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We present a multipartite entanglement measure for N-qubit pure states, using the norm of the correlation
tensor which occurs in the Bloch representation of the state. We compute this measure for several important
classes of N-qubit pure states such as Greenberger-Horne-Zeilinger and W states and their superpositions. We
compute this measure for interesting applications like the one-dimensional Heisenberg antiferromagnet. We use
this measure to follow the entanglement dynamics of Grover’s algorithm. We prove that this measure possesses
almost all the properties expected of a good entanglement measure, including monotonicity. Finally, we extend
this measure to N-qubit mixed states via convex roof construction and establish its various properties, including
its monotonicity. We also introduce a related measure which has all properties of the above measure and is also
additive.
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I. INTRODUCTION

Entanglement has proved to be a vital physical resource
for various kinds of quantum-information processing, includ-
ing quantum state teleportation �1,2�, cryptographic key dis-
tribution �3�, classical communication over quantum chan-
nels �4–6�, quantum error correction �7�, quantum
computational speedups �8�, and distributed computation
�9,10�. Further, entanglement is expected to play a crucial
role in many-particle phenomena such as quantum phase
transitions, transfer of information across a spin chain
�11,12�, etc. Therefore, quantification of entanglement of
multipartite quantum states is fundamental to the whole field
of quantum information and, in general, to the physics of
multicomponent quantum systems. Whereas the entangle-
ment in pure bipartite states is well understood, classification
of multipartite pure states and mixed states, according to the
degree and character of their entanglement is still a matter of
intense research �13–15�. The principal achievements are in
the setting of bipartite systems. Among these, one highlights
Wootter’s formula for the entanglement of formation of two-
qubit mixed states �16�, which still awaits a viable generali-
zation to multiqubit case. Others include corresponding re-
sults for highly symmetric states �17–19�. The issue of
entanglement in multipartite states is far more complex. No-
table achievements in this area include applications of the
relative entropy �20�, negativity �21� Schmidt measure �22�,
and the global entanglement measure proposed by Meyer
and Wallach �23�.

A measure of entanglement is a function on the space of
states of a multipartite system, which is invariant on indi-
vidual parts. Thus a complete characterization of entangle-
ment is the characterization of all such functions. Under the
most general local operations assisted by classical communi-
cation �LOCC�, entanglement is expected to decrease. A
measure of entanglement that decreases under LOCC is
called an entanglement monotone. On bipartite pure states

the sums of the k smallest eigenvalues of the reduced density
matrix are entanglement monotones. However, the number of
independent invariants �i.e., the entanglement measures� in-
creases exponentially as the number of particles N increases
and complete characterization rapidly becomes impractical.
A pragmatic approach would be to seek a measure which is
defined for any number of particles �scalable�, which is eas-
ily calculated, and which provides physically relevant infor-
mation or equivalently which passes the tests expected of a
good entanglement measure �13,14�.

In this paper, we present a global entanglement measure
for N-qubit pure states which is scalable, which passes most
of the tests expected of a good measure and whose value for
a given system can be determined experimentally, without
having a detailed prior knowledge of the state of the system.
The measure is based on the Bloch representation of multi-
partite quantum states �24�.

The paper is organized as follows. In Sec. II we give the
Bloch representation of an N-qubit quantum state and define
our measure ET. In Sec. III we compute ET for different
classes of N-qubit states, namely, the Greenberger-Horne-
Zeilinger �GHZ� and W states and their superpositions. In
Sec. IV we prove various properties of ET, including its
monotonicity, expected of a good entanglement measure. In
Sec. V we extend ET to N-qubit mixed states via the convex
roof and establish its monotonicity. In Sec. VI we introduce a
related measure which is additive and shares all other prop-
erties with ET. Finally, we conclude in Sec. VII.

II. BLOCH REPRESENTATION OF AN N-QUBIT STATE
AND THE DEFINITION OF THE MEASURE

Consider the generators �I ,�x ,�y ,�z����0 ,�1 ,�2 ,�3� of
the SU�2� group �Pauli matrices�. These Hermitian operators
form an orthogonal basis �under the Hilbert-Schmidt scalar
product� of the Hilbert space of operators acting on a single-
qubit state space. The N times tensor product of this basis
with itself generates a product basis of the Hilbert space of
operators acting on the N-qubit state space. Any N-qubit den-
sity operator � can be expanded in this basis. The corre-
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sponding expansion is called the Bloch representation of �
�24�.

In order to give the Bloch representation of a density op-
erator acting on the Hilbert space C2 � C2 � ¯ � C2 of an
N-qubit quantum system, we introduce the following nota-
tion. We use k,ki �i=1,2 , . . .� to denote a qubit chosen from
N qubits, so that k,ki �i=1,2 , . . .� take values in the set N
= �1,2 , . . . ,N�. The variables �k or �ki

for a given k or ki

span the set of generators of the SU�2� group for the kth or
kith qubit, namely, the set �Iki

,�1ki
,�2ki

,�3ki
� for the kith qu-

bit. For two qubits k1 and k2 we define

��k1

�k1� = �I2 � I2 � ¯ � ��k1
� I2 � ¯ � I2� ,

��k2

�k2� = �I2 � I2 � ¯ � ��k2
� I2 � ¯ � I2� ,

��k1

�k1���k2

�k2� = �I2 � I2 � ¯ � ��k1
� I2 � ¯ � ��k2

� I2

� I2� , �1�

where ��k1
and ��k2

occur at the k1th and k2th places �corre-

sponding to the k1th and k2th qubits, respectively� in the
tensor product and are the �k1

th and �k2
th generators of

SU�2�, ��k1
=1 ,2 ,3 and �k2

=1 ,2 ,3�, respectively. Then we
can write

� =
1

2N��
NI2 + 	

�k��N
	
�k

s�k
��k

�k� + 	
�k1,k2�

	
�k1

�k2

t�k1
�k2

��k1

�k1���k2

�k2�

+ ¯ + 	
�k1,k2,. . .,kM�

	
�k1

�k2
. . .�kM

t�k1
�k2

. . .�kM
��k1

�k1���k2

�k2�
¯ ��kM

�kM�

+ ¯ + 	
�1�2. . .�N

t�1�2. . .�N
��1

�1���2

�2�
¯ ��N

�N�
 . �2�

where s�k� is a Bloch vector �see below� corresponding to the
kth subsystem, s�k�= �s�k

