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Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However,
experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced
perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians
consisting only of two-body interactions. These three-body effective interactions arise from the third order in
perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of
quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k-body
effective interactions from two-body Hamiltonians. These effective interactions arise from the kth order in
perturbation theory.
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I. PERTURBATIVE GADGETS

Perturbative gadgets were introduced to construct a two-
local Hamiltonian whose low-energy effective Hamiltonian
corresponds to a desired three-local Hamiltonian. They were
originally developed by Kempe, Kitaev, and Regev in 2004
to prove the QMA-completeness1 of the two-local Hamil-
tonian problem and to simulate three-local adiabatic quantum
computation using two-local adiabatic quantum computation
�1�. Perturbative gadgets have subsequently been used to
simulate spatially nonlocal Hamiltonians using spatially lo-
cal Hamiltonians �2�, and to find a minimal set of interac-
tions for universal adiabatic quantum computation �3�. It was
also pointed out in �6� that perturbative gadgets can be used
recursively to obtain k-local effective interactions using a
2–local Hamiltonian. Here we generalize perturbative gad-
gets to directly obtain arbitrary k-local effective interactions
by a single application of kth order perturbation theory. Our
formulation is based on a perturbation expansion due to
Bloch �4�.

A k-local operator is one consisting of interactions be-
tween at most k qubits. A general k-local Hamiltonian on n
qubits can always be expressed as a sum of r terms,

Hcomp = �
s=1

r

csHs �1�

with coefficients cs, where each term Hs is a k-fold tensor
product of Pauli operators. That is, Hs couples some set of k
qubits according to

Hs = �s,1�s,2 ¯ �s,k, �2�

where each operator �s,j is of the form

�s,j = n̂s,j · �� s,j , �3�

where n̂s,j is a unit vector in R3, and �� s,j is the vector of Pauli
matrices operating on the jth qubit in the set of k qubits acted
upon by Hs.

We wish to simulate Hcomp using only two-local interac-
tions. To this end, for each term Hs, we introduce k ancilla
qubits, generalizing the technique of �1�. There are then rk
ancilla qubits and n computational qubits, and we choose the
gadget Hamiltonian as

Hgad = �
s=1

r

Hs
anc + ��

s=1

r

Vs, �4�

where

Hs
anc = �

1�i�j�k

1

2
�I − Zs,iZs,j� , �5�

and

Vs = �
j=1

k

cs,j�s,j � Xs,j . �6�

and

cs,j = �cs if j = 1

1 otherwise.
�

For each s there is a corresponding register of k ancilla qu-
bits. The operators Xs,j and Zs,j are Pauli X and Z operators
acting on the jth ancilla qubit in the ancilla register associ-
ated with s. For each ancilla register, the ground space of
Hs

anc is the span of �000¯	 and �111¯	 �see Fig. 1�. � is the
small parameter in which the perturbative analysis is carried
out.

For each s, the operator

Xs
�k = Xs,1 � Xs,2 � ¯ � Xs,k �7�

acting on the k ancilla qubits in the register s commutes with
Hgad. Since there are r ancilla registers, Hgad can be block
diagonalized into 2r blocks, where each register is in either
the +1 or −1 eigenspace of its Xs

�k. In this paper, we analyze

*sjordan@mit.edu
†farhi@mit.edu
1For a definition of QMA �Quantum Merlin-Arthur� and QMA-
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only the block corresponding to the +1 eigenspace for every
register. This +1 block of the gadget Hamiltonian is a Her-
mitian operator, that we label H+

gad. We show that the effec-
tive Hamiltonian on the low-energy eigenstates of H+

gad ap-
proximates Hcomp. For many purposes this is sufficient. For
example, suppose one wishes to simulate a k-local adiabatic
quantum computer using a two-local adiabatic quantum com-
puter. If the initial state of the computer lies within the all +1
subspace, then the system will remain in this subspace
throughout its evolution. To put the initial state of the system
into the all +1 subspace, one can initialize each ancilla reg-
ister to the state

� + 	 =
1

2

��000. . .	 + �111. . .	� , �8�

which is the ground state of �sHs
anc within the +1 subspace.

Given the extensive experimental literature on the prepara-
tion of states of the form �+ 	, sometimes called cat states, a
supply of such states seems a reasonable resource to assume.

