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We propose two schemes to engineer four-partite entangled Greenberger-Horne-Zeilinger �GHZ� and W
states in a deterministic way by using chains of �two-level� Rydberg atoms within the framework of cavity
QED. These schemes are based on the resonant interaction of the atoms with a bimodal cavity that simulta-
neously supports, in contrast to a single-mode cavity, two independent modes of the photon field. In addition,
we suggest the schemes to reveal the nonclassical correlations for the engineered GHZ and W states. It is
shown how these schemes can be extended in order to produce general N-partite entangled GHZ and W states.
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I. INTRODUCTION

Entanglement is known today as a key feature of quantum
mechanics; it has been found important not only for studying
the nonlocal and nonclassical behavior of quantum particles
but also for applications in quantum engineering and
quantum-information theory �1�, such as super-dense coding
�2�, quantum cryptography �3�, or for the quantum search
algorithms �4�. Apart from the Bell states as a prototype of
two-partite entangled states, several attempts have been
made recently in order to create and control entanglement
also for more complex states. Owing to the fragile nature of
most of these states, however, their manipulation still re-
mains a challenge for experiment and only a few proof-of-
principle implementations have been realized so far that gen-
erate entangled states with more than two parties in a well-
defined way. For systems of three parties, for example, one
often considers the Greenberger-Horne-Zeilinger �GHZ�
state �5�

��GHZ
�3� � =

1
�2

��↑1,↑2,↑3� + �↓1,↓2,↓3�� �1�

and the W state �6�

��W
�3�� =

1
�3

��↑1,↓2,↓3� + �↓1,↑2,↓3� + �↓1,↓2,↑3�� �2�

as two kinds of pure entangled three-qubit states. In this
notation, as usual, �↑n� and �↓n� refer to the two distinguish-
able projections of qubit n, such as its spin, excitation state,
polarization or some other two-level property of a given
quantum system, while �↑1 , . . . ,↑n� denotes the direct product
of states �↑1� , . . . , �↑n�, respectively. The GHZ and W states
are known also as genuine entangled states since they cannot
be transformed into each other under local operations and
classical communication �LOCC� protocols. Indeed, the

properties of these states have been explored in details dur-
ing recent years with regard to different quantum measures,
separability criteria, or concerning the violation of local re-
alism �7,8�. For instance, while the GHZ state is fragile un-
der qubit loss, leading to a separable quantum state if just
one of the three qubits is traced out, the three-partite W state
still results in the Bell state 1

�2
��↑1 ,↓2�+ �↓1 ,↑2�� when the

third qubit is projected upon the state �↓3�. Various experi-
ments have been reported in the literature for generating
three-qubit GHZ and W states by applying optical systems
�9,10�, nuclear magnetic resonance �11,12�, cavity QED
�13,14�, or ion trapping techniques �15�.

In the framework of cavity QED in particular, in which
neutral atoms couple to a high-finesse microwave cavity,
Rauschenbeutel and co-workers �13� prepared the excited
states of three two-level Rydberg atoms �using circular
atomic states which correspond to levels n and n+1� in an
entangled GHZ state �1� by utilizing a single-mode super-
conducting cavity �16,17�. In these experiments, the cavity
field mediates the interactions between the atoms that pass
successively through the cavity, and the control over the light
fields and atoms �atomic chain� is achieved owing to the high
quality of the cavity. In the language of these cavity experi-
ments, usually two parts of the measurements are distin-
guished: The �so-called� longitudinal experiment to prepare
the entangled state of the Rydberg atoms, and the transversal
experiment that helps to reveal the produced entanglement.
This latter part is realized by observing the nonclassical cor-
relations for a series of projective measurements on the
population of the Rydberg states after the given chain of
atoms has passed through the cavity and the atomic Ramsey
interferometer �see Sec. III�. The experiments by Rauschen-
beutel et al. nicely demonstrated the possibility of using an
atom-cavity �quantum� phase gate in order to entangle three
atomic qubits, and it has triggered the community to under-
take steps toward the controlled manipulation of multipartite
entangled states. Up to the present, however, only a few case
studies are known �18–20�, where the four-partite entangled
states have been generated by using optical systems and ion
trapping techniques.

Of course, a detailed analysis is required for every par-
ticular realization of N-partite quantum systems in order to
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work out an experimental scheme that enables one to gener-
ate and observe reliably entanglement in the system. From
the viewpoint of theory, such a scheme can be understood
also as a quantum circuit or, simply, a �temporal� sequence of
steps for dealing with the individual parts �qubits� of the
system. In the present work, we suggest two �experimentally
feasible� schemes for generating the four-partite GHZ and W
states

��GHZ
�4� � =

1
�2

��↑1,↑2,↑3,↑4� + �↓1,↓2,↓3,↓4�� , �3�

��W
�4�� =

1

2
��↑1,↓2,↓3,↓4� + �↓1,↑2,↓3,↓4� + �↓1,↓2,↑3,↓4�

+ �↓1,↓2,↓3,↑4�� �4�

in a deterministic way within the framework of cavity QED.
The proposed schemes are based on a bimodal cavity which,
in contrast to single-mode cavities, contains two independent
cavity modes �of the light field�. Below, we describe the
individual steps of how the atoms need to interact with either
the first or the second cavity mode, and a graphical language
is utilized in order to display these steps in terms of a quan-
tum circuit. A resonant strong-coupling regime is assumed,
in which the dissipation of the light field in the cavity is
negligible in the course of interaction. After completion of
these steps �the longitudinal experiment�, an entangled GHZ
or W state is produced for a chain of four �two-level� atoms
that have passed through the cavity. In practice, however, the
final state of the atoms might not be pure but rather a statis-
tical mixture of states due to decoherence and other imper-
fections in a given experiment. To understand the final state
that is obtained for the atomic chain, we also suggest—as the
transversal part of the measurements—a scheme for analyz-
ing its nonclassical correlations, i.e., to provide a proof that
�or to which extent� a four-partite GHZ and W state was
generated indeed. The goal is to suggest a scheme that is well
adapted to the recent developments in cavity QED �21� and,
in particular, to the forthcoming generation of high-finesse
microwave cavities that was announced recently �22� from
the Laboratoire Kastler Brossel �ENS�. In addition, we also
show how the scheme below can be generalized quite easily
to produce entangled GHZ and W states for any chain of N
two-level Rydberg atoms.

The paper is organized as follows. In the next section, we
briefly recall how the resonant interaction of a two-level Ry-
dberg atom with a given mode of a cavity is described by the
Jaynes-Cummings Hamiltonian, both for single and bimodal
cavities. In Sec. IIA, we then present and explain the steps
for generating with a chain of �four� atoms a four-partite
GHZ state, and in Sec. II B those for a W state. For both
states, the overall time evolution of the atoms-cavity system
is displayed also in terms of quantum circuits. These steps
are generalized in Sec. II C for N-partite states, i.e., any
number of Rydberg atoms in the chain. In Sec. III, later,
possible setups are discussed for performing transversal mea-
surements in order to reveal the nonclassical correlations
within the entangled atom chains. Finally, our conclusions
are given in Sec. IV.

II. ENGINEERING OF ENTANGLED STATES BY USING
BIMODAL CAVITIES

The resonant atom-cavity interaction regime is perhaps
the simplest way to entangle in a controlled manner the
atomic circular states and the quantized cavity field states
with each other. For a sufficiently high quality �factor� of the
cavity mirrors, this regime implies a strong atom-field cou-
pling for which the dissipation of field energy in the course
of the atom-cavity interaction becomes negligible. Indeed,
avoiding the dissipation of the cavity field is crucial for en-
gineering multipartite entangled states of atomic and/or pho-
tonic qubits in a deterministic way. Besides the quality of the
cavity, the correct matching of the atomic frequency to the
frequency of cavity mode �the so-called detuning� is also
important in order to achieve a resonant interaction regime.

