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We study the generation of spin squeezing by the repeated action of the angular momentum �Dicke� low-
ering operator on an atomic coherent state prepared for a collection of N two-level atoms or ions. The atoms
or ions of the atomic coherent state are not entangled, but the action of the lowering operator �or similarly of
the raising operator� generates entanglement among the atoms, and spin squeezing occurs for some ranges of
the relevant parameter. Spin squeezing in a collection of two-level atoms or ions is of importance for precision
spectroscopy. We discuss methods by which our spin-squeezed states could be generated in the contexts of
cavity QED and trapped ions.
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Recently, there has been considerable interest in the gen-
eration of so-called spin-squeezed states �1� in a collection of
N two-level atoms or ions �2�. This interest stems from the
desire to reduce projection noise in high-precession popula-
tion spectroscopy, important in atomic frequency standards
�3� and in the improvement of the performance of atomic
clocks �4�. Spin squeezing is also of interest in connection
with quantum-information processing as it turns out that a
collection of squeezed spins is entangled. As pointed out by
Kitagawa and Ueda �1�, spin squeezing is the result of cor-
relations �entanglement� that can occur in a multiparticle sys-
tem consisting of a collection of two-level system atoms or
spin-1/2 particles. Sørensen et al. �5� have shown that a col-
lection of N two-level systems is entangled if

�1
2 =

2J���Ĵn1
�2�

�Ĵn2
�2 + �Ĵn3

�2
� 1, �1�

where J=N /2, Ĵni
=ni · Ĵ �the n’s being mutually orthogonal

unit vectors� are the usual collective angular momentum op-

erators of Dicke �6� given by Ĵ=�i=1
N ŝ�i� and where the ŝ�i� are

the spin-1/2 operators acting in the two-level space of the ith
atom. The condition in Eq. �1� may be taken as the condition
for spin squeezing and is, in fact, closely related to the defi-
nition discussed by Wineland et al. �3�, which we denote as

�2
2 =

2J���Ĵn�2�

��Ĵn�
��2

� 1, �2�

where n and n� are orthogonal unit vectors. This latter defi-
nition is of importance in connection with noise reduction in
spectroscopy �2�a�,3�. We point out that the condition �1

2

�1 is not inclusive of all entangled states: If the condition
holds, the atoms are entangled as was proved in �5�, but if it
does not hold, the atoms may, or may not, be entangled.

Numerous methods have been proposed for generating
spin-squeezed states �see Refs. �2,3� for examples�. In this
paper we take the following approach: We assume that a
collection of two-level atoms initially all in their ground
states are excited into an atomic coherent state �ACS� �7�,
also known a spin-coherent state �8�. The ACS involves no
entanglement between the atoms, each atom merely being in

a superposition of its ground and excited states. We consider

multiple actions of the collective ladder operators Ĵ� on the
ACS and show that entanglement and spin squeezing are

generated. We concentrate on the lowering operator Ĵ− as the

actions of the raising operator Ĵ+ are essentially identical
with those of the actions of the former owing to the fact that
the Hilbert space is of finite dimension 2J+1. Furthermore, it
turns out that the lowering operator approach may be the
most important in regard to experimental feasibility.

Our approach is inspired by work some years ago of
Agarwal and Tara �9� on excitations on photonic coherent
states of a single-mode field obtained by multiple actions of
the field creation operator and more recent work that exam-
ines the effect of the actions of photonic raising and lowering
operators on other kinds of states, such as the squeezed
vacuum state which can be transformed into a weak
Schrödinger cat state, a “kitten” state, for the purposes of
quantum-information processing �10�. We note that the labo-
ratory generation of a one-photon added state has been re-
ported �11�. The photonic states generated by such methods
are highly nonclassical, as is indicated by negativities in their
corresponding Wigner functions over some regions of phase
space.

The ACSs are defined according to

��,J� = exp	�

2
ei�Ĵ+ −

�

2
e−i�Ĵ−
�J,− J�

= �1 + ���2�−J �
M=−J

J 	 2J

J + M

1/2

�J+M�J,M� , �3�

where �=ei� tan�� /2� and where the angles � and
�, 0���	 ,0���2	, parametrize the Bloch sphere.
The angular momentum states �J ,M� are the Dicke
states �6� where the “ground” state �J ,−J� is a product
of the ground states of each of the atoms—i.e., �J ,−J�
= �g�1 � �g�2 � ¯ � �g�N. Because the raising and lowering
operators are sums of the corresponding operators acting in
the spaces of each of the atoms, the ACS of Eq. �3� contains
no entanglement or spin squeezing as can be checked by
evaluating �1,2

2 , which both come out to be unity. The prob-
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ability that the spin ensemble is in the Dicke state �J ,M� is
given by

PM
�J� = �1 + ���2�−2J	 2J

J + M

���2�J+M�, �4�

which is, of course, a binomial distribution.