The purpose of the perturbative gadgets is to obtain
k-local effective interactions in the low-energy subspace. To
quantify this, we use the concept of an effective Hamil-
tonian. We define this to be

Heff�H,d� � �
j=1

d

Ej�� j	�� j� , �9�

where ��1	 , . . . , ��d	 are the d lowest energy eigenstates of a
Hamiltonian H, and E1 , . . . ,Ed are their energies.

In Sec. III, we calculate Heff�H+
gad ,2n� perturbatively to

kth order in �. To do this, we write Hgad as

Hgad = Hanc + �V , �10�

where

Hanc = �
s=1

r

Hs
anc �11�

and

V = �
s=1

r

Vs. �12�

We consider Hanc to be the unperturbed Hamiltonian and �V
to be the perturbation. We find that �V perturbs the ground
space of Hanc in two separate ways. The first is to shift the
energy of the entire space. The second is to split the degen-
eracy of the ground space. This splitting arises at kth order in
perturbation theory, because the lowest power of �V that has
nonzero matrix elements within the ground space of Hanc is
the kth power. It is this splitting which allows the low-energy
subspace of H+

gad to mimic the spectrum of Hcomp.
It is convenient to analyze the shift and the splitting sepa-

rately. To do this, we define

H̃eff�H,d,�� � Heff�H,d� − �� , �13�

where � is the projector onto the support of Heff�H ,d�. Thus,

H̃eff�H ,d ,�� differs from Heff�H ,d� only by an energy shift

of magnitude �. The eigenstates of H̃eff�H ,d ,�� are identical
to the eigenstates of Heff�H ,d�, as are all the gaps between
eigenenergies. The rest of this paper is devoted to showing
that, for any k-local Hamiltonian Hcomp acting on n qubits,
there exists some function f��� such that

H̃eff„H+
gad,2n, f���… =

− k�− ��k

�k − 1�!
Hcomp

� P+ + O��k+1�

�14�

for sufficiently small �. Here P+ is an operator acting on the
ancilla registers, projecting each one into the state �+ 	. To
obtain Eq. �14� we use a formulation of degenerate perturba-
tion theory due to Bloch �4,5�, which we describe in the next
section.

II. PERTURBATION THEORY

Suppose we have a Hamiltonian of the form

H = H�0� + �V , �15�

where H�0� has a d-dimensional degenerate ground space E�0�

of energy zero. As discussed in �5,6�, the effective Hamil-
tonian for the d lowest eigenstates of H can be obtained
directly as a perturbation series in V. However, for our pur-
poses it is more convenient to use an indirect method due to
Bloch �4,5�, which we now describe. As shown in Appendix
B, the perturbative expansions converge provided that

�V �
�

4
, �16�

where � is the energy gap between the eigenspace in ques-
tion and the next-nearest eigenspace, and ¯  denotes the
operator norm.2

Let ��1	 , . . . , ��d	 be the d lowest energy eigenstates of H,
and let E1 , . . . ,Ed be their energies. For small perturbations,
these states lie primarily within E�0�. Let

2For any linear operator M, M�max�����	�=1����M��	�.

0

0

0

1

FIG. 1. The ancilla qubits are all coupled together using ZZ
couplings. This gives a unit energy penalty for each pair of un-
aligned qubits. If there are k bits, of which j are in the state �1	 and
the remaining k− j are in the state �0	, then the energy penalty is
j�k− j�. In the example shown in this diagram, the 1 and 0 labels
indicate that the qubits are in the state �0001	, which has energy
penalty 3.

STEPHEN P. JORDAN AND EDWARD FARHI PHYSICAL REVIEW A 77, 062329 �2008�

062329-2



�	 j	 = P0�� j	 , �17�

where P0 is the projector onto E�0�. For � satisfying �16�, the
vectors �	1	 , . . . , �	d	 are linearly independent, and there ex-
ists a linear operator U such that

�� j	 = U�	 j	 for j = 1,2, . . . ,d �18�

and

U�
	 = 0 for �
	 � E�0��. �19�

Note that U is in general nonunitary. Let

A = �P0VU . �20�

As shown in �4,5� and recounted in Appendix A, the eigen-
vectors of A are �	1	 , . . . , �	d	, and the corresponding eigen-
values are E1 , . . . ,Ed. Thus,