In the following, let us adopt the language of Haroche and
co-workers for describing cavity QED experiments and to
specify the circular states of the atoms and the state of the
cavity. In their experiments, rubidium atoms are prepared to
occupy one of the three �circular� levels with principal quan-
tum numbers 51, 50, and 49 to which they are referred to as
exited state �e�, ground state �g�, and state �i�, respectively.
Owing to the design of the microwave cavity, however, only
the states �e� and �g� can be involved in the atom-cavity
interaction because only the e↔g transition frequency of the
Rydberg atoms can be tuned to the frequency of the cavity
mode�s�. The classical field from the microwave source S
�see Fig. 1�a��, in contrast, can be adopted to drive either the
e↔g or g↔ i transitions and is utilized for generating super-
positions between these states.

The �time� evolution of an atom with a single-mode cav-
ity is described, both for a resonant and nonresonant interac-
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FIG. 1. �a� Schematic setup of the microwave cavity experi-
ments in which a chain of Rydberg atoms from a source B passes
through a Ramsey zone R1, a superconducting cavity C, and the
�second� Ramsey zone R2 before the atoms are field ionized at the
detector D. The classical field in the Ramsey zones is generated by
a microwave source S. �b� Temporal matching of the e↔g atomic
transition frequency ��0� to the frequency �1 of the first cavity
mode and the frequency �2 of the second mode in the course of the
resonant atomic-cavity interaction. Apart from the matching of the
atomic frequency �upper half�, the lower part of this figure displays
the time dependence of the atom-cavity detuning ��t�=�0�t�−�1,
implying a stepwise change from the resonant A−C1 interaction
regime to the resonant A−C2 regime. See text for further
discussions.
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tion, by the Jaynes-Cummings Hamiltonian �23� ��=1�,

H = �0Sz +
�

2
�S+a1 + a1

+S−� + �1�a1
+a1 +

1

2
	, �5�

where �0 is the atomic e↔g transition frequency, �1 is the
frequency of the cavity field, and � is the atom-field cou-
pling frequency. In this Hamiltonian, moreover, a1 and a1

+

denote the annihilation and creation operators for a photon in
the cavity, which act upon the Fock states �n�, while S− and
S+ are the atomic spin lowering and raising operators that act
upon the states �e� and �g�, where the atomic states �e� and �g�
are treated as the eigenstates of the spin operator Sz with
eigenvalues +1 /2 and −1 /2, respectively. If there is not more
than one photon in the cavity, then the overall atom-field
state evolves during the resonant atom-cavity interaction,
e.g., for a zero detuning �0=�0−�1�, as

�e,0� → cos��t/2��e,0� + sin��t/2��g,1� , �6a�

�g,1� → cos��t/2��g,1� − sin��t/2��e,0� , �6b�

i.e., with a time evolution that is known also as Rabi rotation.
In this rotation, t is the effective atom-cavity interaction time
in the laboratory, �t is the respective angle, and a coupling
constant � /2�=47 kHz has been utilized in various micro-
wave cavity QED experiments. Note that neither the state
�e ,1� nor �g ,0� appears in the time evolution �6a� and �6b� in
line with our physical intuition that the photon energy is
stored either by the atom or the cavity but cannot occur twice
in the system.

In order to minimize the contribution of thermal photons,
which occur in microwave cavities due to thermal field leaks,
the cavity is cooled down to 0.6 K in the experiments by
Haroche and co-workers. Moreover, at the beginning of each
experimental sequence the thermal photons are further mini-
mized by sending an atom in its ground state through the
cavity so that it interacts with a cavity mode for a � Rabi
rotation and thus absorbs the remaining thermal photons
from the cavity mode. By making use of both, such cooling
and erasing techniques, an average number of nth
0.02 ther-
mal photons has been achieved so far. This ensures that the
destructive contribution of thermal photons on the evolution
of cavity states during the main experimental sequence can
be neglected.

In contrast to single-mode cavities, a bimodal cavity sup-
ports two independent and nondegenerate modes of light
with different �orthogonal� polarization. Since the frequen-
cies of these light modes are fixed by the geometry of the
cavity, the atomic e↔g frequency needs to be tuned in order
that the atom interacts resonantly with either the first or the
second field mode. In the language of quantum information,
the additional cavity mode gives rise to another photonic
qubit that may interact independently with the atomic qubits
that pass through the cavity. Indeed, the design and develop-
ment of bimodal cavities has been found to be an important
step toward the coherent manipulation of complex quantum
states and for performing fundamental tests in quantum
theory �24–31�. Below, we shall denote the cavity modes by
C1 and C2 and suppose that they are associated with the

frequencies �1 and �2, such that �1−�2��	0. Owing to
this fixed splitting in the frequency of the field modes, we
refer to the detuning of the atomic frequency with regard to
the cavity modes briefly as atom-cavity detuning. For the
cavity utilized in the experiment by Rauschenbeutel and co-
workers �24�, especially a frequency splitting of � /2�
=128.3 KHz was realized.

An entanglement of a Rydberg atom with the photon field
of the cavity is achieved by tuning the e↔g transition fre-
quency as a function of time from being in resonance with
one or the other cavity mode, while the atom passes through
the cavity. For a proper detuning ��t� of the atomic fre-
quency, a resonant interaction �regime� is then realized and
can be switched between the two field modes. As seen from
the lower part of Fig. 1�b�, the atom is in resonance with the
cavity mode C1 for ��t�=0 and with C2 for ��t�=−�, where
a stepwise change from the A−C1 to the A−C2 resonant
interaction is required. In practice, however, this stepwise
change in the detuning ��t� is experimentally not feasible. In
the experiments by Haroche and co-workers, the detuning is
changed by applying a well-adjusted time-varying electric
field across the gap between the cavity mirrors, so that the
required �Stark� shift of the atomic transition frequency �0�t�
is achieved. Instead of a sharp stepwise change of the atom-
cavity detuning, therefore a rather smooth switch is produced
within a finite time 

1 �s that corresponds to a �

10 angle in
units of Rabi rotations. For a typical atom-cavity interaction
time, this finite switch is not negligible and does affect the
evolution of the cavity states �32�. In this paper, however, we
shall not consider the effects of this finite switch, but shall
assume a stepwise change in the detuning as indicated in the
lower part of Fig. 1�b�. From the experimental viewpoint,
further improvements of the time-varying electric field char-
acteristics are needed in order to produce a sufficiently short
�and thus negligible� switching time from the A−C1 to the
A−C2 resonant interaction.

We also note that, if the atom is tuned into resonance with
one of the cavity modes, the second mode is frozen out from
the atom-cavity interaction owing to the �large� splitting �
between the two cavity modes. Therefore, the overall
A−C1−C2 time evolution of the atom-cavity state can be
safely separated into two independent parts: The evolution
due to the A−C1 resonant interaction and that due to A−C2.
In practice, however, the splitting between the two cavity
modes frequencies is often not large enough �for example,
��3 � in the experiment of Rauschenbeutel and co-
workers�, and then neither one of the two cavity modes can
be frozen out completely. This leads to a simultaneous inter-
action of the atom with both cavity modes and yields an
effective mode wave mixing in the cavity �32�. Again, we
shall not consider the simultaneous interaction with both
cavity modes in this paper but assume the shift � to be suf-
ficiently large, so that the atom-cavity state evolves accord-
ing to Eq. �6� during the A−C1 interaction, and according to

�e, 0̄� → ei��t/2�cos��t/2��e, 0̄� + �̇ sin��t/2��g, 1̄�� , �7a�

�g, 1̄� → ei��t/2�cos��t/2��g, 1̄� + �̇ sin��t/2��e, 0̄�� , �7b�

during the A−C2 interaction �period�. In the evolution Eq.