��k=1
3 , which is a tensor of order 1

defined by

s�k
= Tr����k

�k�� = Tr��k��k
� , �3�

where �k is the reduced density matrix for the kth qubit. Here
�k1 ,k2 , . . . ,kM� , 1�M �N, is a subset of N and can be cho-
sen in � N

M � ways, contributing � N
M � terms in the sum

	�k1,k2,. . .,kM� in Eq. �2�, each containing a tensor of order M.
The total number of terms in the Bloch representation of � is
2N. We denote the tensors occurring in the sum 	�k1,k2,. . .,kM�
�1�M �N� by T�k1,k2,. . .,kM�= �t�k1

�k2
. . .�kM

�, which are defined

by

t�k1
�k2

. . .�kM
= Tr����k1

�k1���k2

�k2�
¯ ��kM

�kM��

= Tr��k1,k2,. . .,kM
���k1

� ��k2
� ¯ � ��kM

��

�4�

where �k1,k2,. . .,kM
is the reduced density matrix for the sub-

system �k1 ,k2 , . . . ,kM�. We call the tensor in the last term in
Eq. �2� T �N�.

From Eq. �4� we see that all the correlations between M
out of N qubits are contained in T �k1,k2,. . .,kM� and all the
N-qubit correlations are contained in T �N�. If � is an N-qubit
pure state we have

Tr��2� =
1

2N�1 + 	
k=1

N

�s�k��2 + 	
�k1,k2�

�T �k1,k2��2 + ¯

+ 	
�k1,k2,. . .,kM�

�T �k1,k2,. . .,kM��2 + ¯ + �T �N��2 = 1.

�5�

Any state �= ������ existing in a d2-dimensional Hilbert
space of operators acting on a d-dimensional Hilbert space of
kets can be expanded in the basis comprising d2−1 genera-
tors of SU�d� and the identity operator. The set of coeffi-
cients in this expansion, namely, �Tr���i�� , i=1,2 , . . . ,d2

−1, is a vector in Rd2−1 and is the Bloch vector of �. The set
of Bloch vectors and the set of density operators are in one-
to-one correspondence with each other. The set of Bloch vec-
tors for a given system forms a subspace of Rd2−1 denoted
B�Rd2−1�. The specification of this subspace for d�3 is an
open problem �25,26�. However, for pure states, the follow-
ing results are known �27�:

�s�2 =�d�d − 1�
2

,

Dr�Rd2−1� � B�Rd2−1� � DR�Rd2−1� , �6�

where Dr and DR are balls of radii r=� d
2�d−1� and R

=�d�d−1�
2 , respectively, in Rd2−1.

We propose the following measure for an N-qubit pure
state entanglement:

ET����� = ��T �N�� − 1� , �7�

where T �N� is given by Eq. �4� for M =N in the Bloch repre-
sentation of �= ������. The norm of the tensor T �N� appearing
in definition �7� is the Hilbert-Schmidt �Euclidean� norm
�T �N��2= �T �N� ,T �N��=	�1�2. . .�N

t�1�2. . .�N

2 . Throughout this
paper, by norm, we mean the Hilbert-Schmidt �Euclidean�
norm. We comment on the normalization of ET����� below.

III. GHZ AND W STATES

Before proving various properties of ET�����, we evaluate
it for states in the N-qubit GHZ or W class. A general N-qubit
GHZ state is given by

��� = �p�000 . . . 0� + �1 − p�111 . . . 1�, N � 2. �8�

A general element of T �N� is given by ti1i2. . .iN
= ����i1

� �i2
� ¯ � �iN

��� , ik=1,2 ,3 , k=1,2 , . . . ,N. The nonzero
elements of T �N� are t11. . .1=2�p�1− p�, t33. . .3= p+ �−1�N�1
− p�. Other nonzero elements of T �N� are those with 2k�2’s
and �N−2k��1’s, k=0,1 , . . . , �N

2 �, where �x� is the greatest in-
teger less than or equal to x �e.g., for N=3, t122, etc.�. These
are equal to �−1�k2�p�1− p�. This gives
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�T �N��2 = 4p�1 − p� + �p + �− 1�N�1 − p��2 + 4p�1 − p� 	
k=1

�N/2� �N

2k
 . �9�

Thus we get, for ET�����,

ET����� = �T�N�� − 1 =�4p�1 − p� + �p + �− 1�N�1 − p��2 + 4p�1 − p� 	
k=1

�N/2� �N

2k
 − 1. �10�

Equation �8�, with N=2, represents a general two-qubit en-
tangled state in its Schmidt decomposition,

��� = �p�00� + �1 − p�11� .

Thus Eq. �10� gives the entanglement in a two-qubit pure
state. Using Eq. �10� it is straightforward to see that ET�����
for an arbitrary two-qubit pure state is related to the concur-
rence by

ET����� = �1 + 2C2 − 1,

where the concurrence C for such a state is 2�p�1− p�.
Figure 1 plots ET����� in Eq. �10� as a function of p for

N=3. For the N-qubit GHZ �maximally entangled� state p
=1 /2, so that

RN = ET��GHZ�� =�1 +
1

4
�1 + �− 1�N�2 + 	

k=1

�N/2� �N

2k
 − 1.