Heff = UAU†. �21�

A and U have the following perturbative expansions. Let Sl

be the operator

Sl = ��
j�0

Pj

�− Ej
�0��l if l � 0,

− P0 if l = 0,
� �22�

where Pj is the projector onto the eigenspace of H�0� with
energy Ej

�0�. �Recall that E0
�0�=0.� Then

A = �
m=1

�

A�m�, �23�

where

A�m� = �m �
�m−1�

P0VSl1VSl2
¯ VSlm−1VP0, �24�

and the sum is over all non-negative integers l1¯ lm−1 satis-
fying

l1 + ¯ + lm−1 = m − 1, �25�

l1 + ¯ + lp  p �p = 1,2, . . . ,m − 2� . �26�

Similarly, U has the expansion

U = P0 + �
m=1

�

U�m�, �27�

where

U�m� = �m�
�m�

Sl1VSl2V ¯ VSlmVP0, �28�

and the sum is over

l1 + ¯ + lm = m , �29�

l1 + ¯ + lp  p �p = 1,2, . . . ,m − 1� . �30�

In Appendix A we derive the expansions for U and A, and in
Appendix B we prove that condition �16� suffices to ensure
convergence. The advantage of the method of �4� over the

direct approach of �6� is that A is an operator whose support
is strictly within E�0�, which makes some of the calculations
more convenient.

III. ANALYSIS OF GADGET HAMILTONIAN

Before analyzing Hgad for a general k-local Hamiltonian,
we first consider the case where Hcomp has one coefficient
cs=1 and all the rest equal to 0. That is,

Hcomp = �1�2 ¯ �k, �31�

where for each j, � j = n̂j ·�� j for some unit vector n̂j in R3. The
corresponding gadget Hamiltonian is thus

Hgad = Hanc + �V , �32�

where

Hanc = �
1�i�j�k

1

2
�I − ZiZj� �33�

and

V = �
j=1

k

� j � Xj . �34�

Here � j acts on the jth computational qubit, and Xj and Zj
are the Pauli X and Z operators acting on the jth ancilla
qubit. We use kth-order perturbation theory to show that

H̃eff�H+
gad ,2k ,�� approximates Hcomp for appropriate �.

We start by calculating A for H+
gad. For Hanc, the energy

gap is �=k−1, and V=k, so by condition �16�, we can use
perturbation theory provided � satisfies

� �
k − 1

4k
. �35�

Because all terms in A are sandwiched by P0 operators, the
nonzero terms in A are ones in which the m powers of V take
a state in E�0� and return it to E�0�. Because we are working in
the +1 eigenspace of X�k, an examination of Eq. �33� shows
that E�0� is the span of the states in which the ancilla qubits
are in the state �+ 	. Thus, P0= I � P+, where P+ acts only on
the ancilla qubits, projecting them onto the state �+ 	. Each
term in V flips one ancilla qubit. To return to E�0�, the powers
of V must either flip some ancilla qubits and then flip them
back, or they must flip all of them. The latter process occurs
at kth order and gives rise to a term that mimics Hcomp. The
former process occurs at many orders, but at orders k and
lower gives rise only to terms proportional to P0.

As an example, let us examine A up to second order for
k�2,

A��2� = �P0VP0 + �2P0VS1VP0. �36�

The term P0VP0 is zero, because V kicks the state out of E�0�.
By Eq. �34� we see that applying V to a state in the ground
space yields a state in the energy k−1 eigenspace. Substitut-
ing this denominator into S1 yields
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A�2� = −
�2

k − 1
P0V2P0. �37�

Because V is a sum, V2 consists of the squares of individual
terms of V and cross terms. The cross terms flip two ancilla
qubits, and thus do not return the state to the ground space.
The squares of individual terms are proportional to the iden-
tity, thus

A�2� = �2	2P0 �38�

for some �-independent constant 	2. Similarly, at any order
m�k, the only terms in Vm which project back to E�0� are
those arising from squares of individual terms, which are
proportional to the identity. Thus, up to order k−1,

A��k−1� = ��
m

	m�m�P0, �39�

where the sum is over even m between zero and k−1 and
	0 ,	2 , . . . are the corresponding coefficients.

