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In this paper, we consider the quantum-mechanical phase space patterns on ordered and disordered networks.
For ordered networks in which each node is connected to its 2m nearest neighbors �m on either side�, the phase
space quasiprobability of Wigner function shows various patterns. In the long time limit, on even-numbered
networks, we find an asymmetric quasiprobability between the node and its opposite node. This asymmetry
depends on the network parameters and specific phase space positions. For disordered networks in which each
edge is rewired with probability p�0, the phase space displays regional localization on the initial node.
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I. INTRODUCTION

Quantum walk �QW�, which is a generalization of the
classical random walk, has attracted a great deal of attention
from the scientific community. The continuous interest in the
study of quantum-mechanical transport process can be partly
attributed to its broad applications in the field of quantum
information and computation �1–4�. In recent years, two
types of quantum walks exist in the literature: the discrete-
time quantum coined walks and continuous-time quantum
walks �5,6�. Both discrete-time quantum coined walks and
continuous-time quantum walks have been argued to give an
algorithmic speedup with respect to their classical counter-
parts �7�.

In classical physics, the dynamical behavior of a system is
described by phase space variables, such as position and mo-
mentum. A plot of position and momentum variables as a
function of time shows the phase diagram of classical trans-
port process. In contrast to the classical transport, the
quantum-mechanical transport happens in the Hilbert space
�8�. Such transport process needs to be formulated in phase
space as a unified picture of the classical transport. This can
be done by the widely used Wigner function, which trans-
forms the wave function of a quantum-mechanical state into
a function in the position-momentum space analogously de-
fined in the classical phase space �9�. It is shown in Ref. �10�
that integrating the Wigner function along the lines in phase
space is a positive value of probability and gives the correct
marginal distributions. However, the negativity of Wigner
function provides an indication of nonclassical behavior.

The phase space method �Wigner function� provides a
very useful tool for the study of quantum states in the field of
statistical mechanics, quantum chemistry, molecular dynam-
ics, scattering theory, quantum optics, etc. �11–17�. There are
various approaches available to generalize the Wigner func-
tion for quantum systems with a finite-dimensional space of
states �18�. In Ref. �9�, Wootters have introduced a discrete
version of the Wigner function that has all the desired prop-
erties only when N is a prime number. The phase space de-
fined by Wootters is an N�N grid �N is prime� and a Carte-
sian product of such spaces corresponding to prime factors of

N in the most general case �19�. Notably, a more general
discrete Wigner function defined for a system with arbitrary
values of N has been introduced by Hannay and Berry in the
studies of semiclassical properties of classically chaotic sys-
tems �20�. This version of Wigner function is used in several
contexts and recently applied to analyze the phase-space rep-
resentation of quantum computers and algorithms �19–22�.
In this case, the phase space is constructed as a grid of 2N
�2N points where the state is represented in a redundant
manner �only N�N of them are independent� �19�. Recently,
Mülken et al. propose a version of discrete phase space of
Wigner function, which is defined for continuous-time quan-
tum walks �CTQWs� on a one-dimensional discrete network
with periodic boundary conditions �10�. This kind of discrete
Wigner function recovers the correct marginal distributions
when it is added over the horizontal and vertical lines. How-
ever, it is not positive when added over the general lines �19�
in phase space. This is an unique feature differs from the
usual Wigner function, which is positive when added over
any lines �22�.

Here, we use the version of discrete phase space of
Wigner function proposed by Mülken �10�. In Ref �10�,
Mülken et al. formulate CTQWs in phase space on a network
of size N whose nodes are enumerated as 0 ,1 , . . . ,N−1. The
Wigner function has the form of a Fourier transform as fol-
lows �10�:

W�x,k,t� =
1

N
�
y=0

N−1

e2i�ky/N�x − y��̂�t��x + y� , �1�

where �̂�t� is the density operator of a pure state and k and x
denote the phase space coordinate of positions. The summa-
tion over y in the interval �0,N� can be carried out in any N
consecutive values. Considering an initial exciton begins at
node j, the time evolution of the associated state �j� is given
by �j , t�=e−iHt�j�. Suppose En and �qn� are the nth eigenvalue
and eigenstate of the Hamiltonian , the time-independent
Schrödinger equation is H�qn�=En�qn�, where �qn� spans the
whole accessible Hilbert space and forms an orthonormal
complete basis set, i.e., �qn �ql�=�nl, �n�qn��qn�=1. Inserting
the complete set condition of the eigenstates into the time
evolution equation, we get*xuxp@mail.ihep.ac.cn