�11�

We see that, as a function of N, ET��GHZ�� increases as a
polynomial of degree �N

2 �. Figure 2 plots ET��GHZ�� as a
function of N. ET��GHZ�� increases sharply with N as ex-
pected. Note that ET��GHZ���0 for the GHZ class of states.
Whenever appropriate, we normalize the entanglement of an
N-qubit state ���, ET�����, by dividing by RN=ET��GHZ��.

The N-qubit W state is given by

�W� =
1

�N
	

j

�00 . . . 1 j0 . . . 00�, N � 3,

where the jth term has a single 1 at the jth bit. The state

�W̃�= �k=1
N �1

�k��W� is given by �W̃�= 1
�N

	 j�11. . .0 j1. . .11� , N

�3, and has a single 0 at the jth bit. We note that �W̃� is
locally unitarily connected to �W� so that their entanglements
must have the same value. The general element of T �N� for
the state �= �W��W� is

ti1i2. . .iN
=

1

N
	
j=1

N

�00 . . . 1 j . . . 00��i1
� �i2

� ¯

� �iN
�00 . . . 1 j . . . 00� +

1

N
	

j,l=1;j�l

N

�00 . . . 1 j . . . 00��i1

� �i2
� ¯ � �iN

�00 . . . 1l . . . 00� .

Only the first term contributes to t33. . .33=−1. Other nonzero
elements have the form t3. . .31j3. . .31l3. . .3= 2

N = t3. . .32j3. . .32l3. . .3.
There are � N

2 � elements of each of these two types, so that

�T �N��2 = 1 + 2� 2

N
2�N

2
 = 1 + 4

N − 1

N
, �12�
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FIG. 1. Variation of ET����� �Eq. �10�� for N=3, expressed in
units of R3, with parameter p.

0 2 4 6 8 10
0

5

10

15

20

25

N

E

FIG. 2. Variation of RN=ET��GHZ�� �Eq. �11�� with number of
qubits N.
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ET��W�� = �T �N�� − 1 =�1 + 4
N − 1

N
− 1. �13�

It is straightforward to check that ET��W��=ET��W̃�� as ex-
pected. Note that ET��W���0.

Next we consider a superposition of �W� and �W̃� states,

��s,��=�s�W�+�1−sei��W̃�. It is clear that the entanglement
of ��s,�� cannot depend on the relative phase �, as ��s,�� is
invariant under the local unitary transformation ��0� , �1��
→ ��0� ,ei��1�� up to an overall phase factor. As we shall
prove below, ET is invariant under local unitary transforma-
tions. Figure 3 shows the entanglement of ��s,�� as a function
of s, calculated using our measure.

An important example of a W state and its generalizations
is the one-dimensional spin-1

2 Heisenberg antiferromagnet,
on a lattice of size N, with periodic boundary conditions,
given by the Hamiltonian

HN = 	
j=1

N

XjXj+1 + Y jY j+1 + ZjZj+1, �14�

where the subscripts are mod N and X ,Y ,Z denote Pauli op-
erators �x ,�y ,�z, respectively. HN commutes with Sz=	Zj,
so the eigenstate of HN is a superposition of basis vectors
�b1¯bn� where s of b1¯bN are ones and N−s are zeros for
some fixed 0�s�N. When s=1, the translational invariance
of HN implies that the eigenstates are

��N
�k�� =

1
�N

	
j=0

N−1

eikj�00 . . . 1 j0 . . . 0� �15�

where the jth summand has a single 1 at the jth bit just like
the W state and the wave number k= 2	m

N for some integer
0�m�N−1. The state ��N

�k�� is locally unitarily transformed
to the W state so that it has the same value of ET��W�� or

ET��W̃��.
For s�2 the eigenstates of HN have the form

��N�s�� =
1

��N

s
 	

�j1. . .js�
�00 . . . 1 j0 . . . 1 js

0� , �16�

where 1 occurs at j1 . . . js, �j1 . . . js��N= �1,2 , . . . ,N�, and
can be chosen in � N

s � ways. We see that for ��N�s��, t33. . .3
=1. For even N, t1. . .12. . .23. . .3 with x 1’s and y 2’s, corre-
sponding to the average of x�x’s, y �y’s, and N−x−y �z’s,
we get, for even x and even y,

t1. . .12. . .23. . .3 = �2� x

x

2
�� y

y

2
� − � x + y

�x + y�
2

��� N − x − y

s −
�x + y�

2
� .

Since ��N�s�� is a symmetric state, any permutation of its
indices does not change the value of an element of T �N� �24�,
so that

�T ��N�s��
�N� �2 = 1 +

1

�N

s
2� 	

x+y=2

x,y even

2s �2� x

x

2 ��
y

y

2 �
− � x + y

�x + y�
2 ��

2

� N − x − y

s −
�x + y�

2 �
2

�N

x
�N − x

y
� .

Figure 4 shows the variation of ET (��N�s��)= �T ��N�s��
�N� �−1

with s. We see that it is maximum at s= N
2 , which is a char-

acteristic of the ground state of HN, as expected. Note that
ET(��N� N

2 ��) for the state �s= N
2 � rises far more rapidly than

the entanglement of the N-qubit GHZ state RN=ET��GHZ��
�Eq. �11�� with the number of spins �qubits� N. This can be
understood by noting that ��N� N

2 �� for s= N
2 can be written as

a superposition of 1
2 � N

N/2 � N-qubit GHZ states. For example,
��4�2�� can be written as the superposition of three four-qubit
GHZ states,

��4�2�� =
1
�3

� 1
�2

��0011� + �1100�� +
1
�2

��0101� + �1010��

+
1
�2

��1001� + �0110�� .