�7�, the states �0̄� and �1̄� hereby refer to the Fock states of
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the cavity mode C2, and the phase factor ei��t/2 arises from
the energy difference �� between the two cavity modes be-
ing accumulated in the course of the Rabi rotation �t.

With this short reminder on the Jaynes-Cummings Hamil-
tonian and the �atom-cavity� interactions in a bimodal cavity,
we are now prepared to present the steps that are necessary
in order to generate four-partite entangled states for a chain
of Rydberg atoms.

A. Four-partite GHZ state

Let us first consider the four-partite GHZ state �3� and
assume that, initially, the cavity is empty, i.e., being in the

state �0, 0̄���0� �0̄�. Then, by using an auxiliary �Rydberg�
source atom As in the excited state �e�, we can prepare the
cavity in a superposition of the two cavity modes

��1� =
1
�2

��̇ei��/��0,1̄� + �1,0̄�� . �8�

According to our discussions above, this is achieved if the
source atom first interacts with the mode C1 ��=0� for a
Rabi rotation �t0=� /2, and afterwards with the cavity mode
C2 ��=−�� for the rotation �t1=�. Owing to the rotations of
the atom-cavity state in Eq. �6�, we shall briefly refer to these
interactions as Rabi � /2, respectively, � pulse, and display
them in the figures by means of black diamonds with the
rotation angle indicated inside. For a resonant interaction, of
course, the subsequent application of these two rotations in
Eqs. �6� and �7� with regard to the field modes C1 and C2
leads to a factorization of the source atom in its ground state
�g�, and that is therefore omitted from our further discussion
�for further details, see the paper by Rauschenbeutel et al.,
where this two-step sequence has been demonstrated also
experimentally�. For the sake of brevity, moreover, we shall
not display explicitly the values � for the detuning of the
atomic frequency which can easily be read off from the cav-
ity modes as involved in some particular step of the resonant
interaction.

In addition to the resonant atom-cavity interaction, we
need to consider also the interaction of the Rydberg atoms
with a �classical� microwave field that gives rise to a �coher-
ent� superposition of atomic states before or after they pass
through the cavity, and in dependence of the microwave
pulse duration and its frequency �which can be tuned to the
e↔g or g↔ i atomic transitions�. In the literature, such an
interaction with a classical field is often called a Ramsey
pulse and is denoted in the figures with gray circles, showing
the interaction time in units of Ramsey rotations. In addition,
we shall associate the letters R1 or R2 to these circles in order
to denote the Ramsey zone in front or behind the cavity, see
Fig. 1�a�.

To generate a GHZ state for a chain of Rydberg atoms,
being initially in the ground states �g�, we can proceed as
follows. If the cavity is in the superposition �8�, the state of
atom A1 is first transformed just before it enters the cavity to

�g1� →
1
�2

��i1� + �g1�� . �9�

This is achieved by using a � /2 Ramsey pulse tuned to the
g↔ i transition frequency while the atom A1 crosses the first
zone R1. For the sake of brevity, we shall denote these inter-
actions by R1�� /2,�g↔i�, with �� being the frequency of the
microwave source S. After the atom A1 has left the Ramsey
zone, it enters the cavity and interacts with mode C1 for a
Rabi rotation �t3=2�. The overall atom-cavity state then
becomes

��3� =
1

2
��̇ei�3�/���g1 + i1�,0,1̄� − ��g1 − i1�,1,0̄�� . �10�

The effect of this 2� rotation can be seen easily from Eq. �6�
which implies that the transformation �e1 ,0�→−�e1 ,0� and
�g1 ,1�→−�g1 ,1�, is made. Of course, this transformation just
describes a �z=2Sz quantum �logic� gate that is applied to
the atom-cavity system. After the atom has passed through
the cavity, it is subjected again to a R2�� /2,�g↔i� pulse
inside the second Ramsey zone �see Fig. 2�a��, thus leading
to the state

��4� =
1
�2

��̇ei�3�/��i1,0,1̄� − �g1,1,0̄�� , �11�

and where the unitary transformation �cf. �9��
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FIG. 2. �a� Temporal sequence for generating a four-partite GHZ
state associated with the chain of Rydberg atoms A1, A2, A3, and A4.
The pictograms in this figures are described in the text. The gray
shadowed ellipse denotes the time when the entanglement of four
qubits, the two photonic qubits C1, C2 and the two atomic qubits A1,
A2 is achieved. �b� The corresponding quantum circuit in which the
�four� Rydberg atoms are represented by the four lower lines, being
initially prepared in the ground state �g�, while the source atom As is
shown as the uppermost line.
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�g� →
1
�2

��i� + �g��, �i� →
1
�2

��i� − �g�� �12�

has been utilized. A more detailed discussion of these �three�
steps was given in Rauschenbeutel et al., where this se-
quence of Ramsey and Rabi pulses was demonstrated also
experimentally for the first time. After the atom A1, the sec-
ond atom A2 from the chain undergoes the same temporal
sequence of interactions. Leaving apart the details, these
transformations result in the state

��7� =
1
�2

��̇ei�5�/��i1,i2,0,1̄� + �g1,g2,1,0̄�� , �13�

after the second atom has left the setup. Let us note that
already now we have generated a four-partite GHZ-type state
for the two atoms A1 and A2 as well as the two cavity modes
C1 and C2, respectively. For the atoms, moreover, only the
two neighbor states �i� and �g� are involved in the expression
�13�. In order to generate the GHZ state for a chain of four
atoms, we need to map the information of the photonic qu-
bits upon the Rydberg atoms A3 and A4. This is done quite
easily if the atom A3 interacts with the mode C1 for �t8=�
and atom A4 with the mode C2 for �t9=�. Using Eqs. �6�
and �7�, we then see that the cavity states �0� and �0̄� are
mapped upon the ground states �g3� and �g4� of the two at-

oms, while �1� and �1̄� are mapped upon the exited states �e3�
and �e4�, respectively. For these reasons, the overall atom-
cavity state �13� is mapped upon the four Rydberg atom state

��GHZ
�4� � =

1
�2

�ei��i1,i2,g3,e4� + �g1,g2,e3,g4�� , �14�

whereas the cavity state is factorized out in the vacuum state

�0, 0̄�. Obviously, the state �14� is equivalent to the state �3�
under the change of notation �33�

�↓1� = �i1�, �↑1� = �g1�, �↓2� = �i2�, �↑2� = �g2� ,

�15a�

�↓3� = �g3�, �↑3� = �e3�, �↓4� = �e4�, �↑4� = �g4� ,

�15b�

except for the factor ei�, with �= 7�
� �, that has no effect on

the final-state probability to find the wave packet of atomic
chain A1−A4 in either the state �i1 , i2 ,g2 ,e4� or �g1 ,g2 ,e4 ,g4�.
These probabilities are measured by the detectors, which are
indicated in the figures by the capital D �within a box�.

Besides displaying the individual interactions between the
atoms and cavity, that is the particular sequence of Ramsey
and Rabi pulses, a quantum circuit representation of the
overall �unitary� transformation is shown in Fig. 2�b�. Of
course, both representations �a� and �b� in Fig. 2 are equiva-
lent and can be utilized on purpose, where the latter one can
be easily translated into quantum gates. Instead of the 2�
Rabi rotation, the equivalent �z gate and the initial state of
all �atomic and photonic� qubits are then shown explicitly.
This compact notation for describing the unitary evolution of
the atom-field system in the framework of cavity QED has

been introduced originally by Haroche and co-workers and
has been adopted here for the present discussion.