PHYSICAL REVIEW A 77, 062318 �2008�

1050-2947/2008/77�6�/062318�10� ©2008 The American Physical Society062318-1

http://dx.doi.org/10.1103/PhysRevA.77.062318


�j,t� = e−iHt�j� = �
n

e−iEnt�qn��qn�j� . �2�

The density operator of the system is �̂�t�= �j , t��t , j�. Substi-
tuting the above equation into the Wigner function, we have

Wj�x,k,t� =
1

N
�
y=0

N−1

e2i�ky/N�
n,l

e−it�En−El��x − y�qn��qn�j��j�ql�

��ql�x + y� . �3�

In this paper, we use the above equation to consider phase
space patterns of CTQWs on ordered and disordered net-
works. For ordered networks, the topology organizes in a
very regular manner, i.e., each node of the network is con-
nected to its 2m nearest neighbors �m on either side�. For
disordered networks, we employ the famous Watts-Strogatz
�WS� model �23�, which triggers a surge of research of
small-world networks in the field of complex networks
�24–28�. In the WS model �23�, each connection of the regu-
lar networks is rewired with probability p. Tuning the rewir-
ing probability p interpolates the network topology between
order �p=0� and disorder �or random with p=1�. The inter-
mediate value 0� p�1 corresponds to the small-world re-
gion �23�.

The paper is organized as follows. In Sec. II, we consider
the phase space patterns on ordered networks which corre-
spond to the WS model with rewiring probability p=0. In
Sec. III, we consider the phase space patterns on disordered
networks. Conclusions and discussions are given in Sec. IV.

II. PHASE SPACE PATTERNS ON ORDERED
NETWORKS

In this section, we consider the quantum-mechanical
phase space on one-dimension regular networks of N nodes
in which each node is connected to its 2m nearest neighbors
�m on either side�. This generalized regular network has
broad applications in various coupled dynamical systems, in-
cluding biological oscillators �29�, Josephson junction arrays
�30�, neural networks �31�, synchronization �32�, small-
world networks �33�, and many other self-organizing sys-
tems. We compute the phase space distribution on such gen-
eral network with periodic boundary conditions in the
framework of Bloch ansatz �34�, which is commonly used in
solid-state physics.

A. Bloch ansatz and Wigner function

The Hamiltonian �H� of the system for CTQWs is related
to the Laplace matrix �A� of the connected networks as H
=�A. Here, for the sake of simplicity, we assume the trans-
mission rate � for all the connections to be equal. The non-
diagonal elements Aij equal to −1 if nodes i and j are con-
nected and 0 otherwise. The diagonal elements Aii equal to
the number of total links connected to node i, i.e., Aii equals
to the degree of node i. Therefore, the Laplace matrix A of
ordered networks takes the following form:

Aij = 	2m , if i = j ,

− 1, if i = j 	 z,z � �1,m� ,

0, otherwise.

 �4�

The Hamiltonian acting on the state �j� can be written as

H�j� = �2m + 1��j� − �
z=−m

m

�j + z�,z � Z . �5�

The above equation is the discrete version of the Hamil-
tonian for a free particle moving on the network. Using the
approach of Bloch function �34� in solid state physics, the
time-independent Schrödinger equation reads

H�
n� = En�
n� . �6�

The Bloch states �
n� can be expanded as a linear combina-
tion of the states �j� localized at node j �34�,

�
n� =
1

�N
�
j=0

N−1

ei�nj�j� . �7�

Substituting Eqs. �5� and �7� into Eq. �6�, we obtain the ei-
genvalues �or energy� of the system

En = 2m − 2�
j=1

m

cos�j�n� . �8�

The periodic boundary condition for the network requires
that the projection of �
n� on the state �N� equals to that on
the state �0�, thus �n=2n� /N with n integer and n� �0,N�.
Replacing �qn� by the Bloch states �
n� in Eq. �3�, we can get
the Wigner function as follows:

Wj�x,k,t� =
1

N3 �
y=0

N−1

e2i�ky/N�
n,l

e−it�En−El�ei�n�x−y−j�ei�l�j−x−y�

=
1

N3�
n,l

e−it�En−El�+i��n−�l��x−j��
y=0

N−1

e2i��k−n−l�y/N. �9�

The summation over y can be written as N��N+k−n−l�, where
��N+k−n−l� takes value 1 if �N+k−n− l� equals to 0 �or mod N�
and 0 otherwise. Thus the Wigner function can be simplified
as

Wj�x,k,t� =
1

N2 �
n=0

N−1

e−it�En−EN+k−n�e2i��2n−k��x−j�/N. �10�

Substituting the expression of eigenvalues of Eq. �8� into the
above equation, we obtain discrete Wigner function of
CTQWs on one-dimension ordered networks.