We now act n times with the lowering operator Ĵ− on the
ACS to obtain the states

��,J;n−� � �Ĵ−�n��,J� �5�

or, in normalized form,

��,J;n−� = Nn
�−� �

M=−J+n

J �	 2J

J + M

 �J + M�!

�J − M�!
�J − M + n�!
�J + M − n�!1/2


�J+M�J,M − n� , �6�

where

Nn
�−� = � �
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J �	 2J

J + M

 �J + M�!

�J − M�!
�J − M + n�!
�J + M − n�!


���2�J+M��−1/2

. �7�

Similarly, for n actions of the raising operator on the ACS we
have

��,J;n+� � �Ĵ+�n��,J� , �8�

which in normalized form is

��,J;n+� = Nn
�+� �

M=−J

J−n �	 2J

J + M

 �J − M�!

�J + M�!
�J + M + n�!
�J − M − n�!1/2


�J+M�J,M + n� , �9�

where

Nn
�+� = � �

M=−J

J−n �	 2J

J + M

 �J − M�!

�J + M�!
�J + M + n�!
�J − M − n�!


���2�J+M��−1/2

. �10�

The corresponding probabilities for finding the system in the
Dicke state �J ,M� are

PM
�J,n−� = Nn

�−�2	 2J

J + M

 �J + M�!

�J − M�!
�J − M + n�!
�J + M − n�!

���2�J+M�,

�11�

PM
�J,n+� = Nn

�+�2	 2J

J + M

 �J − M�!

�J + M�!
�J + M + n�!
�J − M − n�!

���2�J+M�.

�12�

Clearly we must restrict n to the range 0�n�2J. Hence-
forth we shall restrict our attention to the cases of actions by
the lowering operator on the ACS. Results obtained through

the actions of the raising operator are identical to those ob-
tained by the raising operator, as we have checked numeri-
cally.

To see how entanglement comes about in our approach,

consider the following: The operator Ĵ− acts on the Dicke
states �J ,M�, but the Dicke states themselves, apart from the
extremal states �J , �J�, are entangled states of the collection
of two-level atoms �6,12�. The specific superpositions of
Dicke states that form the ACS contain no atomic entangle-
ment. However, entanglement arises upon the sequential ac-
tions of the lowering operator which remove the states
�J ,J� , �J ,J−1�, etc., such that total remaining state in Eq. �6�,
in terms of the states of the individual atoms, can no longer
be factored. As an illustration, consider the case for N=2 and
J=1. The ACS is

��,1� = �1 + ���2�−1��1,− 1� + �2��1,0� + �2�1,1�� . �13�

In terms of the states of the two two-level atoms, the
Dicke states are given by �1,−1�= �g�1�g�2, �1,0�
= ��e�1�g�2+ �g�1�e�2� /�2, and �1,1�= �e�1�e�2. So, in terms of
the individual atom states, the ACS reads

��,1� = �1 + ���2�−1��g�1�g�2 + ���e�1�g�2 + �g�1�e�2�

+ �2�e�1�e�2�

= �1 + ���2�−1���g�1 + ��e�1���g�2 + ��e�2�� , �14�

where we clearly see that the ACS is factorized and thus

contains no entanglement. But the action of the operator Ĵ−
yields

Ĵ−��,1� � ��2��1,− 1� + �2�1,0��

� ��2��g�1�g�2 +
�2

�2
��e�1�g�2 + �g�1�e�2� . �15�

The atomic states can no longer be factorized. In fact, the
second term consists of one of the so-called Bell states—i.e.,
��e�1�g�2+ �g�1�e�2� /�2—known to be entangled as it leads to
violations of Bell’s inequality �13�. Note also that this be-
comes the dominant component for large ���. Of course, if we

make one more application of Ĵ−, we end up with the non-
entangled state �1,−1�= �g�1�g�2. Evidently, for a larger num-
bers of atoms, entanglement will be enhanced by repeated
applications of the lowering operator, at least up to a point,
beyond which the degree of entanglement will start to de-
crease as the reduced atomic state approaches the extremal
state �J ,−J�=�k=1

N
� �g�k.

To characterize the entanglement and spin squeezing ob-
tained, we examined the three squeezing parameters

�1x
2 =

2J���Ĵx�2�

�Ĵy�2 + �Ĵz�2
, �1y

2 =
2J���Ĵy�2�

�Ĵx�2 + �Ĵz�2
, �1z

2 =
2J���Ĵz�2�

�Ĵx�2 + �Ĵy�2
.