B. Four-partite W state

A similar pulse sequence as above for the GHZ state can
be worked out in order to generate a four-partite W state �4�
for a chain of �four� Rydberg atoms; this pulse sequences can
be expressed again either as temporal sequence for the pas-
sage of atoms through the Ramsey zones and cavity �Fig.
3�a�� or as quantum circuit �Fig. 3�b��. Unlike the generation
of the state �8�, however, here we initially prepare the two
field modes of the cavity in the superposition

��1� =
1

2
��̇ei��/��0,1̄� + �3�1,0̄�� �16�

by using the source atom As in the exited state �e� and by
interacting first with mode C1 for a Rabi rotation �t0

=2 arccos� 1
2 � and subsequently with mode C2 for �t1=�.

Applying Eqs. �6� and �7�, we see that these pulses result in
the cavity state �16�, while the source atom is factorized out
in its ground state.

Next, the Rydberg atoms A1 and A2 pass through the cav-
ity, being initially in the ground state. We let A1 interact with
the mode C1 for a Rabi rotation �t2=2 arccos��2

3 �, and A2
with C1 for �t3=� /2. Then, the overall atom-cavity state is
given by
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FIG. 3. �a� Temporal sequence for generating a four-partite W
state associated with the chain of Rydberg atoms A1, A2, A3, and A4.
Again, the gray shadowed ellipse denotes the time when the en-
tanglement of four qubits, the two photonic qubits C1, C2 and the
two atomic qubits A1, A2 is achieved. �b� The corresponding quan-
tum circuit in which the �four� Rydberg atoms are represented by
the four lower lines.
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��3� =
1

2
��̇ei��3�/2�+t2��g1,g2,0,1̄� + �g1,g2,1,0̄� − �g1,e2,0,0̄�

− �e1,g2,0,0̄�� , �17�

i.e., by a W-type entangled state between the two photonic
qubits C1, C2 and the atomic qubits A1, A2. To map the in-
formation of the photonic qubits upon the Rydberg atoms A3
and A4, a very similar procedure can be applied as for the
GHZ state in Sec. II A: The atom A3 first interacts with mode
C1 for a Rabi rotation �t4=� before A4 enters the cavity and
does the same with C2 for �t5=�. If both atoms enter the
cavity in their ground state, the overall state of the atom
chain becomes

��W
�4�� =

1

2
�ei��g1,g2,g3,e4� + �g1,g2,e3,g4� + �g1,e2,g3,g4�

+ �e1,g2,g3,g4�� , �18�

while the cavity �state� is factorized out. The state �18� co-
incides with the state �4� under the change of notation

�↑1� = �e1�, �↓1� = �g1�, �↑2� = �e2�, �↓2� = �g2� ,

�19a�

�↑3� = �e3�, �↓3� = �g3�, �↑4� = �e4�, �↓4� = �g4� ,

�19b�

and where, again, the exponential factor ei� with �=�� 7�
2�

+ t2� does not affect the final-state probability to find the
wave packet of atomic chain A1−A4 in either the state
�g1 ,g2 ,g3 ,e4�, �g1 ,g2 ,e3 ,g4�, �g1 ,e2 ,g3 ,g4�, or �e1 ,g2 ,g3 ,g4�,
respectively.

C. Generation of N-partite states

In the experiments by Rauschenbeutel et al., the genera-
tion of the three-partite GHZ state was reported with a fidel-
ity of 0.54%. This rather low value of fidelity, that is just
above of the threshold 1/2 necessary for proving the produc-
tion of this entangled state, is caused mainly by the low
surface quality of the cavity mirrors, i.e., the local roughness
and the deviations from the spherical geometry, as well as by
the leakage of the cavity field due to its interaction with the
environment. Under the assumption of negligible dissipation,
the quality factor that characterizes the surface quality of
cavity mirrors, is then proportional to the �coherent� photon
storage time and thus determines the number of quantum
logical operations that can be executed successively before
the atom-cavity state becomes completely destroyed. This
rapid loss of coherence during the atom-cavity state evolu-
tion, has stimulated the group of Raimond and Haroche at
Laboratoire Kastler Brossel �ENS� to develop a new genera-
tion of cavity devices that was announced recently. With this
new and ultrahigh-finesse cavity, the quality factor was in-
creased by about two orders of magnitude, in fact, a very
remarkable improvement that may enable them to perform
more than 100 quantum logical operations within the lifetime
of the cavity field. Moreover, by utilizing the toroidal form

of the cavity mirrors �instead of spherical ones as used pre-
viously�, the modes frequency splitting � was increased by
about one order of magnitude. This large increase ensures
that an atom is coupled to one single mode only and, thus,
that the effective mode wave mixing in the cavity mentioned
above becomes negligible. Owing to this recent success, it
seems justified to suggest new experiments in which multi-
partite entangled states can be generated with a trustworthy
fidelity.

To this end, let us consider the N-partite �extension to the�
GHZ and W states

��GHZ
�N� � =

1
�2

��↑1, . . . ,↑N� + �↓1, . . . ,↓N�� ,

��W
�N�� =

1
�N

��↑1,↓2, . . . ,↓N� + ¯ + �↓1,↓2, . . . ,↑N�

N terms

� .

For these states, N-partite entanglement can be generated in a
similar way as discussed above by applying the individual
steps in Figs. 4�a� and 4�b�. In this procedure, a fully en-
tangled state is first generated for N−2 atoms and the cavity;
then, the information from the cavity field modes are mapped
upon two additional Rydberg atoms in order to obtain a GHZ
or W state associated with the atom chain A1−AN. The time
intervals ti to perform the individual Rabi rotations on the
atom-cavity states �Fig. 4�b�� are given by

t1 =
2

�
arccos� 1

�N
	, tn =

2

�
arccos�� N − n

N − n + 1
	

with n=2, . . . ,N−1. There is not much need to mention here
about these operations since the individual steps can be eas-
ily recognized from Fig. 4 as well as from our discussion in
Secs. II A and II B above.

Suppose one could implement the extensions above, the
question that naturally arises is up to which N one may pro-
ceed in line of the recent developments in cavity QED. To
estimate such a practical limit in the number of atoms N, let
us consider the most time consuming scenario—the N-partite
GHZ state, for which each additional atomic qubit is incor-
porated into the final entangled state for the price of a 2�
Rabi rotation ��z gate�. If we assume that the �minimum�
distance between any two successive atoms is equal to the
triple waist length of the cavity mode, then, the approximate
relation between N and the lifetime of the atom-cavity sys-
tem T, takes the form

N 

1

6

T

T�

� , �20�

where T� is the required time for a single � Rabi rotation,
and � is a factor which reflects various corrections to our
idealized estimate. Such necessary corrections might concern
the imperfections in the Rabi and Ramsey pulses, events
with two atoms in the same cavity mode, contributions due
to noisy channels, etc. Of course, such additional distur-
bances can lead only to a further decrease of N, the number
of atoms in the chain. For the atomic velocity v=500 m /s,
as utilized in the microwave cavity experiments, a single �
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Rabi rotation takes about T��10 �s. According to report by
Kuhr et al., moreover, the lifetime of the system is bounded
only by the radiative lifetime of the atoms T
30 ms �in
contrast to the cavity photon storage time 
120 ms�. Using
a conservative estimate of �=0.2 in Eq. �20�, then, the num-
ber of atoms which may pass the cavity within the above
lifetime T is given by N
100. In practice, this number must
certainly be rescaled in accordance with the physical dis-
tances between the atomic source, cavity, and detectors as
utilized in a particular experiment.