B. Time evolution of the Wigner function

We consider the time evolution of quantum-mechanical
phase space according to Eq. �10�. Figure 1 shows a contour
plot of the Wigner function on ordered networks of size N
=50 with different values of m at different times. At very
small time scales, the Wigner function is localized on the
stripe at the initial node and its opposite node. As time in-
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creases, the Wigner function spreads over the whole network
�in the grayscale version of the plot, the negative regions
appear dark gray with contour lines�. On short time scales,
the Wigner function has a very regular structure until the
wave fronts between the initial node and opposite node start

to interferes with each other. Interestingly, the phase space
structure is more complex on highly connected networks
compared to that on the cycle network �m=1�, and the nodes
are populated more quickly on highly connected networks.

In Fig. 2, we plot the Wigner function of CTQWs on

FIG. 1. �Color online� Wigner functions Wj�x ,k , t� on networks of size N=50 with m=1 �row 1�, m=2 �row 2�, and m=3 �row 3� at times
t=1,2 ,5 ,20 �columns �a�–�d��. The initial node is at j=N /2=25. Red regions �dark gray without contour lines in the grayscale version�
denote positive values of Wj�x ,k , t�, blue regions �dark gray with contour lines in the grayscale version� denote negative values and white
regions close to value 0.

FIG. 2. �Color online� Corresponding plots of Fig. 1 for N=51.
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networks of size N=51. The phase space structure is quite
similar to that on even-numbered networks. We note that the
phase space pictures provide us more information of the un-
derlying dynamics than the transition probabilities. The
phase space patterns alternate with time frequently. At long
time scales, the phase space becomes irregular and we find
that the structure of phase space has more regularities on
even-numbered networks than that on odd-numbered net-
works with the same value of m and t. This indicates the
higher topological symmetry of even-numbered networks.

It is worth noting that the pattern of Wigner function is
symmetrical about the axis for m=1. As m increases, such
behavior disappears and Wj�x ,k , t� displays central symmetry
at the phase space center x=k= j. At the initial time t=0, on
even-numbered networks �or odd-numbered networks�, the
patterns of Wigner function are the same for different values
of m. This can be concluded from Eq. �10�. For the case of
even N, Wj�j ,k ,0� equals 1 /N for arbitrary k. At the opposite
node x= j+N /2, Wj�j+N /2,k ,0� equals 1 /N for even k and
−1 /N for odd k �negative regions appear dark gray with con-
tour lines in the grayscale version�. The nonzero values of
the Wigner function at x= j+N /2 continue to show up at later
times. The analysis for odd N is similar but the patterns are
different. The Wigner function Wj�x ,k ,0� equals to 1 /N for
x= j and 0 otherwise. The nonzero of Wj�x ,k ,0� at the oppo-
site node x= j+N /2 �N�2N� is a natural consequence of the
periodic boundary conditions of the regular networks �10�.
At later times, Wj�x ,k ,0� involves contribution from all the
eigenstates and the nodes connected to the excitation node
get populated, resulting in the semicirclelike areas on highly
connected networks. We remark that during all the time the
patterns show central symmetry at x=k= j, to this end, we
conjecture that central symmetry is an intrinsical feature of
the phase space patterns.

C. Long time averages

The Wigner function of a specific position �x ,k� fluctuates
around a constant value, thus it is interesting to study the
long time averaged phase space patterns. The time limiting
Wigner function is defined as

W j�x,k� = lim
T→�

1

T
�

0

T

Wj�x,k,t�dt . �11�

For the ordered networks, the limiting Wigner function can
be simplified as

W j�x,k� =
1

N2 �
n=0

N−1

�En,EN+k−n
e2i��2n−k��x−j�/N. �12�

This expression shortens the numerical time of computation
considerably compared to Eq. �11�. Therefore, we consider
the long time averaged phase space structure according to
Eq. �12�.