�16�

In addition, we examined the parameters
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�2x
2 =

2J���Ĵx�2�

��Ĵz��2
, �2y

2 =
2J���Ĵy�2�

��Ĵz��2
, �17�

which turn out to be virtually identical to the �1x
2 and �1y

2

parameters for certain choices of �. Numerically we have

found that the greatest degree of squeezing occurs in �1x
2 for

�=0 and 	 /2 and in �1y
2 for �=	 and 3	 /2. Also, we have

found that �2x
2 ��1x

2 for �=0 and 	 /2 and that �2y
2 ��1y

2 for
�=	 and 3	 /2. This occurs because in the former case

�Ĵy��0 and in the latter �Ĵx��0. Henceforth we shall not
consider �2x

2 and �2y
2 . We also found that �1z

2 always shows
squeezing, but is independent of �.

In Fig. 1 we plot, for �=0, �1x
2 versus � for different

numbers of laddering operations n for �a� J=5 �10 atoms�
and �b� J=15 �30 atoms� We notice that the maximum de-
gree of squeezing increases with the number of atoms, N, as
the � value of maximal squeezing also increases with N. We
also notice that there is an optimal number of lowerings,
nmax, for achieving the maximum amount of squeezing for a
given number of atoms. We find for �a� nmax=7 and for �b�
nmax=24. The number nmax is always greater than
�2J+1� /2, the 2J+1 being the dimension of the space of the
Dicke states for a given number of atoms �J=N /2�. But from
the graphs, it is apparent that substantial spin squeezing may
be obtained with n�nmax. For the case J=15, a good amount
of squeezing, nearly maximal, is obtained for n=16, one-
third the number of lowerings required to attain the maxi-
mum squeezing. An alternative viewpoint is given in Fig. 2,
where we plot �1x

2 versus n, again for �a� J=5 and �b�
J=15, for �=0, but with � chosen for maximum squeezing
based on the results displayed in Fig. 1.

In Fig. 3 we plot �1z
2 against � for different n for

�a� J=5 and �b� J=15. �1z
2 is independent of �. In Fig. 4 we

plot �1z
2 against n for �a� J=5 for �=2.0 and �b� J=15 for

�=2.8. We find that there is always spin squeezing in this
parameter. This is because, as we have checked numerically,

FIG. 1. Plot of �1x
2 versus � for �a� J=5 �10 atoms� and �b�

J=15 �30 atoms� for �=0 and for different numbers of lowering
operations n as indicated.

FIG. 2. Plot of �1x
2 versus n for �a� J=5, �=2.2 and �b� J=15,

�=2.4 for �=0.

FIG. 3. Plot of �1z
2 versus � for �a� J=5 and �b� J=15 for �

arbitrary and for different numbers of lowering operations n as
indicated.

SPIN SQUEEZING VIA LADDER OPERATIONS ON AN … PHYSICAL REVIEW A 77, 062341 �2008�

062341-3



it is always the case that ���Ĵz
2��� �Ĵz

2�. The reason for this
behavior is easy to understand. As we apply the angular mo-
mentum lowering operator, we are removing Dicke states
and thus redistributing the occupation probabilities to within
the remaining states, whose numbers reduce with every low-
ering operation. This effect can be seen in Fig. 5 where we
plot PM

�J,n−� versus M for �a� J=5 for �=2.0 and �b� J=15 for
�=2.4 corresponding to maximum squeezing as seen in Fig.
1 for each case. Starting with the binomial distribution for
the spin-coherent state �n=0�, we notice that, as expected,
the distribution migrates toward the lower values of M as n
increases. Furthermore, because of the loss Dicke states, the
distribution narrows for increasing n, indicating a decrease in

the variance ���Ĵz�2� over its value for the spin-coherent

state. Squeezing in Ĵz has been discussed in the context of a
pair of Bose-Einstein condensates by Dunningham et al. �14�
where they call it relative number squeezing.

That spin squeezing occurs in two of the squeezing pa-
rameters simultaneously might seem to imply a violation of
the angular momentum uncertainty relations. However, no
such violation occurs as can be demonstrated numerically by
evaluating the quantity

1

J2�1x
2 ��1y

2 ��Ĵx�2 + �Ĵz�2� + �1z
2 ��Ĵx�2 + �Ĵy�2�� � 1, �18�

and the two additional expressions obtained by the cyclic
permutations of x, y, and z. These relations arise from the
angular momentum uncertainty relations and the definitions
in Eq. �16�.

We now briefly address the issue of a physical mechanism
that could generate our spin-squeezed states. Two systems
immediately come to mind: a collection of atoms in a cavity
and a collection of trapped ions in the same vibrational
mode.

