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We introduce a class of generalized geometric measures of entanglement. For pure quantum states of N
elementary subsystems, they are defined as the distances from the sets of K-separable states �K=2, . . . ,N�. The
entire set of generalized geometric measures provides a quantification and hierarchical ordering of the different
bipartite and multipartite components of the global geometric entanglement, and allows discrimination among
the different contributions. The extended measures are applied to the study of entanglement in different classes
of N-qubit pure states. These classes include W and Greenberger-Horne-Zeilinger �GHZ� states, and their
symmetric superpositions; symmetric multimagnon states; cluster states; and, finally, asymmetric generalized
W-like superposition states. We discuss in detail a general method for the explicit evaluation of the multipartite
components of geometric entanglement, and we show that the entire set of geometric measures establishes an
ordering among the different types of bipartite and multipartite entanglement. In particular, it determines a
consistent hierarchy between GHZ and W states, clarifying the original result of Wei and Goldbart that W states
possess a larger global entanglement than GHZ states. Furthermore, we show that all multipartite components
of geometric entanglement in symmetric states obey a property of self-similarity and scale invariance with the
total number of qubits and the number of qubits per party.
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I. INTRODUCTION

Quantification of pure state bipartite entanglement, a con-
cept that emerged immediately after the first systematization
of quantum mechanics �1�, is by now well understood in
terms of the entropic content in the reduced states of the
constituent subsystems, as lucidly pointed out for the first
time by Schrödinger �2�. The universal properties that any
bona fide measure of entanglement has to satisfy have been
thoroughly discussed and characterized in recent years �3–6�.
For pure states of bipartite systems, the von Neumann en-
tropy is the unique measure of entanglement, and all other
consistent measures are monotonic functions of the former
�7�. However, this uniqueness is lost in bipartite mixed
states: In this context, measures that differ according to their
definitions and/or operational meaning, such as, for instance,
the entanglement of formation, the distillable entanglement,
the relative entropy of entanglement, and the negativity
�4,8,9�, quantify different forms of entanglement. In fact,
very few of these quantities can be computed explicitly for
mixed quantum states, even in the simplest instances. A no-
table exception is the celebrated Wootters formula for the
entanglement of formation of arbitrary two-qubit mixed
states, obtained in terms of the concurrence �10,11�.

The situation becomes even more complex in the multi-
partite instance, already at the level of pure states in finite-
dimensional Hilbert spaces. Progress has been achieved
mainly in understanding the different ways in which multi-
partite systems can be entangled. The intrinsic nonlocal char-

acter of entanglement imposes invariance and monotonicity
constraints under local quantum operations. Equivalence
classes of entangled states can be defined with respect to the
group of reversible stochastic local quantum operations as-
sisted by classical communication �SLOCC� �12�. Such an
approach has allowed the demonstration that three and four
qubits can be entangled, respectively, in two and nine differ-
ent inequivalent ways �13,14�. In the case of three qubits, the
representatives of the two inequivalent classes are, notori-
ously, the W and Greenberger-Horne-Zeilinger �GHZ� states
�13,15�.

Simplifying to the essentials, in a multipartite scenario a
legitimate quantification of entanglement can be achieved by
identifying a positive function that is an entanglement mono-
tone �vanishing on separable states and not increasing under
SLOCC�, and is endowed with some kind of operational in-
terpretation. Several measures satisfying these requirements
have been proposed. For a system of three qubits, Wootters
and co-workers defined the so-called residual entanglement,
or three-tangle, a quantity constructed as the difference be-
tween the squared three-qubit concurrence and the squared
concurrences of the reduced two-qubit states �16�. While
successfully detecting the genuine tripartite entanglement in
the state �GHZ�3��, the three-tangle �or residual tangle� van-
ishes if computed for the state �W�3��, thus being inappropri-
ate for the quantification of tripartite entanglement in this
class of states. In other words, a nonvanishing residual tangle
is a sufficient but not necessary condition for the detection of
genuine multipartite entanglement. The Schmidt measure,
defined as the minimum of log2 r with r being the minimum
of the number of terms in an expansion of a quantum state in
product basis, has been proposed by Eisert and Briegel as an
alternative measure of multipartite entanglement �17�. Other*Corresponding author. illuminati@sa.infn.it
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proposals are given as functions of the various bipartite en-
tanglements contained in a multipartite state �18–22�. The
seed representative of this class of measures is the global
entanglement of Meyer and Wallach, that for an N-qubit state
is defined as the sum of all the possible two-qubit concur-
rences �18�.

A different set of entanglement quantifiers is defined in
purely geometric terms. The relative entropy of entanglement
�generalized for multipartite settings� and the so-called geo-
metric entanglement belong to this class �23–25�. The rela-
tive entropy of entanglement is defined as the distance of a
given state from the set of fully separated states, quantified in
terms of the quantum relative entropy �23�. The geometric
entanglement was originally defined as the Euclidean dis-
tance of a given multipartite state to the nearest fully sepa-
rable state �24–26�. This last measure can be considered as
one of the most reliable quantifiers of global multiparticle
entanglement �27�: It exhibits interesting connections with
other measures �26,28� and can be efficiently estimated by
quantitative entanglement witnesses amenable of experimen-
tal verification �29,30�. Given an N-partite pure state ���, the
geometric measure of entanglement introduced by Wei and
Goldbart �26� is defined as

EG����� = 1 − max
���

��������2, �1�

where the maximum is taken with respect to all pure states
that are fully factorized, i.e., the N-separable states

��� = �
s=1

N

��s� , �2�

where the states ��s� are single-qubit pure states. This mea-
sure is intrinsically geometric because it coincides with the
distance �in the Hilbert-Schmidt norm� between a given pure
state and the set of fully separable �i.e., fully product� pure
states. The Wei-Goldbart geometric measure is thus a global
quantifier of entanglement, including all the bipartite and
multipartite contributions.