For the cycle network �m=1� in which each node is only
connected to its two nearest neighbors, the limiting phase
space has a simple structure. For even-numbered networks
�N�2N�, the limiting phase space structure is

W j
e�x,k� = 	2/N2, k � 0,k � 2N and arbitrary x ,

1/N , k = 0 and x = j, j 	 N/2,

0, elsewhere.


�13�

If the network size N is an odd number, we can also obtain
the limiting Wigner function according to Eq. �12�, which is
summarized as

W j
o�x,k� = 	1/N2, k � 0 and arbitrary x ,

1/N , k = 0 and x = j ,

0, elsewhere

 �14�

which confirms the results in Ref. �35�.
For other values of m, the limiting phase space distribu-

tions can also be calculated in the same way, but such pro-
cess is complicated for large value of m because of the non-
trivial degeneracy distribution of the eigenvalues. Here, we
report the numerical results of phase space patterns on highly
connected networks according to Eq. �12�.

Figure 3 shows the phase space patterns on networks of
N=50 with different values of m. We note that the phase
space structure of m=1 is the same as the phase space struc-
ture of m=3. After a careful examination, we find that m
=1 and m=3 have the same degeneracy distributions of the
eigenvalues. This explains the same phase space patterns of
m=1 and m=3. For m=2 and m=4, there are some signifi-
cant stripes in the phase space. Such nontrivial stripes reflect
the topological symmetry of the considered networks. On the
contrary, the phase space patterns on networks of N=51 with

FIG. 3. �Color online� Long time limiting Wigner function
W j�x ,k� on ordered networks of size N=50 for m=1 �a�, m=2 �b�,
m=3 �c� and m=4 �d�. The initial node is at j=N /2=25. Red blocks
�dark or light gray in the grayscale version� denote positive values
of W j�x ,k�, blue blocks �dark gray with white cross in the grayscale
version� negative values, and the white regions denote zero.
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m=2, m=3, and m=4 are the same as the structure with
m=1, which is described in Eq. �14�. One may conjecture
that the phase space patterns do not alter when increasing the
connectivity m on odd-numbered networks. But this is not
true for some particular value of network size N. For in-
stance, on a network of N=75 and m=2, we find significant
stripes at some phase space positions �see Fig. 4�.

The patterns of W j�x ,k� in Fig. 3 are the same for odd k
and some even k. However, for some particular values of m
and even k, the patterns are quite different �see the stripes at
k=10, 20, 30, and 40 in Figs. 3�b� and 3�d��. According to
Eq. �12�, W j�x ,k� depends on the degeneracy of the eigen-
states, i.e., the Kronecker symbol �En,EN+k−n

. For k=0,
�En,EN+k−n

equals to 1 for all the values of n, thus the sum in
Eq. �12� contains N exponential terms, which results in
W j�x ,0�=1 /N for x= j , j	N /2 and W j�x ,0�=0 otherwise.
When k is odd, �En,EN+k−n

=0 holds for all the values of n. For
some values of even k, �En,EN+k−n

equals to 1 when n=k /2
and n=N /2+k /2, this leads to W j�x ,k�=2 /N2 �k� arbitrary
x�. However, for some other values of even k, �En,EN+k−n

does
not vanish and W j�x ,k� is oscillatory on the horizontal lines
located at k=10, 20, 30, and 40. The oscillating strip is
caused by the interference between the positive strip and the
mirror image. This is similar to the case of decoherence of
quantum walks in phase space �13�, in which there are inter-
ference fringes in lines between the two position eigenstates,
and all the vertical lines have their corresponding oscillatory
counterparts originated from the boundary conditions �13�.

In Fig. 3, we find a symmetric structure of the phase space
distributions in both the x and k directions. That is to say,
W j�x ,k� equals W j�x+N /2,k� �x� �0,N /2�� for all the val-
ues of k; W j�x ,k� equals to W j�x ,k+N /2� �k� �0,N /2�� for
all the values of x. Such symmetric phase space structure
exists on some even-numbered networks. However, for some