III. DETECTION OF THE FOUR-PARTITE GHZ
AND W STATES

Each scheme for generating experimentally a particular
�entangled� multipartite state for a given atom chain should
come along with a recipe that enables one to demonstrate
that the requested state has indeed been produced. Since, up
to the present, we were mainly concerned with the �Rabi and
Ramsey� rotations that are necessary in order to achieve the

desired state entanglement, not much was said about the de-
tectors D displayed in Figs. 2 and 3. To project the state of a
Rydberg atom upon one of its �allowed� levels e, g, or i, a
field ionization technique �detector� is applied in the micro-
wave cavity experiments. From the detector signal, as taken
for many chains of Rydberg atoms, then the probabilities
Pn�e�, Pn�g�, and Pn�i� are deduced for occupying a particu-
lar level. In the experiments, the field ionization of some
atom from the chain is often characterized in the literature as
longitudinal measurement �experiment�.

To better understand why one distinct projective
measurement—the transversal measurement—needs to be
carried out, let us reconsider the GHZ state �14� from Sec.
II A. With probability 1/2, we expect to find the atomic chain
A1−A4 either in the �basis� state �i1 , i2 ,g3 ,e4� or
�g1 ,g2 ,e3 ,g4�, and similarly the probability 1 /4 to find the W
state �18� in one of the four �basis� states �g1 ,g2 ,g3 ,e4�,
�g1 ,g2 ,e3 ,g4�, �g1 ,e2 ,g3 ,g4�, and �e1 ,g2 ,g3 ,g4�, respectively.
However, the same probabilities are obtained also for
the �uncorrelated� statistical mixture of the corresponding
basis states, for instance, the mixed state
�1 /2, �i1 , i2 ,g3 ,e4�� , 1 /2, �g1 ,g2 ,e3 ,g4���. Therefore, no
�longitudinal� measurement alone is sufficient for proving
the nonclassical nature of the correlated atomic chain for the
GHZ- or the W-type entanglement, but must be augmented
by additional measurements. The same can be seen already
from the �Bell� state 1

�2
��↑1 ,↓2�+ �↓1 ,↑2�� that describes a

rotation-invariant spin singlet state of two qubits. As is well
known for such a singlet state, we shall find the two spins
always in the opposite direction for any choice of the quan-
tization axis of the �projective� measurement. In the litera-
ture, this counterintuitive result is known also as Einstein-
Rosen-Podolsky �EPR� paradoxon �34�, and this freedom in
the choice of the quantization axis can therefore be exploited
to display the nonclassical correlations of the generated GHZ
and W states.

Following the work by Hagley et al. �35�, let us now
adopt the geometrical language of the Bloch sphere in order
to introduce a more quantitative description for the projec-
tive measurement in the framework of cavity QED. Using
the Bloch sphere, any single-qubit state can be represented as
a point either on the sphere �pure states� or within the sphere
�mixed states�. Moreover, the two basis states �↑n� and �↓n�
are taken along z as the quantization axis that crosses the
sphere at the north and south pole, respectively. In this stan-
dard representation of the Bloch sphere, the x axis is defined
by the vectors �+n

x�= 1
�2

��↑n�+ �↓n�� and �−n
x�= 1

�2
��↑n�− �↓n��,

the y axis is defined by vectors �+n
y�= 1

�2
��↑n�+ �̇�↓n�� and

�−n
y�= 1

�2
��↑n�− �̇�↓n��. In addition, any other axis ���� in the

equatorial x-y plane, that forms the angle � with respect to
the x axis, can be characterized by the unit vectors �+n

��
= 1

�2
��↑n�+ei��↓n�� and �−n

��= 1
�2

��↑n�−ei��↓n�� where, again,
the plus and minus signs are chosen to distinguish between
positive and negative values along the axis. Recall that the
basis states �↑n� and �↓n� are related to the two neighbor
atomic states �en� and �gn�, or �gn� and �in� via expressions
�15� or �19� for the four-partite GHZ or W entangled chain of
atoms, respectively. By this choice, we thus defined the z
axis of the Bloch sphere as pointing along our longitudinal
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quantization axis that coincides with the projection measure-
ment performed by the detector.

With this notation, following Hagley et al., we can now
explain how one and the same detector �as used for projec-
tion along the z axis� can be applied to perform a projection
along either the x or ���� �transversal� axes, respectively. If
we consider an atom in the superpositions 1

�2
��↑ �+ �↓ �� and

1
�2

��↑ �− �↓ ��, then a resonant � /2 Ramsey pulse between the
two neighbor levels �↑ �↔ �↓ � implies the transformations

1
�2

��↑� + �↓�� → �↓�,
1
�2

��↑� − �↓�� → �↑� . �21�

Leaving the Ramsey zone, the atom enters the detector,
where it is projected either upon the state �↓ � or �↑ � corre-
sponding to poles of the Bloch sphere above. The time re-
versal of the �unitary� transformation �21� thus suggests that
a combination of the resonant � /2 Ramsey pulse followed
by a standard �longitudinal� measurement, can be viewed as
a projective measurement upon the x axis as given by vectors
��x�= 1

�2
��↑ �� �↓ ��. Alternately to the resonant Ramsey

pulse, if we perform a pulse R2�� /2, �̃� with a frequency �̃
that is slightly shifted with regard to the atomic transition
��↑ �↔ �↓ �� frequency �, then a phase difference �=
��̃
−�� is accumulated by the atomic state during the coherence
time 
. Therefore, a combination of a near-resonant Ramsey
pulse with a tunable frequency �̃���� followed by a detec-
tion of the atom within the longitudinal basis, is equivalent to
a projective measurement upon the ���� axis as described by
vectors ����= 1

�2
��↑n��ei��↓n��. Further details concerning

the transversal measurement in cavity QED can be found in
by papers by Hagley et al., and Rauschenbeutel et al.

To make the above statements clear, let us consider the
three-partite GHZ state �10� from Sec. II A and suppose that
atom A1 is projected onto the states �i1� or �g1� after it has
passed the cavity. For the field modes C1 and C2, this pro-
jection gives rise to a collapse of the wave packet �10� into
one of the �two� Bell states

��coll
� � =

1
�2

��̇ei�3�/��0,1̄� � �1,0̄�� , �22�

where the plus sign is associated with the atom in the state
�i1� and the minus sign with �g1�, respectively. These Bell
states can be mapped upon the atoms A2 and A3 by following
the procedure from Sec. II and as seen in Fig. 5�a�. After this
map, the cavity states are factorized out and the state of the
atoms A2 and A3 then becomes

��̃coll
� � =

1
�2

�ei��g2,e3� � �e2,g3�� �23�

with �=5�� /�. To perform an independent �transversal�
measurement on these atoms, we project A2 upon the x and
A3 upon the ���� axis. This is done by acting with a
R2�� /2,�e↔g� pulse on atom A2, followed by a projective
measurement in the longitudinal basis, together with a near-
resonant R2�� /2, �̃� pulse upon A3 as well followed by a
projective measurement in the longitudinal basis �see Fig.
5�a��. Since the latter Ramsey pulse is done with the �near-

resonant� frequency �̃, the phase difference ����̃� is accu-
mulated during the time 
 given by delay between the
R2�� /2,�e↔g� and R2�� /2, �̃� pulses.