At kth order there arises another type of term. In Vk there
are k-fold cross terms in which each of the terms in V ap-
pears once. For example, there is the term

�kP0��1 � X1�S1��2 � X2�S1
¯ S1��k � Xk�P0. �40�

The product of the energy denominators occurring in the S1

operators is

�
j=1

k−1
1

− j�k − j�
=

�− 1�k−1

��k − 1�!�2 . �41�

Thus, this term is

�− 1�k−1�k

��k − 1�!�2 P0��1 � X1���2 � X2� ¯ ��k � Xk�P0, �42�

which can be rewritten as

− �− ��k

��k − 1�!�2 P0��1�2 ¯ �k � X�k�P0. �43�

This term mimics Hcomp. The fact that all of the S operators
in this term are S1 is a general feature. Any term in A�k�

where l1¯ lk−1 are not all equal to 1 either vanishes or is
proportional to P0. This is because such terms contain P0
operators separated by fewer than k powers of V, and thus
the same arguments used for m�k apply.

There are a total of k! terms of the type shown in expres-
sion �40�. Thus, up to kth order

A��k� = f���P0 +
− k�− ��k

�k − 1�!
P0��1�2 ¯ �k � X�k�P0,

�44�

which can be written as

A��k� = f���P0 +
− k�− ��k

�k − 1�!
P0�Hcomp

� X�k�P0, �45�

where f��� is some polynomial in �. Note that, up to kth
order, A happens to be Hermitian. The effective Hamiltonian
is UAU†, thus by Eq. �45�,

Heff�H+
gad,2k� = Uf���P0U† + U�− k�− ��k

�k − 1�!
P0�Hcomp

� X�k�P0

+ O��k+1��U†

= f���� + U�− k�− ��k

�k − 1�!
P0�Hcomp

� X�k�P0

+ O��k+1��U† �46�

since UP0U†=�. Thus,

H̃eff„H+
gad,2k, f���… = U�− k�− ��k

�k − 1�!
P0�Hcomp

� X�k�P0

+ O��k+1��U†. �47�

To order �k, we can approximate U as P0 since the higher-
order corrections to U give rise to terms of order �k+1 and

higher in the expression for H̃eff(H+
gad ,2k , f���). Thus,

H̃eff„H+
gad,2k, f���… =

− k�− ��k

�k − 1�!
P0�Hcomp

� X�k�P0 + O��k+1� .

�48�

Using P0= I � P+ we rewrite this as

H̃eff„H+
gad,2k, f���… =

− k�− ��k

�k − 1�!
Hcomp

� P+ + O��k+1� .

�49�

Now let us return to the general case where Hcomp is a linear
combination of k-local terms with arbitrary coefficients cs, as
described in Eq. �1�. Now that we have gadgets to obtain
k-local effective interactions, it is tempting to eliminate one
k-local interaction at a time, by introducing corresponding
gadgets one by one. However, this approach does not lend
itself to simple analysis by degenerate perturbation theory.
This is because the different k-local terms in general act on
overlapping sets of qubits. Hence, we instead consider

Vgad = �
s=1

r

Vs �50�

as a single perturbation, and work out the effective Hamil-
tonian in powers of this operator. The unperturbed part of the
total gadget Hamiltonian is thus

Hanc = �
s=1

r

Hs
anc, �51�

which has energy gap �=k−1. The full Hamiltonian is

Hgad = Hanc + �Vgad, �52�

so the perturbation series is guaranteed to converge under the
condition
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� �
k − 1

4Vgad
. �53�

As mentioned previously, we will work only within the si-
multaneous +1 eigenspace of the X�k operators acting on
each of the ancilla registers. In this subspace, Hanc has de-
generacy 2n which gets split by the perturbation �V so that it
mimics the spectrum of Hcomp.