even-numbered networks with certain values of m, this is not
true. For instance, on networks of size N=60 with m=2, m
=3, and m=4, the Wigner function W j�x ,k� differs from
W j�x+N /2,k� �x� �0,N /2�� for some values of k and
W j�x ,k� also differs from W j�x ,k+N /2� �k� �0,N /2�� for
some values of x. Such asymmetry depends on the specific
phase space positions �x ,k�. In Ref. �35�, the authors find an
asymmetry of transition probabilities for the starting node
and its mirror node on two-dimensional networks, their defi-
nition of mirror node is based on geometry symmetry of the
network. In this paper, we define the mirror node x� of a
given node x to be its opposite node, i.e., x�=x+N /2 �or
k�=k+N /2 in the longitudinal direction�. We study symmet-
ric and asymmetric structure of the phase space on the x and
k direction separately. The asymmetric phase space is par-
ticularly characterized by the difference between W j�x ,k�
and W j�x+N /2,k� �x� �0,N /2�� in the x direction, and dif-
ference between W j�x ,k� and W j�x ,k+N /2� �k� �0,N /2��
in the k direction. Therefore, we use the quantities
W j�x+N /2,k�−W j�x ,k� and W j�x ,k+N /2�−W j�x ,k� to de-
tect the asymmetry of the phase space. Columns �a� and �b�
of Fig. 5 show these two quantities in the phase space. The
nonwhite blocks in the plot indicate asymmetric phase space
positions. From the figure we find that the asymmetric struc-
ture in the phase space is very complex. The phase space
positions in which asymmetry occurs is dependant on the
precise values of network parameters N and m, as well as the
specific phase space positions.

It is interesting to note that, in Figs. 1 and 3, W j�x ,k� has
more identical values than Wj�x ,k , t� in the phase space
plane. Wj�x ,k , t� and W j�x ,k� display central symmetry and
mirror symmetry, respectively. This suggests that the limiting
Wigner function W j�x ,k� has higher symmetry in the struc-
ture compared to the instantaneous Wigner function
Wj�x ,k , t�.

D. Marginal distributions

Summing the Wigner function along lines in phase space
gives the marginal distributions. Of course, such a process
loses the detailed information of the phase space. Here, we
consider marginal distributions of the long time averaged
Wigner function summing over the x direction and k direc-
tion, respectively. Summing over all k recovers the time lim-
iting transition probabilities, i.e.,


x,j = �
k

W j�x,k� . �15�

Columns �c� and �d� of Fig. 5 show the marginal distribu-
tions of the sum �xW j�x ,k� and �kW j�x ,k�. We find that the
marginal distributions obtained by summing over x for m
=2, m=3 and m=4 are the same �see column �c� in Fig. 5�.
�xW j�x ,k� equals to 2 /N for even k and 0 for odd k. In
contrast, the marginal distributions 
x,j for different values of
m are quite different �see column �d� in Fig. 5�. Interestingly,
there is a large probability to be still or again at the initial
node �x= j� and at the opposite node �x= j−N /2�. In analo-
gous to the analysis of the phase space asymmetry, we con-
sider asymmetry of the limiting transition probability. We

FIG. 4. �Color online� Long time averaged phase space patterns
on a network of N=75 and m=2. The initial node is at j=37. Red
blocks �dark or light gray without white cross in the grayscale ver-
sion� denote positive values of W j�x ,k�, blue blocks �dark gray with
white cross in the grayscale version� negative values, and the white
regions denote the value of 0. The blocks with white cross denote
negative values in both the color and grayscale versions.
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find that 
x+N/2,j differs from 
x,j �x� �0,N /2�� for some par-
ticular values of x on networks with certain values of N and
m. Figure 6 shows the quantity 
x+N/2,j −
x,j for all the values
of x in the range �0,N /2�. The nonzero values 
x+N/2,j −
x,j
in the plot indicate asymmetric transition probabilities at the
corresponding nodes.

As shown in Ref. �36�, the asymmetries of transition
probabilities originate from different contribution of eigen-

values to 
x,j. It turns out that there are more contribution to

x,j in the asymmetric cases than in the symmetric cases �36�.
The argumentation for our case is similar. Although all the
eigenvalues can be analytically obtained, a complete analysis
of all possible differences of eigenvalues requires extensive
work and is clearly beyond the scope of this paper.

III. PHASE SPACE PATTERNS
ON DISORDERED NETWORKS

In this section, we study the phase space patterns on net-
works in the presence of two kinds of disorder: static disor-
der and topological disorder. We import static disorder by
adding a perturbed Hamiltonian � to the original Hamil-
tonian H as done in Ref. �37�. This assumption do not create
new connections or remove the existing connections, thus
does not change the topology of the ordered networks. On
the contrary for networks with topological disorder in which
each connection is rewired with probability p�0, the topol-
ogy of the networks becomes irregular.