The geometric measure can be extended by the convex
roof procedure to the case of mixed states, and, analogously
to the Meyer-Wallach global entanglement, is a proper mul-
tipartite entanglement monotone. Remarkably, the geometric
measure can be effectively exploited to quantify the en-
tanglement of two distinct multipartite bound entangled
states �31� and to study the behavior of global entanglement
at the approach of quantum phase transitions �32–34�. How-
ever, notwithstanding the very appealing properties and the
important results cited above, the global nature of the Wei-
Goldbart geometric entanglement constitutes a limitation in-
sofar as it does not allow one to distinguish and discriminate
among the different bipartite and multipartite contributions
to the overall entanglement, to determine their properties,
and to establish a systematic hierarchy among them. It is the
aim of the present work to fill this gap.

In this paper, we define and study in detail a natural and
powerful multipartite generalization of the geometric mea-
sure of entanglement for pure states of many-qubit systems.
We first introduce a compact and convenient parametrization
to express analytically general K-separable states of N-qubit

systems �K�N�. We then analyze the behavior of the dis-
tance between pure N-qubit states and the set of K-separable
states �K=2, . . . ,N� in order to determine and distinguish the
different multipartite contributions to the geometric entangle-
ment and characterize their ordering. The different distances,
corresponding to K=2, . . . ,N, quantify hierarchically the dif-
ferent forms of multipartite entanglement present in the
given N-qubit state. In Sec. II, we define the multicomponent
generalization of the geometric measure, we review the
known results in the case of full separability and, for this
latter case, we also present some further extended results. In
Sec. III we evaluate explicitly the generalized multicompo-
nent geometric measure of entanglement, considering genu-
ine K separability �K�N�. We analyze the detailed behavior
of the different forms of geometric entanglement for various
relevant classes of N-qubit states, establishing some generic
and asymptotic properties, and we determine the explicit hi-
erarchy holding for W, GHZ, cluster, and multimagnon
states. In the case of W and GHZ states, the established re-
lations between the different forms of multipartite geometric
entanglement clarify the original result of Wei and Goldbart
that W states possess a larger total entanglement content than
GHZ states, when quantified by the geometric measure.
Moreover, in the case of N-qubit W states, we find that the
geometric entanglement is scale invariant �self-similar� as
the total number of qubits grows at the same rate as the
number of subsystems in each party. We show that the prop-
erty of self-similarity is enjoyed by other symmetric states as
well, as a direct consequence of the invariance under permu-
tation of any two qubits, which is the characterizing property
of symmetric states. We then analyze and determine the dif-
ferent multipartite components of geometric entanglement
for arbitrary symmetric superpositions of N-qubit GHZ and
W states. In Sec. IV we compute the multipartite geometric
measures for classes of generalized W states beyond the
single-excitation regime; these are general symmetric states,
the so-called magnon states, that are of crucial importance,
for instance, in the theory of magnetism. Furthermore, we
determine the multipartite components of geometric en-
tanglement in generalized, asymmetric W-like superposition
states. In this and related cases, at variance with most of the
symmetric instances, a complete characterization of en-
tanglement requires the determination of all the multipartite
geometric components, which we compute explicitly. Fi-
nally, in Sec. V we discuss some general conjectures on ge-
neric properties and typical behaviors of the geometric en-
tanglement, and examine some outlooks on possible future
lines of research.

II. GEOMETRIC ENTANGLEMENT: K SEPARABILITY VS
FULL SEPARABILITY

Let us consider an N-qubit system, corresponding to a
tensor-product state space HdN of dimension dN=2N. For
such a system, let us introduce the integer K, 2�K�N, and
the ordered sequence of integers 	M1 ,M2 , . . . ,MK
, where
M1�M2� ¯ �MK, and �s=1

K MS=N. Let us consider the K
partition of the system in K subsystems described by the sets
	Qs
s=1

K . Let each set Qs be composed of Ms elementary par-
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ties, i.e., Qs= 	i1
�s� , i2

�s� , . . . , iMs

�s� 
, where ij
�s�� 	1, . . . ,N
 is a dis-

crete index labeling the N elementary parties, and Qs�Qs�
=� for s�s�. Given a generic K partition Q1��Q2�¯�QK of
the N-qubit system, any K-separable state associated with
such a partition is defined as the tensor product of K
Ms-qubit pure states ��s

�Qs��. Each state ���Qs�� belongs to the
Hilbert space HdQs of dimension dQs

=2Ms. A K-separable
state can then be written as

�
s=1

K

��s
�Qs�� . �3�

Correspondingly, the Hilbert space HdN is decomposed into
the tensor product � s=1

K HdQs. Varying the integers Ms, one
obtains different K partitions Q1��Q2�¯�QK and, correspond-
ingly, different possible K-separable states. It is worth notic-
ing that even at fixed M1��M2�¯�MK, there exist different K
partitions associated with the different arrangements of the
elementary parties in the sets Qs; in fact, from a given initial
K partition, a certain number of different K partitions can be
generated through permutations of the elementary parties be-
longing to different sets Qs. We then denote by SK the set of
all K-separable states, defined as

SK = �
	Q1,. . .,QK


SK�Q1� ¯ �QK� , �4�

where SK�Q1��Q2�. . .�QK� is the set of all the K-separable
states associated with a fixed K partition. We can now define
the relative �i.e., partition-dependent� and the absolute �i.e.,
partition-independent� geometric measures of entanglement
with respect to K-separable pure states for an arbitrary
N-qubit pure state ���N��, respectively, as