Each Vs term couples to a different ancilla register. Hence,
any cross term between different Vs terms flips some ancilla
qubits in one register and some ancilla qubits in another.
Thus, at kth order, nonidentity cross terms between different
s cannot flip all k ancilla qubits in any given ancilla register,
and they are thus projected away by the P0 operators appear-
ing in the formula for A. Hence, the perturbative analysis
proceeds just as it did when there was only a single nonzero
cs, and one finds,

H̃eff„H+
gad,2n, f���… =

− k�− ��k

�k − 1�!
P0��

s=1

r

csHs � Xs
�k�P0

+ O��k+1� , �54�

where Xs
�k is the operator X�k acting on the register of k

ancilla qubits corresponding to a given s, and f��� is some
polynomial in � of degree at most k. Note that coefficients in
the polynomial f��� depend on Hcomp. As before, this can be
rewritten as

H̃eff„H+
gad,2n, f���… =

− k�− ��k

�k − 1�!
Hcomp

� P+ + O��k+1� ,

�55�

where P+ acts only on the ancilla registers, projecting them
all into the �+ 	 state. Hence, as asserted in Sec. I, the two-
local gadget Hamiltonian Hgad generates effective interac-
tions which mimic the k-local Hamiltonian Hcomp.

For a polynomial time adiabatic quantum computation
one needs a Hamiltonian that varies smoothly in time and
has an eigenvalue gap at worst polynomially small. Let H�t�
be a k-local Hamiltonian of this type. For each time t one can
construct the corresponding instantaneous gadget Hamil-
tonian Hgad�t� as described in Sec. I. It is not hard to show
that Hgad�t� varies smoothly in time and has a gap that is
polynomial in n for any fixed k. Thus Hgad�t� is a 2–local
polynomial-time adiabatic algorithm that simulates the origi-
nal k-local algorithm H�t�. In addition to adiabatic quantum
computation we expect that kth order gadgets may have
many other applications in quantum computation, such as
proving QMA-completeness.

IV. NUMERICAL EXAMPLES

In this section we numerically examine the performance
of perturbative gadgets in some small examples. As shown in
Sec. III, the shifted effective Hamiltonian is that given in Eq.
�55�. We define

Hid �
− k�− ��k

�k − 1�!
Hcomp

� P+. �56�

H̃eff consists of the ideal piece Hid, which is of order �k, plus
an error term of order �k+1 and higher. For sufficiently small
�, these error terms are therefore small compared to the Hid

term which simulates Hcomp. Indeed, by a calculation very
similar to that which appears in Appendix B, one can easily
place an upper bound on the norm of the error terms. How-
ever, in practice the actual size of the error terms may be
smaller than this bound. To examine the error magnitude in

practice, we plot
Hid−H̃eff

Hid in Fig. 2 using direct numerical

computation of H̃eff without perturbation theory. f��� was
calculated analytically for these examples. In all cases the

ratio of Hid− H̃eff to Hid scales approximately linearly
with �, as one expects since the error terms are of order �k+1

and higher, whereas Hid is of order �k.
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APPENDIX A: DERIVATION OF PERTURBATIVE
FORMULAS

In this appendix we give a self-contained presentation of
the derivations for the method of degenerate perturbation
theory used in this paper. We closely follow Bloch �4�. Given
a Hamiltonian of the form

0 0.05 0.1
0

0.05

0.1

0.15

0.2

0.25

XYZ+XYY
XYZZ
XYZ

‖H id − ˜Heff‖
‖H id‖

FIG. 2. Here the ratio of the error terms to the ideal Hamiltonian
Hid� −k�−��k

�k−1�! Hcomp is plotted. We examine three examples, a third-
order gadget simulating a single XYZ interaction, a third-order gad-
get simulating a pair of interactions XYZ+XYY, and a fourth-order

gadget simulating a fourth-order interaction XYZZ. Here H̃eff is cal-
culated by direct numerical computation without using perturbation
theory. As expected the ratio of the norm of the error terms to Hid

goes linearly to zero with shrinking �.
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H = H�0� + �V �A1�

we wish to find the effective Hamiltonian induced by the
perturbation �V on the ground space of H�0�. In what follows,
we assume that the ground space of H�0� has energy zero.
This simplifies notation, and the generalization to nonzero
ground energy is straightforward. To further simplify nota-
tion we define

V̂ = �V . �A2�

Suppose the ground space of H�0� is d dimensional and
denote it by E�0�. Let ��1	 , . . . , ��d	 be the perturbed eigen-
states arising from the splitting of this degenerate ground
space, and let E1 , . . . ,Ed be their energies. Furthermore, let
�	 j	= P0�� j	, where P0 is the projector onto the unperturbed
ground space of H�0�. If � is sufficiently small, �	1	 , . . . , �	d	
are linearly independent, and we can define an operator U
such that

U�	 j	 = �� j	 �A3�

and

U�
	 = 0 ∀ �
	 � E�0��. �A4�

Now let A be the operator

A = P0V̂U . �A5�

A has �	1	 , . . . , �	d	 as its eigenstates, and E1 , . . . ,Ed as its
corresponding energies. To see this, note that since H�0� has
zero ground-state energy

P0V̂ = P0�H�0� + V̂� = P0H . �A6�

Thus,

A�	 j	 = P0V̂U�	 j	 = P0V̂�� j	 = P0H�� j	 = P0Ej�� j	 = Ej�	 j	 .