The above two sequences: �i� R2�� /2,�e↔g� acting upon
A2 followed by D and �ii� R2�� /2, �̃� acting upon A3 fol-
lowed by D, together with the four possible projections �e2,3�
and �g2,3� of the atoms A2 and A3, give eight outcomes of the
measurements with nonzero probability

P��e2,e3;�� = ���−1
x�  �−2

�����̃coll
� ��2, �24a�

P��g2,g3;�� = ���+1
x�  �+2

�����̃coll
� ��2, �24b�

P��e2,g3;�� = ���−1
x�  �+2

�����̃coll
� ��2, �24c�

P��g2,e3;�� = ���+1
x�  �−2

�����̃coll
� ��2. �24d�

Of course, these probabilities depend �parametrically� on the
angle �, that defines the axis for the transversal measure-
ments in the x-y plane, while the subscript � refers to the
particular state �23� that was obtained after the projection of
atom A1 upon the z axis. The probabilities �24a�–�24d�, cor-
responding to all possible outcomes for A2 and A3, are then
combined for many instances of one and the same experi-
ment, in order to produce the �so-called� Bell signal

I���� = P��e2,e3;�� + P��g2,g3;�� − P��e2,g3;��

− P��g2,e3;�� �25�

for any angle � in the interval �0,2��.
For an idealized setup of the experiment, the signal �25�

has the form I����= �cos��+�� and thus, the observed os-
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FIG. 5. Sequence �a� displays the basic steps of the transversal
measurement for the GHZ state �triplet A1−C1−C2� given by ex-
pression �10�. See the text for explanations. Sequence �b� displays
the principle of another type of measurement as applied over the
same entangled triplet �10�.
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cillation of the signal as a function of �, would reveal non-
classical correlations of the Bell states �23�. Indeed, the
above recipe meets the mentioned request for carrying out an
additional measurement upon an independent quantization
axis �x and ���� axes in this case�, and moreover, since the
plus sign is associated with the atom A1 being in the state �i1�
and the minus sign with �g1�, this technique of transversal
measurements enables one to reconstruct quantum correla-
tions of the initial triplet state �10�.

Besides varying the angle �, i.e., the shift in the frequency
�̃ of the Ramsey pulse R2�� /2, �̃� with regard to the atomic
transition frequency �, there is another possibility to perform
an independent measurement on the Bell state �22� and
which is particularly suitable for bimodal cavities. This tech-
nique is based on the delay time T, that is introduced be-
tween the creation of the Bell state �22� among the cavity
modes C1−C2, and the time when the cavity state is probed
by one further atom Ap �cf. Fig. 5�b��. In the latter step, the
probe atom Ap prepared in the ground state, first interacts
with the cavity mode C1 for �ta=� and with the mode C2
for �tb=� /2, followed by an projection of Ap in the longi-
tudinal basis. According to Eqs. �6� and �7�, for an idealized
experiment, this �two-step� sequence produces the probabil-
ity amplitude to detect Ap in the exited state

P��e;T� =
1 � cos��T + 4��/��

2
. �26�

Again, here the plus sign is associated with the atom A1 in
the state �i1� and the minus sign with �g1�. An oscillation of
the probability amplitude �26� as a function of the delay time
T then proves the coherent superposition of the two cavity
mode states, and thus, provides us with an entanglement
measure similarly to the Bell signal �25� in the previous case.
Moreover, the sensibility of this measurement to the sign of
the pair �22� enables one also to reconstruct quantum corre-
lations of the initial triplet state �10�. Note that the above
probing of the cavity modes yields also a nonzero probability
to detect Ap in the ground state that fulfills the relation
P��g ;T�= P��e ;T�. Therefore, if the probability �26� is cho-
sen in order to reconstruct the state �10�, then one should
collect only those probabilities during the measurement, for
which the probe atom has been detected in its exited state
and discard all other events, for which the atom has been
detected in its ground state. Further details concerning this
technique can be found in the paper by Rauschenbeutel et al.

After these brief explanations of the different types of
measurement techniques for probing nonclassical correla-
tions, we are prepared to discuss those steps which are nec-
essary for analyzing the four-partite entangled states from
Secs. II A and II B.

A. Detection of the four-partite GHZ state

To analyze the four-partite GHZ state from Sec. II A, we
shall combine both, the transversal and longitudinal mea-
surement techniques from above. Our goal is to recognize if
a �uncorrelated� statistical mixture of the states �i1 , i2 ,g3 ,e4�
and �g1 ,g2 ,e3 ,g4� occurs during the experiment, since it
leads to the same outcome of the projection �upon the z axis�

of individual atoms from the chain as for the entangled GHZ
state. Let us start our analysis by considering the three-
partite GHZ state �10� from Sec. II A,

��3� =
1
�2

��̇ei�3�/��+1
x,0,1̄� − �−1

x,1,0̄�� , �27�

where the Bloch sphere notation ��x� along with relations
�15� have been used. After the atom A1 leaves the cavity,
atom A2 prepared in the ground state, is subjected in the first
Ramsey zone to the pulse R1�� /2,�g↔i� and then, while
passing the cavity, it interacts with the mode C1 for �t5
=2� as seen in Fig. 6�a�. The atom-cavity wave packet thus
results into the four-partite GHZ state,

��5� =
1
�2

��̇ei�5�/��+1
x,+2

x,0,1̄� + �−1
x,−2

x,1,0̄�� . �28�

In contrast to Sec. II A, we shall not map the information
from the cavity upon some additional atoms but take the
�atom-cavity� state �28� itself for performing the transversal
measurements.

As seen from Fig. 6�a�, the atom A1 leaves the cavity in
either the state �+1

x� or �−1
x� and is projected in the detector

upon the states �g1� or �i1�, respectively. This measurement
reduces the state �28� to

��6
�� =

1
�2

��̇ei�5�/��+2
x,0,1̄� � �−2

x,1,0̄�� �29�

where the plus sign corresponds to the outcome �g1� and the
minus sign to �i1�. Next to A1, atom A2 leaves the cavity and
is subjected to the pulse R2�� /2,�g↔i� in the second Ram-
sey zone, the state �29� thus becomes

Bell signal

As

C1

C2

Ap

A1

A2

0

g

g

g

e

�/2

��

D

D

D

R1

�/2

R1

�/2

�z

�z

p
o

si
ti

o
n

time

C2

C1

�

As A1

A2

D

�/2

�/2

R1 R1

R2

�/2 �/2

�/2

�/2,�

����

q
u

a
rt

et
q

u
a

rt
et

tr
ip

le
t

tr
ip

le
t

Ap

D

�

T

B
el

l s
ta

te
B

el
l s

ta
te

D

�/2

�

(a)

(b)

0

R2

�/2,��/2

FIG. 6. �a� The temporal sequence for performing transversal
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��7
�� =

1
�2

��̇ei�5�/��i2,0,1̄� � �g2,1,0̄�� . �30�

In typical microwave cavity QED experiments, a single � /2
Ramsey pulse takes about 1 �s−2 �s and implies that the
atom A2 is still inside of the Ramsey plates when the re-
quired rotation of the level population has been completed.
After a short time delay 
, it is therefore possible to address
an additional �near-resonant� R2�� /2, �̃� pulse upon A2
within the same Ramsey zone. Finally, leaving the Ramsey
plates, the atom A2 is projected on either �i2� or �g2� state
inside the detector �cf. Fig. 6�a��.