EG
�K��Q1� ¯ �QK� = 1 − �K

2 �Q1� ¯ �QK� , �5�

where the squared overlap

�K
2 �Q1� ¯ �QK� = max

����SK�Q1�¯�QK�
�������N���2, �6�

and

EG
�K�����N��� = 1 − �K

2 ����N��� , �7�

where the squared overlap

�K
2 ����N��� = max

����SK

�������N���2. �8�

By Eqs. �5�, �6�, and �8�, the quantity �7� measures the ab-
solute minimum distance of a state from the set of all
K-separable states. Equivalently, EG

�K�����N���
=min	SK�Q1�¯�QK�
EG

�K��Q1�¯ �QK�. Trivially, for any N parti-
tion �i.e., K=N�, one has M1=M2= ¯ =MN=1 and N sepa-
rability coincides with full separability, while 1 separability
is a common feature of any state, i.e., EG

�1�=0 for all states
	���N��
. In the particular instance of symmetric states, which
are states invariant under the permutation of any two qubits,
the quantities EG

�K��Q1�¯ �QK� and �K
2 �Q1�¯ �QK� satisfy the

same invariance property. Therefore, in such a case, in the
definitions �5� and �6�, the symbols Qs can be replaced by the
indices Ms as the multi-index M1�¯ �MK completely deter-
mines the particular component of geometric entanglement.
In Ref. �26�, the measure �7� is defined only in the simplest

instance of N separability. In this case, we may write the
general expression for a �normalized� K-separable state ���,
Eq. �2�, in the following Hartree form:

��� = �
l=1

N

�cos �l�0�l + ei�l sin �l�1�l� , �9�

with �l and �l real. By using Eq. �9� with �l=0, the geomet-
ric measure of entanglement can be analytically computed
for the classes of GHZ and W states. The definition of these
states for the N-qubit case reads

�GHZ�N�� =
1
�2

�
i=1

2

��i,2�i,2 ¯ �i,2� , �10�

�W�N�� =
1

�N
�
i=1

N

��i,1�i,2 ¯ �i,N� , �11�

where �i,j denotes the Kronecker delta, and �e�1�e�2�
¯e�N��

�e�1��1�e�2��2¯ �e�N��N �e�j�=0,1�. The GHZ and W states
are fully symmetric, i.e., invariant under the exchange of any
two qubits, and greatly differ from each other in their corre-
lation properties. On general grounds �17�, one can expect
that N-qubit GHZ states must possess N-partite but no
K-partite entanglement for K	N. On the other hand, the
N-qubit W states do possess K-partite entanglement for K
	N.

For the total geometric entanglement of states �GHZ�N��
and �W�N��, measured with respect to the set of N-separable
�i.e., fully separable� states, the following relations hold �26�:

�N
2 ��GHZ�N��� =

1

2
, �12�
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FIG. 1. �Color online� EG
�3� for the superposition of �W�3�� and

�W̃�3�� states, Eq. �18�, and for the superposition of �W�3�� and
�GHZ�3�� states, Eq. �19�, as a function of the mixing angle 
. EG

�3�

for the state �19� is plotted for the following choices of the free
relative phase �: �=0 �round points, in red�, � �diamond points, in
green�, and taking random values in the range �0,�� �triangle
points, in gray�. EG

�3� for the state �18� does not depend on � �box
points, in blue�. All plotted quantities are dimensionless.
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�N
2 ��W�N��� = �N − 1

N
�N−1

. �13�

In particular, Eq. �13� is obtained by setting �l

=arcsin�1 /�N�, with l=1, . . . ,N. Therefore, for the �GHZ�N��
states, the total geometric entanglement takes the constant
value 1/2, independently of N. On the other hand, for the
�W�N�� states, the total geometric entanglement grows with N,
converging to a simple function of the Neper number in the
asymptotic limit:

EG
�3���W�3��� =

5

9
� 0.555, �14�

EG
�4���W�4��� =

37

64
� 0.578, �15�

]

EG
�N���W�N��� = 1 − �N − 1

N
�N−1

, �16�

]

lim
N→

EG
�N���W�N��� = 1 − e−1 � 0.632. �17�

Therefore, according to the measure of total geometric en-
tanglement, the W states are overall more entangled than
GHZ states for any N, notwithstanding the fact that the latter
must always possess a larger amount of genuine N-partite
entanglement. Moreover, the asymptotic limit acquired by
the total geometric entanglement on W states for large N
appears to point at some underlying topological structure.

In the first nontrivial multipartite case N=3, interesting
results have been obtained also for superposition states of the
form �26�

�W W̃�3�� = cos 
�W�3�� + ei� sin 
�W̃�3�� , �18�

�W GHZ�3�� = cos 
�W�3�� + ei� sin 
�GHZ�3�� , �19�

where the mixing angle 
 lies in the range �0, �
2 �, � is a free

relative phase, and �W̃�3��= 1
�3

��110�+ �101�+ �011��. The geo-
metric entanglement is computed with respect to the fully
three-separable state �Eq. �9� with N=3�. In Fig. 1, EG

�3� for
the states �18� and �19� is plotted as a function of 
.

The geometric measure of entanglement for the state �18�
attains its maximum 5/9 at 
=0,� /2 and its minimum at

=� /4, and is independent of the phase �; on the contrary,
for the state �19� it exhibits an explicit dependence on � that
is maximized for �=� and attains its maximum value 5/9 at

=0. The free relative phase � cannot be eliminated by local
unitary operations �in the sense of being of dimension less
than N� for states of the form �19�, but only by means of
global N-dimensional transformations. Therefore, the global
entanglement content of these states must necessarily depend
on �, and the latter thus acquires the meaning of a global
geometric phase.