We consider first the case of cavity QED. The relevant
interaction Hamiltonian, in the interaction picture, is given
by

ĤI = ��âĴ+ + â†Ĵ−� , �19�

where the operators â and â† describe the quantized cavity
field. This is the so-called Tavis-Cummings model �15�, an
extension of the Jaynes-Cummings model �16� to the case of
many atoms. As for generating spin squeezing by repeated
lowering operations on a spin-coherent state, there are at
least two ways this could be done. We first assume that a
collection of N atoms, prepared in an ACS by coherent ex-
citation with a classical �laser� field, is loaded into a cavity
which initially contains no photons. We further assume that
the cavity is connected to a photodetector by an optical fiber.
We suppose that the atom-cavity system can rapidly be tuned
in and out of resonance by the application of a small Stark
shift or a minute change in the cavity dimensions. When
tuned out of resonance, no transitions can occur. We assume
that at the beginning, the cavity tuning is out of resonance
and that the cavity field is initially in the vacuum state �0�a.
The initial state of the system is thus �� ,J��0�a. When tuned
into resonance for a short time t, the atom-cavity field evo-
lution is described by

���t�� � �1 − it�âĴ+ + â†Ĵ−����,J��0�a

= ��,J��0�a − it�Ĵ−��,J���1�a. �20�

We assume that after time t the system is again tuned out of
resonance, thus halting the evolution. If a photon is detected,

the atomic state is reduced to �� ,J ;1−�� Ĵ−�� ,J�. The proce-
dure can be repeated so that after the detection of n photons
sequentially, the atomic state is reduced to �� ,J ;n−�. Note
that it would be difficult to implement the generation of spin-
squeezed states via the action of the raising operator owing
to problems with the necessity of preparing the cavity ini-
tially in, say, a single-photon state and of the subsequent
determination of the cavity field in the vacuum state required
for state reduction.

An alternative cavity QED approach would be to have a
collection of atoms prepared in a ACS and then projected as
a group through a sequence of n cavities prepared in vacuum
states. The collection would need to be velocity selected so
that the interaction times in each cavity would be short. One
photon from each cavity needs to be detected in order to
produce a spin-squeezed state.

In the case of trapped ions, one could begin by loading a
trap with N ions and cool them to the zero-point energy of
the center-of-mass vibration mode of their collective center
of mass. The ions could then be prepared into a spin-
coherent state by the global application of a resonant laser
beam to all ions in a such manner so as to not change the
center-of-mass motional state. By the application of lasers to

FIG. 4. Plot of �1z
2 versus n for �a� J=5 for �=2.0 and �b�

J=15 for �=2.8.
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obtain the appropriate vibrational sideband tuning �17�, it is
possible to obtain interactions, in the interaction picture, of
either the form

ĤI = ��Ĵ+â + Ĵ−â†� �21�

or

ĤI = ��Ĵ+â† + Ĵ−â� , �22�

where now the operators â and â† represent the vibrational
mode for the center of mass. The former interaction is again
the Tavis-Cummings model �14�, while the latter constitutes
the anti–Tavis-Cummings model. The rotating-wave approxi-

(a)

(b)

FIG. 5. A sequence of plots of
PM

�J,n−� versus M for �a� J=5 for
�=2.0 and �b� J=15 for �=2.4
corresponding to maximum
squeezing as seen in Fig. 1 for
each case, for different values of n
as indicated.
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mation has been made for both interactions. Wineland et al.
�3� have studied the spin squeezing generated by these inter-
actions by continuous evolution from an initial state where
all the atoms are in their ground states and the vibrational
mode is in a coherent state. But for our purposes, we start
with the atoms in an ACS and the vibrational mode in the
ground state �0�. Furthermore, the evolution is not continu-
ous as the interaction needs to be switched on and off and
requires an intermediate detection of a single vibrational
phonon for motion of the center of mass of the collection of
ions during the period when the interaction is turned off. One
has a bit more flexibility within the ion trap scenario as com-
pared with the cavity QED case, as either interaction could
be used to generate spin-squeezed states, both creating a pho-
non in the vibrational motion of the center of mass; the

former interaction lowers on the ACS while the latter cause
the ACS to be raised. The latter interaction is not available in
cavity QED. But which interaction form is used is immate-
rial as multiple applications of either lead to the same degree
of spin squeezing, as mentioned above. Once a spin-
squeezed state is obtained, one can apply the Ramsey
method of separated oscillatory fields �18� to perform high-
resolution frequency measurements �3�.

In summary, we have presented a possible method of gen-
erating spin-squeezed states in a collection of two-level at-
oms or ions prepared in a spin-coherent state by the use of
multiple actions of the angular momentum ladder operators
on the initial state.
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