As we explained above, the combination of a near-
resonant Ramsey pulse R2�� /2, �̃� together with the mea-
surement of A2 in its longitudinal basis is equivalent to a
projective measurement upon the ���� axis, where the angle
�=
��̃−�g↔i� is accumulated in the course of the time 

given by delay between the R2�� /2,�g↔i� and R2�� /2, �̃�
pulses. After the projection of A2 upon �i2� or �g2�, the �two�
cavity modes therefore remain either in the state

��8
��i2;��� � �2�+2

���7
�� =

1
�2

��̇ei�−�+�5�/���0,1̄� � �1,0̄��

�31a�

or

��8
��g2;��� � �2�−2

���7
�� =

1
�2

��̇ei�−�+�5�/���0,1̄� � �1,0̄�� ,

�31b�

respectively. Although Eq. �31� describe the coherent super-
position of the cavity states, they also contain information
about the initial four-partite state �28� due to the phase
�angle� � and as well as due to the sign �.

To reveal the entanglement of �28� due to measurements
on the state Eq. �31�, we can utilize the last measurement
technique from above �see Fig. 5�b�� by introducing a proper
time delay T that contributes to the cavity state by means of
the energy difference ��T between the modes. During this
time delay, the free evolution of the cavity state results in the
phase shift ei�−�+5��/��→ei�T�−�+5��/��. After this time delay,
the probe atom Ap enters the cavity and interacts with the
mode C1 for �ta=� and with C2 for �tb=� /2 as shown in
Fig. 6�a�. According to Eqs. �6� and �7�, the last �two-step�
sequence makes the overall state of the cavity and probe
atom become either

��10
� �i2;�,T�� =

1

2
��̇�1 � ei�T�−�+����gp,0,1̄� + �1 � ei�T�−�+���

�ep,1,0̄�� , �32�

if the cavity was initially in the state �31a�, or

��10
� �g2;�,T�� =

1

2
��̇�1 � ei�T�−�+����gp,0,1̄� + �1 � ei�T�−�+���

�ep,1,0̄�� �33�

for the state �31b�, where �=6�� /�. Therefore, the four

possible projections �i2 /g2� and �ep /gp� of the atoms A2 and
Ap, give the following eight outcomes of the probability am-
plitudes:

P��i2,gp;�,T� = ��gp��10
� �i2;�,T���2, �34a�

P��g2,ep;�,T� = ��ep��10
� �g2;�,T���2, �34b�

P��i2,ep;�,T� = ��ep��10
� �i2;�,T���2, �34c�

P��g2,gp;�,T� = ��gp��10
� �g2;�,T���2 �34d�

that depend on the angle � and the time delay T, and where
the � sign refers again to the outcome �g1� or �i1� for the first
atom A1. As before, these probabilities are then combined for
many instances of the same temporal sequence, thus produc-
ing the correlation signal

I���,T� = P��i2,gp;�,T� + P��g2,ep;�,T� − P��i2,ep;�,T�

− P��g2,gp;�,T� , �35�

which is obtained during the experiment. For an idealized
setup, this signal takes the form I��� ,T�= �cos�T�−�+��,
and where we have the angle ����̃� and the time delay T as
two independent parameters that can be varied in order to
prove or discard that the desired four-partite state �28� was
indeed generated.

B. Detection of the four-partite W state

The �N-partite� GHZ and W state are essentially different
in that they cannot be transformed into each other under any
LOCC operations. For this reason, a quite different �tempo-
ral� sequence of transversal measurements must be found in
order to prove that the four-partite W state was indeed gen-
erated by a given experimental sequence. To develop such a
sequence, let us note that the four-partite W state �17� can be
cast into the form

��3� =
1
�2

� 1
�2

��̇ei��3�/2�+t2��0,1̄� + �1,0̄���g1,g2� −
1
�2

��g1,e2�

+ �e1,g2���0,0̄�	 , �36�

in which we have two types of �two-partite� Bell states: �i�
The photonic Bell state in the first line, and �ii� the atomic
Bell state in the second line. This representation of the W
state therefore suggests a temporal sequence in which the
photonic Bell state is coherently isolated and for which the
entanglement is shown independent of the atomic part. In-
deed, such a �temporal� sequence is shown in Fig. 7�a� and is
redrawn as a quantum circuit in Fig. 7�b�.

Following Fig. 7, we start from an empty cavity in the

state �0, 0̄�, and make use of an auxiliary source atom As to
prepare the cavity in the superposition

��1� =
1

2
��̇�0,1̄� + �3ei��/��1,0̄�� . �37�

This is done, if the atom first interacts with the mode C2 for
�ta=2 arccos��3

4 � and, thereafter, with the mode C1 for
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�t1=�. Before the atom A1 enters the cavity, we let the field
state �37� evolve freely for the time delay T1, which leads to
the phase shift ei��/�→ei��T1+�/��. We suppose the atom A1

to interact with mode C1 for �tb=arccos��2
3 � and afterwards

A2 to interact with mode C1 for �t4=� /2 �cf. Fig. 7�a��. This
sequence together then produces the four-partite W state

��4�T1�� =
1
�2
� 1

�2
��̇�0,1̄� + ei��T1+3�/2�+tb��1,0̄���g1,g2�

−
1
�2

ei��T1+3�/2�+tb���g1,e2� + �e1,g2���0,0̄��
�38�

for the atoms A1 ,A2 and the two cavity modes C1 ,C2. When
the atoms have left the cavity, they are projected one-by-one
in the longitudinal basis inside the detector. We are interested
only in those cavity wave packets, for which the atoms
A1 ,A2 have been detected in their ground state, and hence,
we shall discard all others events right from the beginning.
Using such a state-selective procedure, we then know that
the state �38� of the atoms is reduced to the photonic Bell
state

��5�T1�� =
1
�2

��̇�0,1̄� + ei��T1+3�/2�+tb��1,0̄�� �39�

to which a series of longitudinal measurements can be ap-
plied. Notice that the duration of the first time delay T1 is
stored in the phase of �38� and subsequently in the phase of
�39�. Below, we show how this phase appears as a parameter
of the �measured� probability amplitude, and thus, the ob-
served signal provides us with knowledge about the coher-
ence of the initial state �38� before it has been projected upon
the ground state �g1 ,g2�. At the same time, in order to reveal

the coherent superposition of the �entangled� cavity states
�39�, a second delay time T2 is introduced in the sequence,
before the probe atom Ap enters the cavity �see Fig. 7�a��.
This free time evolution of the cavity field state �39� during
the delay T2 produces the additional phase shift
ei��T1+3�/2�+tb�→ei��T1+T2+3�/2�+tb�, where the durations of de-
lays T1 and T2 are manipulated independently.

As in the preceding section, while the probe atom Ap
crosses the cavity, it interacts with the mode C1 for �t6=�
and with C2 for �t7=� /2, respectively. These steps together
yield the atom-cavity state

��7�T1,T2�� =
1

2
��̇�1 − ei��T1+T2+����gp,0,1̄� + �1 + ei��T1+T2+���

�ep,1,0̄�� , �40�

with �= � 5�
2 +arccos��2

3 �� /�. Moreover, the final-state prob-
ability to find the probe atom Ap in its excited state is given
by

P�ep;T1,T2� =
1 + cos���T1 + T2 + ���

2
, �41�

i.e., by an expression containing two tunable delay times T1
and T2 introduced in order to reveal the properties of the
initial four-partite W state �38�. We note once again that,
while T2 helps to analyze the entanglement of the Bell state
�39�, T1 is utilized to control the accuracy of coherence trans-
fer from the state �38� to that of �39�.

As before, this �temporal� sequence must be repeated
many times in order to reconstruct the final-state probability
P�ep ;T1 ,T2� as a function of T1 and T2. Note that the state-
selective measurements should be here again used as to col-
lect only those probabilities, for which the probe atom has
been detected in its exited state. If the four-partite W state
from Sec. II B was produced, this probability �distribution�
should of course be reasonably close to the predictions in Eq.
�41�.