III. MULTIPARTITE COMPONENTS OF GEOMETRIC
ENTANGLEMENT

As discussed above, the distance of an N-partite state
���N�� from the set of fully separable �i.e., N-separable� states
is a legitimate quantifier of a global form of entanglement,
encompassing N-partite, �N−1�-partite, . . ., and bipartite
components in an indistinguishable way. This observation
motivates the search for a more refined geometric quantifi-
cation of entanglement, in order to distinguish the different
multipartite contributions. To this end, we proceed to study
the distances of ���N�� from the various sets of K-separable
states, as defined in the previous section. For a fixed K �K
=2, . . . ,N�, the distance Eq. �7� quantifies the N-partite, . . .,
�N−K+2�-partite contributions to the global entanglement.
Moreover, it is evident that, for each K,

SK−1 � SK, EG
�K−1�����N��� � EG

�K�����N��� , �20�

where the second inequality follows by the law of set inclu-
sion. Some simple examples may be of help to elucidate the
structure of this hierarchy. Let us take N=3. In this case, we
have two possibilities: K=2,3. For K=2 one has information
only on the pure tripartite �three-qubit� component of the
geometric entanglement, while for K=3 �distance from the
fully separable states� one has indistinguishable information
on both three- and two-qubit entanglement. Moreover, as al-
ready mentioned above, since the set of biseparable states
S2��1�2� contains the set of three-separable states S3�1�1�1�, it
follows that EG

�2�����3����EG
�3�����3���. If equality holds, it

then follows that the entire content of entanglement is due
only to the tripartite contribution. The extension to higher
dimensions N�4 is straightforward, although the number of
possible partitions quickly grows. On the other hand, we will
show that the genuine N-partite entanglement of GHZ and W
states is always associated with the distance from the set of
biseparable states S2��1�N−1�.

We shall now introduce some concise notations that will
be useful in the following. Let us denote by ���M�� an arbi-
trary M-partite qubit state, which can be expressed in the
form

���M�� = �
j1,. . .,jM=0

1

cj1,. . .,jM
�j1 ¯ jM� , �21�

where cj1,. . .,jM
are complex parameters satisfying the normal-

ization constraint � j1,. . .,jM=0
1 �cj1,. . .,jM

�2=1. In order to simplify
the notation, we substitute the multi-index �j1 , . . . , jM� by the
single index J=�q=1

M 2M−qjq �i.e., summation in the binary
system�, so that Eq. �21� reads

���M�� = �
J=0

dM−1

�cJ�J��M . �22�

Obviously, one has 0�J�dM −1=2M −1. This notation
provides a useful ordering of the states based on the
binary numbering. In fact, the index J=0,1 ,2 . . . ,2M −1
labels, respectively, the states
�00. . .00� , �00. . .01� , �00. . .10� , . . . , �11. . .11�. Let us note
that the states ��J��M satisfy the orthonormality relation, i.e.,

M���J�J���M =�J,J�; moreover, each M-qubit state ��J��M can
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be written in the decomposed form ��J��M = ��J1��M1
� ��J2��M2

, where M =M1+M2, and J=2M2J1+J2. Using the
Euler representation and eliminating an irrelevant global
phase factor, the parameters cJ can be cast in the form cJ
=rJe

i�J, where rJ= �cJ�, �0=0, and the phases �J are arbitrary
for J�1. It is worth noting that the fully separable state �9�
is a particular realization of ���M�� for M =N. The
K-separable state given by Eq. �3�, can be expressed explic-
itly by using, for each state ��s

�Ms��, the general form �22� and
the hyperspherical parametrization introduced in Appendix A
�see Eq. �A1��. The hyperspherical parametrization will then
prove extremely convenient in the computation of Eq. �8� for
any value of the index K. By using the notation in terms of
the binary-numbering index, Eqs. �10� and �11� can be recast
as

�GHZ�N�� =
1
�2

���0��N + ��2N − 1��N� , �23�

�W�N�� =
1

�N
�
p=0

N−1

��2p��N. �24�

In the next sections we will determine the different multipar-
tite contributions for some relevant classes of states symmet-
ric under exchange of any pair of qubits.

A. Three-qubit pure states

We begin by considering three-qubit pure states, the sim-
plest nontrivial instance of multipartite states. In this case,
given the tensor product Hilbert space H�8�=H�2� � H�2�

� H�2�, associated with a system of N=3 qubits, there are
only two sets of separable states: the set S2 of biseparable
states �K=2�, and the set S3 of three-separable states �K=3,
full separability�, with S2�S3. The distance EG

�3� from the set
S3 measures the global geometric entanglement of Wei and
Goldbart, while the distance EG

�2� from the set S2 measures
the genuine tripartite contribution to the global geometric
entanglement EG

�2��EG
�3�, with equality holding when all the

entanglement is due only to the genuine tripartite component
and there is no bipartite component. The general expression
for any biseparable state ��� is of the form

��� = ��1
�1��k � ��2

�2��ij , �25�

where

��1
�1�� = �cos ��0� + ei� sin ��1�� ,

��2
�2�� = �cos �1�00� + ei�2 sin �1cos �2�01�

+ ei�3 sin �1 sin �2 cos �3�10�

+ ei�4 sin �1 sin �2 sin �3�11�� , �26�

where, in Eqs. �26� we have dropped the subscripts i , j ,k
=1,2 ,3 �i� j�k� denoting the three parties, because in the
following we will deal with states invariant under permuta-
tion of any two qubits. In order to evaluate EG