�A7�

The essential task in this formulation of degenerate perturba-
tion theory is to find a perturbative expansion for U. From U
one can obtain A by Eq. �A5�. By diagonalizing A one ob-
tains E1 , . . . ,Ed, and �	1	 , . . . , �	d	. Then, by applying U to
�	 j	 one obtains �� j	. So, given a perturbative formula for U,
all quantities of interest can be calculated. Rather than diago-
nalizing A to obtain individual eigenstates and eigenener-
gies, one can instead compute an effective Hamiltonian for
the entire perturbed eigenspace, defined by

Heff�H,d� � �
j=1

d

Ej�� j	�� j� . �A8�

This is given by

Heff�H,d� = UAU†. �A9�

To derive a perturbative formula for U, we start with
Schrödinger’s equation

H�� j	 = Ej�� j	 . �A10�

By Eq. �A6�, left-multiplying this by P0 yields

P0V̂�� j	 = Ej�	 j	 . �A11�

By Eq. �A4�,

UP0 = U . �A12�

Thus left-multiplying Eq. �A11� by U yields

UV̂�� j	 = Ej�� j	 . �A13�

By subtracting �A13� from �A10� we obtain

�H − UV̂��� j	 = 0. �A14�

The span of �� j	 we call E. For any state ��	 in E we have

�H − UV̂���	 = 0. �A15�

Since U��	�E for any state ��	, it follows that

�H − UV̂�U = 0. �A16�

This equation can be rewritten as

H�0�U = − V̂U + UV̂U . �A17�

Defining Q0=1− P0, we have

U = P0U + Q0U . �A18�

Substituting this into the left-hand side of �A17� yields

H�0�Q0U = − V̂U + UV̂U , �A19�

because H�0�P0=0. In E�0��, H�0� has a well-defined inverse
and one can write

Q0U = −
1

H�0�Q0�V̂U − UV̂U� . �A20�

Using Eq. �A18�, one obtains

U = P0U −
1

H�0�Q0�V̂U − UV̂U� . �A21�

By the definition of U it is apparent that P0U= P0, thus this
equation simplifies to

U = P0 −
1

H�0�Q0�V̂U − UV̂U� . �A22�

We now expand U in powers of � �equivalently, in powers of

V̂�, and denote the mth-order term by U�m�. Substituting this
expansion into Eq. �A22� and equating terms at each order
yields the following recurrence relations:

U�0� = P0, �A23�

U�m� = −
1

H�0�Q0�V̂U�m−1� − �
p=1

m−1

U�p�V̂U�m−p−1��
�m = 1,2,3, . . .� . �A24�

Note that the sum over p starts at p=1, not p=0. This is
because
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1

H�0�Q0U�0� =
1

H�0�Q0P0 = 0. �A25�

Let

Sl = � 1

�− H�0��lQ0 if l � 0,

− P0 if l = 0.
� �A26�

U�m� is of the form

U�m� = �� Sl1V̂Sl2V̂ ¯ SlmV̂P0, �A27�

where �� is a sum over some subset of m-tuples
�l1 , l2 , . . . , lm� such that

li  0 �i = 1,2, . . . ,m� , �A28�

l1 + l2 + ¯ + lm = m . �A29�

The proof is an easy induction. U�0� clearly satisfies this, and
we can see that if U�j� has these properties for all j�m, then
by recurrence �A24�, U�m� also has these properties.

All that remains is to prove that the subset of allowed
m-tuples appearing in the sum �� are exactly those which
satisfy

l1 + ¯ + lp  p �p = 1,2, . . . ,m − 1� . �A30�

Following �4�, we do this by introducing stair-step diagrams
to represent the m-tuples, as shown in Fig. 3.