As N increases, initially ET(��N� N
2 ��) is comparable to RN,

but after N=16 the ratio
ET(��N�N

2
��)

RN
increases very rapidly,

reaching 107 for 100 qubits. Also, as N increases, ET(��N�s��)
falls off more rapidly as s deviates from N

2 . We are presently
trying to understand this behavior.

Finally, in this section, we consider the superpositions of
W and GHZ states,

��W+GHZ�s,��� = �s�GHZ� + �1 − sei��W� , �17�

also considered in �28�. For three qubits, N=3, a direct cal-
culation gives, for this state,

�T�N��2 = 4s2 + 6s�1 − s� +
11

3
�s − 1�2 �0 � s � 1� ,

0 0.2 0.4 0.6 0.8 1

0.65

0.7
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0.8

0.85

0.9

0.95

1

s

E

FIG. 3. Variation of ET���s,���, expressed in units of RN, with
the superposition parameter s, for N=3.
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ET���W+GHZ�s,���� = �T��N�s��
N � − 1, �18�

which coincides with the corresponding values of the W�s
=0� and GHZ�s=1� states. Note that ET(��W+GHZ�s ,���) is
independent of the phase �, in contrast to the entanglement
measure used in �28�. Figure 5 shows the dependence of
ET(��W+GHZ�s ,���) on s.

IV. PROPERTIES OF ET(��‹)

To be a valid entanglement measure, ET����� must have
the following properties �29,30�.

�a� �i� Positivity: ET������0 for all N-qubit pure states
���. �ii� Discriminance: ET�����=0 if and only if ��� is a
separable �product� state.

�b� LU invariance: ET����� must be invariant under local
unitary �LU� operations.

�c� Monotonicity: local operators and classical communi-
cation do not increase the expectation value of ET�����.

We prove the above properties for ET�����. We also prove
the following additional properties for ET�����:

�d� Continuity: ��������− ��������→0⇒ �E�����−E������
→0.

�e� Superadditivity: ET���� � �����ET�����+ET�����.
We need the following result, which we have proved in

�24�.
Proposition 0. A pure N-partite quantum state is fully

separable �product state� if and only if

T�N� = s�1� � s�2� � ¯ � s�N�, �19�

where s�k� is the Bloch vector of the kth subsystem reduced
density matrix. The symbol � stands for the outer product of
vectors defined as follows.

Let u�1� ,u�2� , . . . ,u�M� be vectors in Rd1
2−1 ,

Rd2
2−1 , . . . ,RdM

2 −1. The outer product u�1� �u�2� � ¯ �u�M� is a
tensor of order M �M-way array�, defined by

ti1i2¯iM
= ui1

�1�ui2
�2�

¯ uiM
�M�, 1 � ik � dk

2 − 1,

k = 1,2, . . . ,M .

Proposition 1. Let ��� be an N-qubit pure state. Then,
�T�

�N��=1 if and only if ��� is a separable �product� state.
Proof. By Proposition 0, ��� is separable �product� if and

only if

T�N� = s�1� � s�2� � ¯ � s�N� = �k=1
N s�k�.

As shown in �31,32�,

��k=1
N s�k�,�k=1

N s�k�� = 
k=1
N �s�k�,s�k�� , �20�

where �. , .� denotes the scalar product. This immediately
gives, for qubits,

�T�N��2 = �T�N�,T�N�� = 
k=1
N �s�k�,s�k�� = 
k�s�k��2 = 1.

�
Proposition 1 immediately gives the following proposi-

tion.
Proposition 2. Let ��� be an N-qubit pure state. Then

ET�����=0 if and only if ��� is a product state.
Proposition 3. Let ��� be an N-qubit pure state. Then

�T�N���1.
It is instructive to show this result by direct computation

of T�N� for the cases of two- and three-qubit states. First,
consider a general two-qubit state
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FIG. 4. Variation of ET(��N�s��), �in units of RN�, with s, for N
= �a� 20 and �b� 100 �see text�.
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FIG. 5. Variation of ET(��W+GHZ�s ,���), expressed in units of
RN, with the superposition parameter s, for N=3.
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��� = a1�00� + a2�01� + a3�10� + a4�11�, 	
k

�ak�2 = 1.

By direct computation we get

�T�2��2 = 1 + 8��a2a3� − �a1a4��2 � 1. �21�

This means, via Proposition 2, that ��� is a product state if
�a2a3�= �a1a4�. Next, consider a three-qubit state in the gen-
eral Schmidt form �33�

��� = �0�000� + �1ei��100� + �2�101� + �3�110� + �4�111� ,

�22�

where �i�0, i=0,1 ,2 ,3 ,4, and 	i�i
2=1.

By direct calculation of �T�3�� we get

�T�3��2 � 1 + 12�0
2�4

2 + 8�0
2�2

2 + 8�0
2�3

2 + 8��1�4 − �2�3�2 � 1.

�23�

Here the conditions for the product state become �1�4
=�2�3 and �0=0. We now prove Proposition 3 for a general
N-qubit state ���.

If ��� is not a product of N single-qubit states �i.e., ��� is
not N-separable� then it is �N−k�-separable, k=2,3 , . . . ,N.
Viewing the N-qubit system as a system comprising N−k
qubits, each with Hilbert space of dimension 2, and k en-
tangled qubits with the Hilbert space of dimension 2k, we can
apply Proposition 0 to this separable system of N−k+1 parts
in the state ���. We get T���

�N�= �s�1�� � �s�2�� � ¯ � �s�N−k��
� �s�N−k+1��.