�2� for the three-
qubit �W�3�� and �GHZ�3�� states we take advantage of the fact
that the coefficients appearing in the definition of these states

are all positive constants. Therefore, maximization of the
overlaps with the states �26� does not depend on the phases,
which can then be put to zero: �=�q=0 �q=2,3 ,4�. From
Eq. �8�, we get the following expression of the overlap for
the state �W�3��:

�2
2��W�3��� = max

	�1,�2,�3,�


1

3
�cos �1 sin � + cos � sin �1

��cos �2 + sin �2 cos �3��2. �27�

The maximization in Eq. �27� yields the absolute maximum
�2

2��W�3���=2 /3. For instance, this value is reached when
�1= �

2 , �2= �
4 , �3=0, and �=0. It is then straightforward to

verify that the tripartite component of the geometric en-
tanglement present in the three-qubit W state is

EG
�2���W�3��� =

1

3
. �28�

We see that for tripartite W states the purely tripartite contri-
bution is strictly lower than the global geometric entangle-
ment: EG

�2���W�3���=1 /3	EG
�3���W�3���=5 /9. On the other

hand, for the state �GHZ�3�� the maximum overlap with the
biseparable states is

�2
2��GHZ�3��� = max

	�1,�2,�3,�


1

2
�cos �1 cos �

+ sin � sin �1 sin �2 sin �3�2. �29�

Direct computation yields

EG
�2���GHZ�3��� =

1

2
. �30�

Thus, in the case of GHZ states we verify that the tripartite
and the global content of geometric entanglement coincide:
EG

�2���GHZ�3���=EG
�3���GHZ�3���=1 /2. This result is an inde-

pendent proof that GHZ states possess only genuine tripartite
entanglement. Moreover, we see that the tripartite entangle-
ment of W states is less than that of GHZ states:
EG

�2���W�3���	EG
�2���GHZ�3���. This result clarifies the original

finding by Wei and Goldbart that the global geometric en-
tanglement EG

�3���W�3��� of W states is larger than that,
EG

�3���GHZ�3���, of GHZ states, and establishes a proper en-
tanglement hierarchy between the two classes of states.

We now show how the structure of K separability allows
us to clarify the nature of the geometric phases in the en-
tanglement of superpositions. With this aim, let us calculate
the distance EG

�2� for the superpositions �18� and �19�; the
corresponding behavior is reported in Fig. 2 as a function of

. Comparing with Fig. 1, we note that both EG

�3� and EG
�2�

exhibit the same symmetric behavior for the superposition
�18�, and acquires a minimum at 
= �

4 . On the other hand,
for the state �19� we observe that EG

�2�, in contrast to EG
�3�, is

independent of the phase �. This implies that the nonlocal
nature of the phase � is limited to the set S2 of biseparable
states.
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B. Symmetric states: GHZ(N) and W(N) states

In this section we study the properties of the measure �7�
for the states �GHZ�N�� and �W�N�� for arbitrary N. Concerning
GHZ states, it is easily verified that, for any N,

EG
�K���GHZ�N��� =

1

2
, K = 2, . . . ,N . �31�

Therefore, if we determine the various forms of bipartite and
multipartite entanglement by the geometric measure �7�, we
obtain that the N-qubit GHZ states possess only N-partite
entanglement.

Considering �W�N�� states, for a given N all the bipartite
and multipartite components of the geometric entanglement
can be evaluated analytically with respect to the different
K-separable states. First we study in detail the N-partite en-
tanglement quantified by the distance EG

�2���M1�M2� from the
set of biseparable states ���= ��1

�M1�� � ��2
�M2��, for a fixed

bipartition M1, M2=N−M1, with 1�M1�M2�N−1. In
this case, using Eq. �22�, ��� takes the form

��� = �
J1=0

dM1
−1

cJ1

�1���J1��M1
� �

J2=0

dM2
−1

cJ2

�2���J2��M2
, �32�

with cJs

�s�=rJs

�s�ei�Js

�s�
, s=1,2, and, without loss of generality, we

let �Js

�s�=0, s=1,2. By exploiting the decomposition

�
p=0

N−1

��2p��N = �
p=0

M2−1

��0��M1
� ��2p��M2

+ �
p=0

M1−1

��2p��M1
� ��0��M2

,

�33�

one has that the overlap �2
2��M1�M2� can be expressed in the

form

�2
2��M1�M2� = max

	rJs

�s�


1

N
�r0

�1� �
p=0

M2−1

r2p
�2� + r0

�2� �
p=0

M1−1

r2p
�1��2

.

The maximization procedure is reported in Appendix B �see
Eq. �B5��. Using this result, in the case of two separability
with respect to the partitioning M � �N−M�, with M �N
−M, the K=2 component of the geometric entanglement in
the states �W�N�� is

EG
�2���M�N − M� =

M

N
. �34�

In the particular instance M =1, it immediately follows that
the expression �34� realizes the absolute minimum Eq. �7�,
and therefore one has EG

�2���W�N���EG
�2���1�N−1�=1 /N,

showing that the genuine N-partite geometric entanglement
vanishes asymptotically for large N. On the other hand, for
the partition obtained by setting M = �N /2�, where �x� de-
notes the integer part of x, the K=2 component of the geo-
metric entanglement tends to the asymptotic limit 1/2 for

large N. The limit coincides with the maximum possible
value, attained by the �GHZ�N�� states.