In this paper, we focus on the influence of disorder on the
long time averaged phase space structure. Since the analyti-
cal expressions for ordered networks do not apply any more,
we numerically calculate the Wigner function of CTQWs
using the software MATHEMATICA. In order to save the com-
putational time of the numerical integrals, we combine Eqs.
�3� and �11� as follows:

FIG. 5. �Color online� �a�Contour plot of W j�x ,k+N /2�−W j�x ,k� on networks of size N=60 with m=2 �row 1�, m=3 �row 2�, and m=4
�row 3�. �b� The same as column �a� but for W j�x+N /2,k�−W j�x ,k� �x� �0,N /2��. Red blocks denote positive values of the discrepancy,
blue blocks negative values, and the white regions denote value of 0 �symmetric quasiprobability in the phase space�. The last two columns
show marginal distributions of �xW j�x ,k� �column �c�� and �kW j�x ,k� �column �d�� for m=2, m=3, and m=4 �rows 1–3�. The initial node
is at j=N /2=30. The blocks with white cross in column �a� and �b� denote negative values in both the color and grayscale versions.

FIG. 6. �Color online� Quantity 
x+N/2,j −
x,j as a function of x
on networks of N=60 with different values of m. The initial node is
at j=N /2=30. The nonzero value of �
x+N/2,j −
x,j� presents asym-
metric probabilities between 
x+N/2,j and 
x,j.

XIN-PING XU AND FENG LIU PHYSICAL REVIEW A 77, 062318 �2008�

062318-6



W j�x,k� =
1

N
�
y=0

N−1

e2i�ky/N�
n,l

�En,El
�x − y�qn��qn�j�

��j�ql��ql�x + y� . �16�

In the following, we use the above Equation to report the
numerical results of Wigner function on networks with dis-
order.

A. Static disorder

Analogous to the method in Ref. �37�, we consider the
exponential diagonal disorder whose off-diagonal elements
of the perturbed Hamilton � are 0 and diagonal elements
follow an exponential function such as

� j,j = e�
2�j
N , �17�

where � is the disorder parameter. The exponential disorder
in the above equation has the advantage that the perturbed
Hamilton � possess a simple form in the Bloch representa-
tion, and analytical solutions may be possible using the per-
turbation theory. Here, we only give numerical results for the
phase space structure for such disorder. Figures 7 and 8 show
the phase space structure on networks of size N=50 and N
=51 for different values of m and �. The first column of the
figures shows W j�x ,k� for �=0.5 on networks with m=1,
m=2, and m=3 �rows 1–3�. For this weak disorder, the phase

space patterns have a very strange structure and the patterns
of the ordered networks are destroyed. Increasing the disor-
der parameter �, the patterns change drastically. The phase
space structure gets suppressed and a localized region forms
at the initial node x= j. In contrast to the patterns in Ref.
�37�, the Wigner function here has negative values on highly
connected networks with large disorder �compare the plots in
the last column to plots in Ref. �37��. The patterns in phase
space on odd-numbered networks �Fig. 8� have a similar
structure as the even-numbered networks. However, differ-
ences are also visible and it seems that there are more stripes
on even-numbered networks �compare the corresponding
plots in Figs. 7 and 8�.

Compared to the patterns in Ref. �37�, the phase space
structure for networks with exponential disorder shows a
strange patterns. Such difference is induced by the distinct
type of disorder. The perturbed Hamiltonian in Ref. �37�. has
a Gauss form, such disorder leads to a symmetrical phase
space pattern in the x-k plane. Here, the exponential disorder
has a heterogeneous strength, i.e., sites labeled as large num-
bers have large exponential disorder �see Eq. �17��, this het-
erogeneous disorder results in the complex pattern of the
observed phase space. For larger disorder, the difference of
phase space between networks with different connectivity
becomes invisible. We believe for sufficient strong disorder,
the phase space displays a complete localization at the initial
node.

FIG. 7. �Color online� Phase space patterns on networks of N=50 with exponential disorder. The three rows are for m=1 �row 1�, m
=2 �row 2�, and m=3 �row 3� while the four columns correspond to the �=0.5 �column �a��, �=0.6 �column �b��, �=0.7 �column �c��, and
�=0.8 �column �d��. The initial node is at j=N /2=25. Red regions �gray without contour lines in the grayscale version� denote positive
values of W j�x ,k�, blue regions �dark gray with contour lines in the grayscale version� negative values and white regions denote values close
to 0.
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B. Topological disorder

Since the topological structure of the WS model is not
single, we average the time limiting Wigner function over

distinct realizations. The ensemble average of the Wigner
function provides us a holistic view on the phase space struc-
ture of disordered networks. Figures 9 and 10 show the en-

FIG. 8. �Color online� The same plots as Fig. 7 but for N=51.