This implies, as in Proposition 1, via Eqs. �20� and �6�
that

�T���
�N�� = 
i=1

N−k+1��s�i���2 =
d�d − 1�

2
� 1 �d = 2k� . �24�

If k=N we attach an ancilla qubit in an arbitrary state ��� and
apply Proposition 0 to an �N+1�-qubit system in the state
��� � ��� where ��� is the N-qubit entangled state. This result,
combined with Proposition 1, completes the proof. �

Proposition 3 immediately gives the following proposi-
tion.

Proposition 4. ET������0.
We now prove that ET����� is nonincreasing under local

operations and classical communication. Any such local ac-
tion can be decomposed into four basic kinds of operations
�34�: �i� appending an ancillary system not entangled with
the state of the original system, �ii� performing a unitary
transformation, �iii� performing measurements, and �iv�
throwing away, i.e., tracing out, part of the system. It is clear
that appending ancilla cannot change �T�N��. We prove that
ET����� does not increase under the remaining three local
operations.

Proposition 5. Let Ui �i=1,2 , . . . ,N� be local unitary
operators acting on the Hilbert spaces of subsystems
H�i� �i=1,2 , . . . ,N�, respectively. Let

� = �� i=1
N Ui����� i=1

N Ui
†� �25�

for density operators � and �� acting on H= � i=1
N H�i� and let

T�N� and T ��N� denote the N-partite correlation tensors for �
and ��, respectively. Then

�T ��N�� = �T �N��, so that ET��� = ET���� .

Proof. Let U denote a one-qubit unitary operator; then it is
straightforward to show that U��U†=	�O����, where �O���
is a real matrix satisfying OOT= I=OTO. It is an element of
the rotation group O�3�. Now consider

ti1i2¯iN
� = Tr����i1

� �i2
� ¯ � �iN

�

= Tr���� i=1
N Ui��i1

� �i2
� ¯ � �iN

�� i=1
N Ui

†��

= Tr��U1�i1
U1

†
� U2�i2

U2
†

� ¯ � UN�iN
UN

† �

= 	
�1¯�N

Tr����1
� ��2

� ¯ � ��N
�

Oi1�1

�1� Oi2�2

�2�
¯ OiN�N

�N�

= 	
�1¯�N

t�1¯�N
Oi1�1

�1� Oi2�2

�2�
¯ OiN�N

�N�

= �T �N�1O�1�2O�2�  ¯ NO�N��i1i2¯iN
,

where k is the k-mode product of a tensor T �N�

�R33¯3 by the orthogonal matrix O�k��R33 �31,32,35�.
Therefore,

T ��N� = T �N�1O�1�2O�2�  ¯ NO�N�.

By Proposition 3.12 in �31� we get

�T ��N�� = �T �N�1O�1�2O�2�  ¯ NO�N�� = �T �N�� .

�
Proposition 6. If a multipartite pure state ��� is subjected

to a local measurement on the kth qubit giving outcomes ik
with probabilities pik

and leaving the residual N-qubit pure
state ��ik

�, then the expected entanglement 	ik
pik

ET���ik
�� of

the residual state is not greater then ET�����,

	
ik

pik
ET���ik

�� � ET����� . �26�

Proof. Local measurements can be expressed as the tensor

product matrix D̄= D̄�1� � D̄�2� � ¯ � D̄�N� on the expanded
coherence vector T �36�. The expanded coherence vector T is
the extended correlation tensor T �defined below� viewed as
a vector in the real space of appropriate dimension. The ex-
tended correlation tensor T is defined by the equation

� =
1

2N 	
i1i2¯iN=0

3

Ti1i2¯iN
�i1

� �i2
� ¯ � �iN

, �27�

where �ik
� �I ,�x ,�y ,�z� is the ikth local Pauli operator on

the kth qubit ��0= I� and the real coefficients Ti1i2¯iN
are the

components of the extended correlation tensor T. Equation
�2� and Eq. �27� are equivalent with T000. . .0=1, Ti100. . .0

=si1
�1� , . . ., Ti1i2. . .iM00. . .0=T i1i2¯iM

�1,2,¯M� , . . ., and Ti1i2. . .iN

=T i1i2. . .iN
�N� , i1 , i2 , . . . , iN�0. D̄�k� , k=1,2 , . . . ,n, are 44

matrices. Without losing generality, we can assume the local
measurements to be positive operator valued measures

�POVMs�, in which case D̄�k�=diag�1,D�k�� and the 33
matrix D�k� is contractive, D�k�TD�k�� I �36�. The local
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POVMs acting on an N-qubit state � correspond to the map
��M��� given by

M��� = 	
i1i2¯iN

Li1
�1�

� Li2
�2�

� ¯ � LiN
�N��Li1

�1�†
� Li2

�2�†
� ¯

� LiN
�N�†,

where Lik
�k� are the linear, positive, trace-preserving operators

satisfying 	ik
Lik

�k�†Lik
�k�= I and �Lik

�k� ,Lik
�k�†�=0. The resulting

correlation tensor of M��� can be written as

T ��N� = T �N�1D�1�2D�2�  ¯ ND�N�,

where D�k� is a 33 matrix and D�k�TD�k�� I.
The action of a POVM on the kth qubit corresponds to the

map Mk��������=	ik
Mik

�Mik
† , where Mik

= I � ¯Lik
�k�

� ¯

� I, 	ik
Lik

�k�†Lik
�k�= I, and �Lik

�k� ,Lik
�k�†�=0, with the resulting

mixed state 	ik
pik

��ik
���ik

�, where ��ik
� is the N-qubit pure

state which results after the outcome ik with probability pik
.

