  +0.2214812 +0.2214812

12 52  +1/21 +4/21 —5459%x 107 +0.0953821  +0.0298308  +0.1722248  —5.457X 10  +0.0597089

72 -1/21 -4/21 —4094X 107 —0.0963374 —-0.0553637 —0.1983442 —4.094X 10  —0.1118686

4 32 32  -1/5 +2/5 ~7.643X 107 —0.4000113 ~0.4000115
512 +1/105 -2/105 —4.640X 107 +0.0185477  +0.0273121  —0.0007963 —4.642X107*  +0.0542209

72 +5/63 -10/63 —3.639X 107 +0.1580674  +0.0871097 —0.1508622 —3.640X 10™*  +0.1735986

92  +1/9 -2/9 ~3.184X 107 +0.2214855 +0.2214855

transition (v,L,F,J)— (v',L,F',J') in the magnetic field B

1S

2hAv=[M)g,(v' ,L.F',J") = M,g,(v,L,F,J)]uzB.

If circular polarization is used, the selection rule is M}—M 7
=2. M, can take the possible values —J,-J+1,...,J-2 so

(28)

2hAv= [gj(U,L,F,J) + gJ(U,’LsﬁlyJ’)]/‘LBB'

that the shift of the line center (corresponding to M,;=-1) is

(29)

In the case of linear polarization, the selection rule is M}
-M;=0, and M, can take the possible values —J,—J

TABLE V. g-factor ratios of some hyperfine states of H,*.

Ratio Calculated Measured [7]
g/(L=1,F=1/2,J=3/2)/g,(L=1,F=3/2,]=5/2) 0.5855 0.584(3)
g/(L=1,F=3/2,J=3/2)/g,(L=1,F=3/2,]=5/2) 1.2463 1.241(6)
g/ L=1,F=1/2,J=3/2)/g,(L=3,F=3/2,]=9/2) 1.0549 L.051(5)
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TABLE VI. Zeeman shift and splitting of two-photon transition
lines (v=0,L,F,J)—(v'=1,L,F,J) in a magnetic field of 5
X 1073 T, in Hz. The fourth column is the predicted shift of the line
center in the case of o, excitation polarizations [Eq. (29)]. The
asterisks indicate transitions which are forbidden in circular polar-
ization. An estimate of the theoretical uncertainty [corresponding to
a relative accuracy of 0(e®)] is given. The last column is the Zee-
man splitting, i.e., the frequency difference between extreme values
of M}, evaluated in the linear polarization case [Eq. (30)]. An esti-
mate of the theoretical uncertainty (see text) is given when it is
significant.

L F J (o polar.) (7r polar.)
0 172 1/2 * 0
12 12 * 1327
3/2 -165314(9) 441
1 3/2 12 * 1325
3/2 +349834(19) 436
5/2 +279258(15) 3.5(3)
2 12 3/2 —-280668(15) 6.4(2)
172 5/2 +279971(15) 7.2(3)
172 5/2 +37599(2) 2868
772 —79889(4) 1508
3 32 3/2 —279956(15) 8.2(2)
5/2 +42101(2) 2849
72 +123065(7) 1487
9/2 +154989(8) 10.7(3)

hAv=[g,(v',L,F',J") = §,(v,L,F.))[JugB.  (30)

We have shown in [1] that the most intense hyperfine com-
ponents are those between pairs of homologous spin states,
(F,J)—(F,J), and only these components are considered in
the following. In this case, we benefit from an almost com-
plete cancellation (to 1% or better) between the g factors of
the initial and final states, so that the Zeeman splitting is very
small (compared to the global shift observed in circular po-
larization). Note that such cancellation will also take place
for relativistic corrections, so that the theoretical uncertainty
is also reduced. In estimating the uncertainties, we have as-
sumed cancellation to 1%.

The cases L=1,2,3 are compared in Table VI for the
cases of circular and linear excitation polarizations. When
circular polarization is used, the two-photon transition lines
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are typically shifted by a few hundreds of kHz. This does not
represent in itself a limitation of experimental accuracy,
since it is possible to take the average of measurements in o,
and o_ polarizations. However, it also means that magnetic
field fluctuations of the order of 10 mG result in a line broad-
ening of order 1-10 kHz. If one wishes to improve the res-
olution beyond this limit, active control and stabilization of
the magnetic field is required [15]. Together with larger tran-
sition probabilities as discussed in [1], this brings a strong
argument in favor of using linear polarizations. Unfortu-
nately, optical isolation of the laser source from feedback by
the enhancement cavity is at present only possible with a
polarizer followed by a quarter-wave plate, which imposes
working with circular polarizations [1]. One solution is to
add a transverse magnetic field, which must be sufficiently
strong to separate the three components AM;=0, £2. It can
be seen from Table VI that a field in the 10°—10~* T range
(depending on the transition) is enough to obtain a separation
of the order of 100 kHz, i.e., clearly resolved components
assuming a linewidth of a few kHz [1].

Finally, the Zeeman splitting is extremely small (a few
Hz) when the states involved in the two-photon transition are
pure states, while it is of a few kHz in other cases. This
makes such transitions especially attractive from the metro-
logical point of view.

IX. CONCLUSION

We have obtained improved values of g factors of the
hyperfine states of the hydrogen molecular ion, which are in
good agreement with experiment. The achieved accuracy is
0(a?) ~5X 1073, The accuracy on the rotational g factors
has also been improved by use of a variational method al-
lowing to take the full three-body dynamics into account. We
have used these results to evaluate the Zeeman shift and
splitting of several two-photon vibrational transition lines,
and shown that transitions involving pure hyperfine states
(i.e., all states of even L, and states of odd L with F=3/2 and
J=L=*3/2) benefit from a very small Zeeman splitting.
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