IV. SUMMARY AND OUTLOOK

In this work, two schemes are suggested to generate four-
partite entangled GHZ and W states within the framework of
cavity QED. They are based on the resonant interaction of �a
chain of� Rydberg atoms with a bimodal cavity that supports
two independent modes of the photon field. In addition, we
show how these schemes can be extended toward the gen-
eration of N-partite GHZ and W states. To reveal the en-
tanglement of produced states, we also propose the �tempo-
ral� sequences of projective measurements and time delays.
Using the language of temporal sequences and quantum cir-
cuits, a comprehensive description of all necessary manipu-
lations, has been achieved. Our goal is to provide a scheme
that can readily be adopted for microwave cavity QED ex-
periments and, in particular, for a forthcoming generation of
high-finesse microwave cavities.

Since the experimental reports �24,36,37�, the use of bi-
modal cavities has been found to be an important step toward
the manipulation and control of �rather� complex quantum
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FIG. 7. �a� The temporal sequence for performing transversal
measurements on the four-partite W state �quartet C1−C2−A1−A2�
given by expression �38�. Here the gray shadowed ellipse, Bell
state, corresponds to the two-partite entangled state �C1−C2�. The
time intervals ta and tb are given in the text. �b� The quantum circuit
that corresponds to the temporal sequence shown in �a�.
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states. A number of proposals have been made in the litera-
ture to exploit further capabilities of bimodal cavities. For
instance, in contributions �25–28� the schemes for the engi-
neering of various �multipartite� entangled states between the
atomic �chain� and/or photonic qubits have been proposed. In
contrast to the present work, however, most of the previous
suggestions were not well adopted to the recent design of the
cavities, and no satisfactory attempt was made to reveal the
nonclassical correlations belonging to the produced states.
Another fruitful branch of bimodal cavity applications char-
acterizes the proposal by Zubairy et al., where a bimodal
cavity is utilized to realize a quantum phase gate in which
the quantum register is represented by the two cavity mode
states. Based on this gate, the authors suggested a scheme
that enables one to implement Grover’s search algorithm by
means of a bimodal cavity. We also mention the papers by
Queros et al., and Bosco et al., where it has been demon-
strated that the coupling of both cavity modes to a common
reservoir induces the tunneling of a field state from one cav-
ity mode to another mode of the same cavity device, and
thus, opens a way to implement the environment assisted

�short-distance� teleporting inside a bimodal cavity. To
achieve this goal, i.e., to follow the time evolution of such
quantum systems embedded into a reservoir or under the
external noise and to analyze different �entanglement or
separability� measures, a quantum simulator has been devel-
oped recently in our group �38� that can be utilized for such
studies in the future.

Finally, let us recall here that all pure �genuine� four-
partite entangled states, based on qubits, can be classified
into nine classes �39� by using LOCC transformations.
Among these classes, we obviously find the four-partite GHZ
and W states as discussed above. Therefore, an interesting
task is to develop schemes that enable one to generate a
complete set of genuine entangled states in the framework of
cavity QED.

ACKNOWLEDGMENTS

This work was supported by the DFG under Contract No.
FR 1251/13.

�1� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, 2000�.

�2� C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
�1992�.

�3� A. K. Ekert, Phys. Rev. Lett. 67, 661 �1991�.
�4� L. K. Grover, Phys. Rev. Lett. 79, 325 �1997�.
�5� D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s

Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos �Kluwer, Dordrecht, 1989�, p. 73.

�6� W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
�2000�.

�7� N. D. Mermin, Phys. Rev. Lett. 65, 1838 �1990�.
�8� S. M. Roy and V. Singh, Phys. Rev. Lett. 67, 2761 �1991�.
�9� D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A.

Zeilinger, Phys. Rev. Lett. 82, 1345 �1999�; J.-W. Pan et al.,
Nature �London� 403, 515 �2000�.

�10� M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H.
Weinfurter, Phys. Rev. Lett. 92, 077901 �2004�; M. Kiesel et
al., J. Mod. Opt. 50, 1131 �2003�.

�11� R. J. Nelson, D. G. Cory, and S. Lloyd, Phys. Rev. A 61,
022106 �2000�.

�12� G. Teklemariam, E. M. Fortunato, M. A. Pravia, Y. Sharf, T. F.
Havel, D. G. Cory, A. Bhattaharyya, and J. Hou, Phys. Rev. A
66, 012309 �2002�.

�13� A. Rauschenbeutel et al., Science 288, 2024 �2000�.
�14� The 3-W states have not been produced experimentally yet.
�15� C. F. Roos et al., Science 304, 1478 �2004�.
�16� J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.

73, 565 �2001�.
�17� S. Haroche and J. M. Raimond, in Cavity Quantum Electrody-

namics, edited by P. Bergman �Academic, New York, 1994�,
p. 123.

�18� J.-W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A.
Zeilinger, Phys. Rev. Lett. 86, 4435 �2001�.

�19� C. A. Sackett et al., Nature �London� 404, 256 �2000�.
�20� M. Eibl, S. Gaertner, M. Bourennane, C. Kurtsiefer, M.

Zukowski, and H. Weinfurter, Phys. Rev. Lett. 90, 200403
�2003�.

�21� S. Haroche and J. M. Raimond, Exploring the Quantum: At-
oms, Cavities, and Photons �Oxford University Press, Oxford,
2006�.

�22� S. Kuhr et al., Appl. Phys. Lett. 90, 164101 �2007�.
�23� E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 �1963�.
�24� A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M.

Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A 64,
050301�R� �2001�.

�25� A. Biswas and G. S. Agarwal, J. Mod. Opt. 51, 1627 �2004�.
�26� M. Ikram and F. Saif, Phys. Rev. A 66, 014304 �2002�.
�27� Y. Zhen-Biao and S. Wan-Jun, Chin. Phys. 16, 435 �2007�.
�28� C. Wildfeuer and D. H. Schiller, Phys. Rev. A 67, 053801

�2003�.
�29� M. S. Zubairy, M. Kim, and M. O. Scully, Phys. Rev. A 68,

033820 �2003�.
�30� I. P. de Queiros, S. Souza, W. B. Cardoso, and N. G. de

Almeida, Phys. Rev. A 76, 034101 �2007�.
�31� A. R. Bosco de Magalhaes and M. C. Nemes, Phys. Lett. A

339, 294 �2005�.
�32� D. Gonta and S. Fritzsche, J. Phys. B 41, 095503 �2008�.
�33� In order to be compatible with the Bloch-sphere notation of

Sec. III, the fourth qubit should read as �↑4�= �e4� and �↓4�
= �g4�. In Sec. II, however, we can safely use the reversed
notation from Eqs. �15� in order to represent the 4-GHZ state
�14� in the form as it was previously announced in Eq. �3�.

�34� A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,
777 �1935�.

GONŢA, FRITZSCHE, AND RADTKE PHYSICAL REVIEW A 77, 062312 �2008�

062312-12



�35� E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J.
M. Raimond, and S. Haroche, Phys. Rev. Lett. 79, 1 �1997�.

�36� Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.
Kimble, Phys. Rev. Lett. 75, 4710 �1995�.

�37� L. M. Duan and H. J. Kimble, Phys. Rev. Lett. 92, 127902

�2004�.
�38� T. Radtke and S. Fritzsche, Comput. Phys. Commun. 175, 145

�2006�; 176, 617 �2007�.
�39� F. Verstraete, J. Dehaene, B. DeMoor, and H. Verschelde,

Phys. Rev. A 65, 052112 �2002�.

GENERATION OF FOUR-PARTITE GREENBERGER-HORNE-… PHYSICAL REVIEW A 77, 062312 �2008�

062312-13