The m-tuples with property �A30� correspond to diagrams
in which the steps lie above the diagonal. Following �4� we
call these convex diagrams. Thus, our task is to prove that
the sum �� is over all and only the convex diagrams. To do
this, we consider the ways in which convex diagrams of
order m can be constructed from convex diagrams of lower
order. We then relate this to the way U�m� is obtained from
lower-order terms in the recurrence �A24�.

In any convex diagram, l11. We now consider the two
cases l1=1 and l1�1. In the case that l1=1, the diagram is as
shown on the left-hand side of Fig. 4.

In any convex diagram of order m with l1=1, there is an
intersection with the diagonal after one step, at the point that
we have labeled c. The diagram from c to b is a convex
diagram of order m−1. Conversely, given any convex dia-
gram of order m−1 we can construct a convex diagram of
order m by adding one step to the beginning. Thus, the con-

vex diagrams of order m with l1=1 correspond bijectively to
the convex diagrams of order m−1.

The case l1�1 is shown in Fig. 4 on the right-hand side.
Here we introduce the line from a� to b�, which is parallel to
the diagonal, but higher by one step. Since the diagram must
end at b, it must cross back under a�b� at some point. We
label the first point at which it does so as c�. In general, c�
can equal b�. The curve going from a� to c� is a convex
diagram of order p with 1� p�m−1, and the curve going
from c to b is a convex diagram of order n− p−1 �which may
be order zero if c�=b��. Since c� exists and is unique, this
establishes a bijection between the convex diagrams of order
m with l1�1, and the set of the pairs of convex diagrams of
orders p and n− p−1, for 1� p�n−1.

Examining the recurrence �A24�, we see that the l1=1
diagrams are exactly those which arise from the term

Q0

H�0� V̂U�m−1� �A31�

and the l1�1 diagrams are exactly those which arise from
the term

Q0

H�0� �
p=1

m−1

U�p�V̂U�n−p−1�. �A32�

which completes the proof that �� is over the m-tuples sat-
isfying Eq. �A30�.

APPENDIX B: CONVERGENCE OF PERTURBATION
SERIES

Here we show that the perturbative expansion for U given
in Eq. �27� converges for

�V �
�

4
. �B1�

By Eq. �20�, the convergence of U also implies the conver-
gence of A. Applying the triangle inequality to Eq. �27�
yields

U � 1 + �
m=1

�

U�m� . �B2�

Substituting in Eq. �28� and applying the triangle inequality
again yields

l1 = 1

l5 = 0
l4 = 1

l3 = 0

l2 = 2

FIG. 3. From a given m-tuple �l1 , l2 , . . . , lm� we construct a cor-
responding stair-step diagram by making the jth step have height lj,
as illustrated.

c

a′

c′

c

bb′
l1 = 1 l1 > 1

a

b

a

FIG. 4. A convex diagram must have either l1=1 or l1�1. In
either case, the diagram can be decomposed as a concatenation of
lower-order convex diagrams.
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U � 1 + �
m=1

�

�m�
�m�

Sl1
¯ VSlmVP0 . �B3�

By the submultiplicative property of the operator norm,

U � 1 + �
m=1

�

�m�
�m�

Sl1

�V � . . . � V � Slm � V � P0 . �B4�

P0=1, and by Eq. �22� we have

Sl =
1

�E1
�0��l =

1

�l . �B5�

Since the sum in Eq. �B4� is over l1+ ¯ + lm=m, we have

U � 1 + �
m=1

�

�
�m�

�Vm

�m . �B6�

The sum ��m� is over a subset of the m-tuples adding up to m.
Thus, the number of terms in this sum is less than the num-
ber of ways of obtaining m as a sum of m non-negative
integers. By elementary combinatorics, the number of ways

to obtain n as a sum of r non-negative integers is � n+r−1
n �,

thus

U � 1 + �
m=1

� �2m − 1

m
� �Vm

�m . �B7�

Since

�
j=0

2m−3 �2m − 1

j
� = 22m−1, �B8�

we have

�2m − 1

m
� � 22m−1. �B9�

Substituting this into Eq. �B7� converts it into a convenient
geometric series

U � 1 + �
m=1

�

22m−1 �Vm

�m . �B10�

This series converges for

4�V
�

� 1. �B11�
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