The average entanglement of this state is

	
ik

pik
ET���ik

���ik
�� = 	

ik

pik
�T ��ik

���N�� − 1 = 	
ik

pik
�T ���

�N�kD
�k��

− 1 = 	
ik

pik
�D�k�T�k������� − 1,

where, by Proposition 3.7 in �31�, D�k�T�k������ is the kth
matrix unfolding �24� of T ���

�N�kD
�k�. Therefore, from the

definition of the Euclidean norm of a matrix, �A�
=�Tr�AA†�, �37� we get

	
ik

pik
ET���ik

���ik
�� = 	

ik

pik
�Tr�D�k�T�k�

�����T�k�
† �����D�k�T��1/2 − 1

= 	
ik

pik
�Tr�D�k�TD�k�T�k�

�����T�k�
† �������1/2 − 1

� 	
ik

pik
�Tr�T�k������T�k�

† ������ − 1

= �T ���
�N�� − 1 = ET����� ,

because D�k�TD�k�� I, and 	ik
pik

=1. We have also used the
fact that the Euclidean norm of a tensor equals that of any of
its matrix unfoldings. �

As an example, we consider the four-qubit state �38�

���ABCD =
1
�6

��0000� + �0011� + �0101� + �0110� + �1010�

+ �1111�� . �28�

A POVM �A1 ,A2� is performed on the subsystem A, which
has the form A1=U1diag�� ,��V and A2
=U2diag��1−�2 ,�1−�2�V. Due to LU invariance of �T �N��
we need only consider the diagonal matrices in which the
parameters are chosen to be �=0.9 and �=0.2. After the
POVM, two outcomes ��1�=A1��� /�p1 and ��2�

=A2��� /�p2 are obtained, with the probabilities as p1
=0.5533 and p2=0.4467. We find

ET����� = 0.7802, ET���1�� = 0.0725/p1,

ET���2�� = 0.0436/p2.

This gives

ET����� − �p1ET���1�� + p2ET���2��� = 0.6641 � 0.

This is to be contrasted with the similar calculation in �38�,
with the same state ��� in Eq. �28� and the same POVM
given above.

Proposition 7. Let ��� be an N-qubit pure state. Let �
denote the reduced density matrix after tracing out one qubit
from the state ���. Then

�T �
�N−1�� � �T ���

�N��

with equality only when ���= ��� � ���, where ��� is the state
of the qubit which is traced out.

Proof. We prove this for a special case whose generaliza-
tion is straightforward. Let ���=a�b1 . . .bN�
+b�b1� . . .bN� � , �a�2+ �b�2=1. Here �bi� and �bi�� are the eigen-
states of �z

�i� operating on the ith qubit. Now consider the set
S of N-fold tensor products of qubit operators ���� , �
=1,2 ,3, namely, S= ���1

� ��2
� ¯ � ��N

� , �1 , . . . ,�N

=1,2 ,3. Choosing �1 , . . . ,�N=3, we get �3 � �3 � ¯

� �3�b1 . . .bN�= � �b1 . . .bN�. We can choose an operator from
S, denoted B, such that B �b1 . . .bN�= � �b1� . . .bN� �. If B con-
tains q�N �x operators we can replace k�q of them by �y
operators. We denote the resulting tensor product operator by
Bk�B0=B�. We have Bk�b1 . . .bN�= � �i�k�b1� . . .bN� �. Then,

�b1 . . . bN��3 � ¯ � �3�b1 . . . bN�

= � 1 = �b1� . . . bN� ��3 � ¯ � �3�b1� . . . bN� � ,

�b1 . . . bN�B�b1� . . . bN� � = � 1 = �b1� . . . bN� �B�b1 . . . bN� ,

�b1� . . . bN� �Bk�b1 . . . bN� = � �i�k,

�b1 . . . bN�Bk�b1� . . . bN� � = � �− i�k.

Now,

t�1. . .�N
= �����1

� ¯ � ��N
���

= �a�2�b1 . . . bN���1
� ¯ � ��N

�b1 . . . bN�

+ �b�2�b1� . . . bN� ���1
� ¯ � ��N

�b1� . . . bN� �

+ a�b�b1 . . . bN���1
� ¯ � ��N

�b1� . . . bN� �

+ ab��b1� . . . bN� ���1
� ¯ � ��N

�b1 . . . bN� .

The nonzero elements of t�1. . .�N
are t33. . .3= � �a�2� �b�2, tB

= �ab��a�b= �2�a��b�cos��a−�b�,
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tBk
= � �i�kab� � �− i�ka�b

= ��2�a��b�cos��a − �b� if k is even,

�2�a��b�sin��a − �b� if k is odd.



We get 	k=0
q � q

2k �elements with cos��a−�b� and 	k=0
q � q

2k+1 �
elements with sin��a−�b�. If q is odd �for the given state
���� the number of cosines and the number of sines are equal.
When q is even the number of cosines exceeds by 1. Finally
we get

�T ���
�N��2 = �� �a�2 � �b�2�2 + 4�a�2�b�2 cos2��a − �b�	

k=0

q � q

2k


+ 4�a�2�b�2 sin2��a − �b�	
k=0

q � q

2k + 1
 .

Note that, using �a�2+ �b�2=1, it is easy to see that �T ���
�N��

�1, showing that ET�0. Next we consider

������ = �a�2�b1 . . . bN��b1 . . . bN� + �b�2�b1� . . . bN� ��b1� . . . bN� �

+ ab��b1 . . . bN��b1� . . . bN� � + a�b�b1� . . . bN� ��b1 . . . bN�

and trace out the Nth qubit to get the �N−1�-qubit reduced
density matrix

� = �a�2�b1 . . . bN−1��b1 . . . bN−1� + �b�2�b1� . . . bN−1� ��b1� . . . bN−1� �

+ ab��b1 . . . bN−1��b1� . . . bN−1� ��bN�bN� �

+ a�b�b1� . . . bN−1� ��b1 . . . bN−1��bN� �bN� .