We turn now to the determination of the generic K com-
ponents of the �relative� multipartite geometric entanglement
quantified, for arbitrary K, by the distance EG

�K��M1�¯ �MK�
from the set of K-separable states for a given partition. We
begin by rewriting the generic K-separable state in the form

��� = �
s=1

K

�
Js=0

dMs
−1

rJs

�s���Js��Ms
, �35�

where we recall that the ordering is 1�M1�M2� ¯

�MK�N−K+1, with �s=1
K Ms=N. In analogy with the pre-

vious analysis for the case K=2, it is not difficult to show
that the squared overlap �K

2 �M1�¯ �MK� can be recast in the
form

�K
2 �M1� ¯ �MK� = max

	rJs

�s�


1

N
�r0

�1�r0
�2�

¯ r0
�K−1� �

p=0

MK−1

r2p
�K�

+ r0
�1�r0

�2�
¯ �

p=0

MK−1−1

r2p
�K−1�r0

�K� + ¯

+ �
p=0

M1−1

r2p
�1�r0

�2�
¯ r0

�K−1�r0
�K��2

. �36�

By a partial maximization �see Appendix B�, Eq. �B6� re-
duces to

� � � � � � � � � � � � � � � � � �
� �

� �
�
�
�
�
�
�
�
�
�
�
�

� � � �
�
�
�
�
�
�
�
� � � � � � � � �

� �
�
�
�
�
�
�
�
� �

� �

0 Π
8

Π
4

3 Π
8

Π
2

0.1

0.2

0.3

0.4

0.5

Η

EG
�2�

FIG. 2. �Color online� Behavior of EG
�2� for the superpositions of

�W�3�� and �W̃�3�� �blue line with squares�, Eq. �18�, and for the
superpositions of �W�3�� and �GHZ�3�� �red lines with circles�, Eq.
�19�, as a function of 
, and for arbitrary phase �. All plotted
quantities are dimensionless.
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�K
2 �M1� . . . �MK� = max

	�0
�s�


1

N
�cos �0

�1� cos �0
�2�

¯ cos �0
�K−1� sin �0

�K��MK

+ cos �0
�1� cos �0

�2�
¯ cos �0

�K−2� sin �0
�K−1� cos �0

�K��MK−1

+ ¯ + sin �0
�1� cos �0

�2�
¯ cos �0

�K−1� cos �0
�K��M1�2. �37�

The explicit solution of the problem cannot be given for
generic K: One needs to assign a specific value of K in order
to solve the problem completely. In principle, full analytic
solutions can always be obtained; however, the complexity
of the problem grows with K, so that for sufficiently large
values of K the help of numerical codes may become neces-
sary. On the other hand, resorting to numerics, when neces-
sary, poses no particular problem, as all the equations are
rigorously defined and their recursive structures completely
determined. Therefore, the complete analytic and numerical
solutions can always be obtained on demand, for each arbi-
trarily assigned value of K and N, and according to the spe-
cific physical problem and type of multipartite state one is
looking at.

Remarkably, from Eq. �37� it follows that the multipartite
geometric entanglement of �W�N�� states satisfies a property
of self-similarity and scale invariance. Namely, given an
N-qubit �W�N�� state associated with a partition
M1��M2�¯�MK, let us take an integer L and consider the
LN-qubit state �W�LN�� associated with the scaled partition
LM1��LM2�¯�LMK. By Eq. �37�, one immediately has that

�K
2 �M1��M2�¯�MK� = �K

2 �LM1��LM2�¯�LMK� . �38�

Thus, the K-partite geometric measures of entanglement en-
joy the following property of scale invariance:

EG
�K��M1��M2�¯�MK� = EG

�K��LM1��LM2�¯�LMK� . �39�

Since relation �39� applies for any partition, it follows that it
holds true for the absolute minimum, Eq. �7�, as well. Fi-
nally, it is worth noticing that the property of scale invari-
ance of the geometric measures of entanglement is trivially
enjoyed by every GHZ state.

Proceeding with the discussion of the general case, we
report the explicit analytic expression for the K component,
with K=3, of the multipartite geometric entanglement of
�W�N�� states. The absolute minimum distance EG

�3���W�N���

from the set of all three-separable states S3, which measures
the N- and �N−1�-partite entanglement of �W�N�� states, reads

EG
�3���W�N��� = min	EG�

�3� �M1�M2�M3�,EG	
�3� �M1�M2�M3�
 ,

�40�

where

EG�
�3� �M1�M2�M3� = 1 −

M3

N
,

M3 � M1 + M2, �41�

EG	
�3� �M1�M2�M3� = 1 −

4M1M2M3

N�
,

M3 � M1 + M2, �42�

with �=2�M1M2+M1M3+M2M3�−M1
2−M2

2−M3
2. The two

expressions coincide when M3=M1+M2.
In the following we present and discuss the solutions of

Eq. �37�. We will determine the associated
EG

�K��M1��M2�¯�MK� for various choices of N and
M1 , . . . ,MK, and compare them with respect to a reference
standard fixed by the �GHZ�N�� state. Finally, we will estab-
lish for each N the absolute minimum yielding EG

�K���W�N���.
In Table I we report the exact values of the different geo-

metric entanglements corresponding to all the possible K
partitions in the case N=4. As already stated, in the �GHZ�4��
state the various components all coincide with the genuine
four-partite entanglement. In the �W�4�� state one has that for
K=3 and 4, due to the symmetry under exchange of any pair
of qubits, there is a unique way to partition the system, and
the relative component of the geometric entanglement coin-
cides with the absolute component. In the case K=2 one has
two inequivalent possible partitions, and, as already proved
in the general case, the absolute minimum is attained for the
partition 1�31��N−1�.