FIG. 9. �Color online� Phase space patterns on WS networks of N=50 with m=1 �row 1�, m=2 �row 2�, and m=3 �row 3�. The four
columns correspond to different values of disorder parameter p: p=0.05 �column �a��, p=0.1 �column �b��, p=0.2 �column �c��, and p
=0.5 �column �d��. The initial node is at j=N /2=25 and all the plots are averaged over 200 realizations. Red regions �gray without contour
lines in the grayscale version� denote positive values of W j�x ,k�, blue regions �dark gray with contour lines in the grayscale version�
negative values and white regions denote values close to 0. The color maps are the same for all the plots.
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semble averaged phase space patterns on disorder networks
of size N=50 and N=51 with different values of m and p. It
is found that the stripes on regular networks are destroyed
and localized regions form around the initial node x= j �com-
pare Figs. 3 and 9�. Increasing the rewiring probability p
�disorder parameter in the WS model�, the patterns change
profoundly. The phase space structure gathers together at the
initial node x= j for all k on networks with large disorder.
However, the stripes on ordered networks are still visible
even for large disorder. When the disorder parameter p is
fixed, the effect of localization becomes weak on networks
with more connectivity �Compare the plots in the same col-
umns�. For odd-numbered networks, the patterns of localized
central regions are rather comparable to that on even-
numbered networks. The other regions in the phase space are
analogous to the patterns of the corresponding ordered net-
works, although the local patterns around the x
 j are
changed.

Summing the averaged limiting Wigner function over k
gives the averaged transition probability �
x,j�
=�k�W j�x ,k��. Figure 11 shows this marginal distribution
�
x,j� for even and odd N with different connectivity and
disorder strength. In the figure, we can see that there is a
remarkable localization at the initial node when m=1. As m
increases, the localizations become weak and nearly the
same for m=2 and m=3 �compare the corresponding dots
and curves in row 2 and 3�. Interestingly, we note that the
marginal distributions on even and odd numbered networks
are nearly the same and there is only one peak at x= j. This
feature differs from the case on ordered networks where
there are two peaks �x= j and x= j+N /2� for even N and only
one peak �x= j� for odd N. The two peak marginal distribu-
tion on regular even-numbered networks is a consequence of

FIG. 10. �Color online� The same plots as Fig. 9 but for N=51.

FIG. 11. �Color online� Transition probability �
x,j�
=�k�W j�x ,k�� on networks of size N=50 �column �a�� and N=51
�column �b�� with m=1, m=2, and m=3 �rows 1–3�. In each figure,
the rewiring probability p takes values 0.05 �squares�, 0.1 �circles�,
0.2 �triangles�, and 0.5 �rhombus�.
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the symmetry of the network topology. When disorder was
added, such topological symmetry is destroyed, resulting in
the single-peaked marginal distributions on disordered net-
works.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the quantum-mechanical
phase space patterns on ordered and disordered networks. On
ordered networks where each node connects to its 2m nearest
neighbors �m on either side�, the phase space quasiprobabil-
ity of the Wigner function shows various patterns. In the long
time limit, the phase space structure presents different kinds
of stripes. Such striped patterns are related to the specific
network size N and connectivity parameter m. Interestingly,
if the network size N is an even number, we find an asym-
metric quasiprobability and transition probability between
the node and its opposite node. This asymmetry depends on
the network parameters and specific phase space positions.
On disordered networks in which each edge is rewired with
probability p�0, the phase space displays regional localiza-
tion on the initial node.

The asymmetry of the quasiprobability and transition
probability is a novel phenomenon, which does not exist in
the cycle graph with m=1. However, we are unable to pre-
dict which particular parameters of N and m or which phase
space positions �x , j� are related to such asymmetry. Is there
a relation between the phase space asymmetry and transition
probability asymmetry? Such question is interesting and re-
quires a further study. The phase space patterns on disor-
dered networks suggest that there are localizations in phase
space on small-world networks. Although both the static dis-
order and topological disorder lead to localizations at the
initial node, localizations on small-world networks indicates
that it is a generic property of disordered systems and has
important consequences for quantum walk algorithms and
quantum communication �38,39�.
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