Now

t�1. . .�N−1
= Tr����1

� ��2
� ¯ ��N−1

�

= �a�2�b1 . . . bN−1���1
� ¯ � ��N−1

�b1 . . . bN−1�

+ �b�2�b1� . . . bN−1� ���1
� ¯ � ��N−1

�b1� . . . bN−1� �

+ a�b�b1 . . . bN−1���1
� ¯ � ��N−1

�b1� . . . bN−1� �

�bN�bN� � + ab��b1� . . . bN−1� ���1
� ¯

� ��N−1
�b1 . . . bN−1��bN� �bN� .

We have for N−1 tensor product operators �3 � �3 � ¯

� �3�b1 . . .bN−1�= � �b1 . . .bN−1�. We construct the operators
D and Dk corresponding to B and Bk acting on N−1 qubits.
We then get D�b1 . . .bN−1�= � �b1� . . .bN−1� � and Dk�b1 . . .bN−1�
= � �i�k�b1� . . .bN−1� � Now, the nonzero elements of T �

�N−1�

are t33. . .3= � �a�2� �b�2, tD= �ab��bN �bN� ��a�b�bN� �bN�
=2�a��b���bN� �bN��cos��a−�b−��,

tDk
= � �i�kab��bN�bN� � � �− i�ka�b�bN� �bN�

= ��2�a��b���bN� �bN��cos��a − �b − �� if k is even,

�2�a��b���bN� �bN��sin��a − �b − �� if k is odd.



Finally we get

�T �
�N−1��2 = �� �a�2 � �b�2�2 + 4�a�2�b�2��bN� �bN��2

cos2��a − �b − ��	
k=0

q� �q�

2k
 + 4�a�2�b�2��bN� �bN��2

sin2��a − �b − ��	
k=0

q� � q�

2k + 1
 ,

where q��q is the number of �1 operators in D. Since
��bN� �bN��2�1 we see that

�T �
�N−1��2 � �T ���

�N��2,

equality occurring when �bN�= �bN� �, in which case ���= ���
� �bN�. It is straightforward, but tedious, to elevate this proof
for the general case

��� = 	
�1. . .�N

a�1. . .�N
�b�1

. . . b�N
�, �i = 0,1.

Basically we have to keep track of � r
2 � B type of operators,

where r is the number of terms in the expansion of ���, in
order to obtain all nonzero elements of T ���

�N�. When the Nth
particle is traced out, the corresponding elements of T �

�N−1�

get multiplied by the overlap amplitudes, which leads to the
required result. �

Continuity of ET. We show that for N-qubit pure states
��������− ��������→0⇒ �ET�����−ET������→0.

Proof. ��������− ��������→0⇒ �T ���
�N�−T ���

�N��→0. But
�T ���

�N�−T ���
�N��� ��T ���

�N��− �T ���
�N���. Therefore �T ���

�N�−T ���
�N��

→0⇒ ��T ���
�N��− �T ���

�N���→0 ⇒�ET�����−ET������→0. �

A. Entanglement of multiple copies of a given state

LU invariance. We show that ET for multiple copies of the
N-qubit pure state ��� is LU invariant. Consider a system of
Nk qubits in the state ���= ��� � ��� � ¯ � ��� �k copies�.
It is straightforward to check that �24�

T ���
�N� = T ���

�N�
� T ���

�N�
� ¯ � T ���

�N�. �29�

This implies, in a straightforward way, that

�T ���
�N�� = �T ���

�N��k.

Since by Proposition 5 �T ���
�N�� is LU invariant, so is �T ���

�N��.
Let ��� be an N-qubit pure state and ���= ��� � ���. Then

ET����� is expected to satisfy

ET����� � ET����� .

We again use the fact that

T ���
�N� = T ���

�N�
� T ���

�N�,

which gives

�T ���
�N�� = �T ���

�N��2.

Since �T ���
�N���1 we get �T ���

�N��� �T ���
�N�� or

ET����� � ET����� .

Superadditivity. We have to show, for N-qubit states ���
and ���, that

ALI SAIF M. HASSAN AND PRAMOD S. JOAG PHYSICAL REVIEW A 77, 062334 �2008�

062334-8



ET���� � ���� � ET����� + ET����� . �30�

We already know that for ���= ��� � ���

�T ���
�N�� = �T ���

�N���T ���
�N�� .

Thus Eq. �30� gets transformed to

�T ���
�N���T ���

�N�� − 1 � �T ���
�N�� + �T ���

�N�� − 2,

which is true for �T ���
�N���1 and �T ���

�N���1. �

B. Computational considerations

Computation or experimental determination of ET in-
volves 3N elements of T �N� so that it increases exponentially
with the number of qubits N. However, for many important
classes of states, ET can be easily computed and increases
only polynomially with N. We have already computed ET for
the class of N-qubit W states, GHZ states, and their superpo-
sitions. We have also computed ET for an important physical
system like the one-dimensional Heisenberg antiferromagnet.
For symmetric or antisymmetric states, T �N� is supersymmet-
ric, that is, the values of its elements are invariant under any
permutation of its indices �24�. This reduces the problem to
the computation of 1

2 �N+1��N+2� distinct elements of T �N�,
which is quadratic in N.