In Tables II and III we report the different multipartite
components of the geometric entanglement, respectively inTABLE I. Geometric measures of entanglement

EG
�K��M1�¯ �MK�, with K=2,3 ,4, for the four-qubit states �GHZ�4��

and �W�4��.

�GHZ�4�� �W�4��

EG
�4��1��1�1�1� 1/2 37/64

EG
�3��1�1�2� 1/2 1/2

EG
�2���2�2� 1/2 1/2

EG
�2���1�3� 1/2 1/4

TABLE II. Geometric measures of entanglement
EG

�K��M1�¯ �MK�, with K=2,3 ,4 ,5, for the state �W�5��.

�W�5�� �W�5��

EG
�5��1�1�1�1�1� 0.590 EG

�3��1�1�3� 2/5

EG
�4��1��1�1�2� 0.559 EG

�2���2�3� 2/5

EG
�3��1�2�2� 19/35 EG

�2���1�4� 1/5
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the �W�5�� and �W�6�� states. The fixed reference value 1/2 of
the �GHZ� states is not reported. From Tables II and III we
see that for N�5 there appear sets SK�M1�¯ �MK� contain-
ing inequivalent partitions also for K�2. Moreover, we ob-
serve that the relative distances do not obey a definite hier-
archy; for instance, from Table III we see that EG

�3��2�2�2�
�EG

�4��1��1�1�3�. However, and more importantly, the hierar-
chy of absolute distances is never violated. For instance,
min EG

�3��M1�M2�M3�	min EG
�4��M1��M2�M3�M4�, in perfect

agreement with the general ordering established by Eq. �20�.
Finally, we remark that all the measures evaluated analyti-

cally are rational numbers, and that the ones computed nu-
merically appear to be approximations of rational numbers.
Therefore, we conjecture that, for every finite N, all the rela-
tive and absolute multipartite geometric measures of en-
tanglement are expressed by rational numbers.

C. Superpositions of W(N) and �GHZ(N)
‹ states

It is of interest to investigate symmetric states constituted
by generic superpositions of W and GHZ states:

�W GHZ�N�� = cos 
�W�N�� + sin 
�GHZ�N�� , �43�

where the N-qubit �GHZ�N�� and W�N� states are defined by
Eqs. �23� and �24�, respectively. The squared overlap
�2

2��M1�M2� associated with the set of biseparable states �32�
can be computed exactly. One has

�2
2��M1�M2� = max

	rJs

�s�

� cos 


�N
�r0

�1� �
p=0

M2−1

r2p
�2� + r0

�2� �
p=0

M1−1

r2p
�1��

+
sin 


�2
�r0

�1�r0
�2� + r2M1−1

�1� r2M2−1
�2� ��2

. �44�

As shown in Appendix B, a partial maximization procedure
reduces the above relation to

�2
2��M1�M2� = max

	�q
�s�

� cos 


�N
�cos �0

�1� sin �0
�2� sin �1

�2��M2

+ sin �0
�1� sin �1

�1� sin �0
�2��M1�

+
sin 


�2
�cos �0

�1�cos �0
�2�

+ sin �0
�1� cos �1

�1� sin �0
�2� cos �1

�2���2

. �45�

It is rather straightforward to prove that Eq. �45� and the
associated geometric measure of entanglement enjoy the
property of scale invariance �2

2��M1�M2�=�2
2��LM1�LM2�

�with L integer�, where �2
2��LM1�LM2� is the squared overlap

associated with the LN-qubit superposition state
�W GHZ�LN��. At fixed values of 
, M1, and M2, numerical
evaluation of Eq. �45� can always be carried out easily. Being
particularly interested in the quantification of genuine multi-
partite entanglement, we evaluate the geometric measure
EG

�2���1�N−1�, and report it in Fig. 3 for different values of N.
For N=2, the state �W GHZ�2�� reduces to a superposition

of Bell states. In this case, EG
�2���1�1� attains the maximum

value 1/2 at 
=0, �
2 . For N=3, the curve coincides with the

one plotted in Fig. 2. Let us notice that in the instances N
=2,3, absolute minima exist in the interval �0, �

2 �. For N
�4, EG

�2���1�N−1� increases monotonically from the value
1 /N attained in the �W�N�� state to the value 1/2 attained in
the �GHZ�N�� state.

D. N=4 cluster state

In this section we apply the formalism previously intro-
duced to the determination of the multipartite geometric en-
tanglement of N-qubit cluster states �35� in the case N=4, the
only nontrivial instance that allows an explicit closed expres-
sion. In fact, the N=4 cluster state can be expressed as a
superposition of the form

�Cls�4�� =
1

2
��0000� + �0011� + �1100� − �1111�� . �46�

Recently, this state has been produced and characterized ex-
perimentally �36,37�, as a relevant representative of the class
of stabilizer states, which are very important both from a
theoretical perspective and from a practical point of view for
their property of entanglement persistency and for the imple-
mentation of one-way quantum computation �38�.

In Table IV we report the values of the different compo-
nents of the geometric entanglement in the N=4 cluster state

TABLE III. Geometric measures of entanglement
EG

�K��M1�¯ �MK�, with K=2,3 ,4 ,5 ,6, for the state �W�6��.