C. Entanglement dynamics: Grover algorithm

We show that ET can quantify the evolution of entangle-
ment. We consider Grover’s algorithm. The goal of Grover’s
algorithm is to convert the initial state of N qubits, say
�0. . .0�, to a state that has probability bounded above 1

2 of
being in the state �a1 . . .aN�, using

Ua�b1 . . . bN� = �− 1�
�ajbj�b1 . . . bN�

the fewest times possible. Grover showed that this can be
done with O��2N� uses of Ua by starting with the state

1
�2N 	

x=0

2N−1

�x� = H�N�0 . . . 0� ,

where

H =
1
�2

�1 1

1 − 1
 ,

and then iterating the transformation H�NUaH�NUa on this
state �23�. The initial state is a product state as is the target
state, but intermediate states ��k� are entangled for k�0
iterations. Figure 6 shows the development of ET(���k��)
with number of iterations k, for six qubits. The values of k
for which ET vanishes are the iterations at which the prob-
ability of measuring �a1 . . .aN� is close to 1. Thus ET can be
used to quantify the evolution of an N-qubit entangled state.

V. EXTENSION TO MIXED STATES

The extension of ET to mixed states � can be made via the
use of the convex roof �or hull) construction as was done for

the entanglement of formation �16�. We define ET��� as a
minimum over all decompositions �=	ipi��i���i� into pure
states, i.e.,

ET��� = min
�pi,�i�

	
i

piET���i�� . �31�

The existence and uniqueness of the convex roof for ET is
guaranteed because it is a continuous function on the set of
pure states �39�. This entanglement measure is expected to
satisfy conditions �a�, �b�, and �c� given in Sec. IV and is
expected to be �d� convex under discarding of information,
i.e.,

	
i

piET��i� � ET�	
i

pi�i� . �32�

The criteria �a�–�d� above are considered to be the minimal
set of requirements for any entanglement measure so that it
is an entanglement monotone �29�.

Evidently, criteria �a� and �b� are satisfied by ET��� de-
fined via the convex roof as they are satisfied by ET for pure
states. Condition �d� follows from the fact that every convex
hull �roof� is a convex function �40�. We need to prove �c�,
which is summarized in the following proposition.

Proposition 8. If an N-qubit mixed state � is subjected to
a local operation on the ith qubit giving outcomes k with
probabilities pk and leaving the residual N-qubit mixed state
�k, then the expected entanglement 	kpkET��k� of the re-
sidual state is not greater than the entanglement ET��� of the
original state,

	
k

pkET��k� � ET��� .

�If the operation is simply throwing away part of the system,
then there will be only one value of k, with unit probability.�

The proof follows from the monotonicity of ET����� for
pure states that is Propositions 5, 6, and 7. Bennett et al.
prove a version of Proposition 8 in �34�, which applies to any
measure satisfying Propositions 5, 6, and 7. Thus the same
proof applies to Proposition 8, so we skip it.

Note that any sequence of local operations comprises lo-
cal operations drawn from the set of basic local operations
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FIG. 6. Entanglement in Grover’s algorithm for six qubits as a
function of number of iterations.
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�i�–�iv� above, so that Proposition 8 applies to any such se-
quence. Thus we can say that the expected entanglement of
an N-qubit system, measured by ET���, does not increase
under local operations.

VI. A RELATED ENTANGLEMENT MEASURE

We consider the following entanglement measure. Con-
sider

ET����� = log2�T �N�� = log2�ET����� + 1� ,

where T �N� is the N-way correlation tensor occurring in the
Bloch representation of �= ������.

Proofs of Propositions 1–8 easily go through for ET�����.
We prove continuity as follows.

Continuity of ET�����. We have to show, for two N-qubit
states ��� and ���, that ��������− ��������→0⇒ �ET�����
−ET������→0. We have ��������− ��������→0⇒ �T ���

�N�

−T ���
�N��→0. But �T ���

�N�−T ���
�N��� ��T ���

�N��− �T ���
�N���. Further,

whenever �T ���
�N���1 and ��T ���

�N���1� we have ��T ���
�N��

− �T ���
�N���� �log2��T ���

�N���−log2��T ���
�N����. Thus �T ���

�N�−T ���
�N��

→0⇒ ��T ���
�N��− �T ���

�N���→0⇒ �log2��T ���
�N���−log2��T ���

�N����→0
⇒ �ET�����−ET������→0.

However, ET����� has the added advantage that it is addi-
tive �while ET����� is superadditive�. Indeed, from Sec. IV A
we see that for k copies

ET���� � ��� � ¯ � ���� = kET����� .

Similarly ET���� � ����=ET�����+ET�����.
The extension of ET����� to mixed states via convex roof

construction is similar to that of ET�����. Thus ET����� has all
the properties of ET�����, with the additional property that
ET����� is additive, while ET����� is superadditive.

VII. CONCLUSION

In conclusion, we have developed an experimentally vi-
able entanglement measure for N-qubit pure states, which
passes almost all the tests for being a good entanglement
measure. This is a global entanglement measure in the sense
that it does not involve partitions or cuts of the system in its
definition or calculation. This measure has quadratic compu-
tational complexity for symmetric or antisymmetric states.
Computational tractability is not a serious problem if N is not
too large, and the measure can be easily computed for sys-
tems comprising small numbers of qubits, which can have
many important applications such as teleportation of multi-
qubit states, quantum cryptography, dense coding, distributed
evaluation of functions �41�, etc. However, finding other
classes of states for which ET can be computed polynomially
will be useful. It will be very interesting to seek applications
of this measure to situations like quantum phase transitions
�11�, transfer of entanglement along spin chains �42�, NOON
states in quantum lithography �43�, etc. Finally, we have ex-
tended our measure to mixed states and established its vari-
ous properties, in particular, its monotonicity. We may also
note that neither its definition nor its properties depends in an
essential way on the fact that we are dealing with qubits, so
that this measure can be defined and applied to a general
N-partite quantum system.
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