�W�6�� �W�6��

EG
�6��1�1��1�1�1�1� 0.598 EG

�3��1�2�3� 1/2

EG
�5��1�1�1�1�2� 0.580 EG

�2���3�3� 1/2

EG
�4��1��1�2�2� 0.567 EG

�3��1�1�4� 1/3

EG
�3��2�2�2� 5/9 EG

�2���2�4� 1/3

EG
�4��1��1�1�3� 1/2 EG

�2���1�5� 1/6

0 Π
8

Π
4

3 Π
8

Π
2

0

0.1

0.2

0.3

0.4
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N = 2
�

�
���

N = 100
�

�■

FIG. 3. �Color online� Behavior of EG
�2���1�N−1� in the superpo-

sition states Eq. �43�, as a function of 
, for N=2,3 , . . . ,10, and for
N=20,30,40,50,100. Curves are ordered from top to bottom with
increasing N, with the uppermost curve corresponding to N=2 and
the lowermost curve corresponding to N=100. All plotted quantities
are dimensionless.
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corresponding to all the possible K partitions of the four-
partite system. We observe that in the case of N=4 cluster
states there is a degeneracy in the geometric structure, as the
absolute minimum is realized not only by the genuine four-
partite components of entanglement EG

�2���1�3� and EG
�2���2�2�,

but also by the tripartite component EG
�3���Cls�4���. The latter

coincides with EG
�2���Cls�4���. On the other hand, as

EG
�4���Cls�4����EG

�3���Cls�4���, the four-qubit cluster state pos-
sesses also a bipartite component besides the genuine four-
partite contribution.

E. Magnon states

Going further toward higher generalizations that are
physically significant, we discuss the class of symmetric
N-qubit entangled states expressed as superpositions of mag-
non states �39,40�. A magnon is an elementary excitation of
magnetic materials, i.e., a quantum of a spin wave, and W
states are actually the simplest superpositions of all possible
magnon states containing only one excitation. In the generic
case of k excitations on N particles, the multimagnon super-
position states can be written in the form

�Mgk
�N�� = �N

k
�−1/2

�
pk=k−1

N−1

�
pk−1=k−2

pk−1

�¯ � �
p1=0

p2−1

��2pk + 2pk−1 + ¯ + 2p1��N, �47�

For the sake of illustration, let us consider explicitly the case
k=2, i.e., the superpositions of all possible N-qubit states
containing two elementary excitations. Such states can be
expressed in the form

�Mg2
�N�� = �N

2
�−1/2

�
p=1

N−1

�
q=0

p−1

��2p + 2q��N, �48�

with N�4. In Table V we report the values, computed nu-
merically, of the different components of the geometric en-
tanglement in the four-qubit two-magnon state �Mg2

�4��.
By comparing Tables V, I, and IV, we see that, with re-

spect to the �W�4�� state, the �Mg2
�4�� state possesses enhanced

genuine multipartite entanglement:

EG
�2���Mg2

�4��� = min	EG
�2���2�2�;EG

�2���1�3�


=1/3 � EG
�2���W�4��� = 1/4.

Analogously, the tripartite component EG
�3��1�1�2� is enhanced

in the magnon state compared to the W state. On the con-
trary, the �Mg2

�4�� state possesses a smaller amount of genuine
multipartite entanglement compared to the �Cls�4�� state,
while the tripartite component EG

�3��1�1�2� is larger.
Next, we generalize the previous analysis to the case of

N-qubit two-magnon states �48� with arbitrary N, and deter-
mine the geometric measure of entanglement EG

�2���M1�M2�,
i.e., the distance from the set of two-separable states of the
form �32�. By exploiting the decomposition

�
p=1

N−1

�
q=0

p−1

��2p + 2q��N = �
p=1

M2−1

�
q=0

p−1

��0��M1
� ��2p + 2q��M2

+ �
p=1

M1−1

�
q=0

p−1

��2p + 2q��M1
� ��0��M2

+ �
p=0

M1−1

��2p��M1
� �

p=0

M2−1

��2p��M2
,

�49�

the squared overlap �2
2��M1�M2� can be written

�2
2��M1�M2� = �N

2
�−1

max
	rJs

�s�

�r0

�1� �
p=1

M2−1

�
q=0

p−1

r2p+2q
�2�

+ r0
�2� �

p=1

M1−1

�
q=0

p−1

r2p+2q
�1� + �

p=0

M1−1

r2p
�1� �

p=0

M2−1

r2p
�2��2

.

�50�

The mathematical details concerning the maximization of
Eq. �50� are treated in Appendix C. From Eq. �C8�, fixing
M =M1�M2=N−M, we obtain

�2
2��M�N − M� = �N�N − 1��−1max	�N − M��N − M − 1�;

2M�N − M�
 . �51�

As in the previous instances of symmetric states, the squared
overlap �2

2��M1�N2� and the corresponding geometric mea-
sure satisfy the property of scale invariance also for magnon
states. One has: �2

2��M1�N2�=�2
2��LM1�LN2� �with L integer�,

�2
2��LM1�LN2� being the squared overlap associated with the

LN-qubit two-magnon state �Mg2
�LN��. For M1=1 and M2

=N−1, the relation �51� reduces to EG
�2���1�N−1�=2 /N, with

N�4. Therefore, the genuine N-partite geometric entangle-
ment contained in two-magnon states vanishes asymptoti-
cally in the limit of large N, analogously to the case of
N-qubit W states. This property is expected to hold in every
multimagnon state: At any fixed, finite value of k, the genu-
ine N-partite entanglement contained in a k-magnon state
vanishes in the limit of large N.

TABLE IV. Multipartite geometric measures of entanglement
EG

�K��M1�¯ �MK�, for K=2,3 ,4, in the four-qubit cluster state
�Cls�4��.

EG
�4��1��1�1�1� EG

�3��1�1�2� EG
�2���2�2� EG

�2���1�3�

�Cls�4�� 3/4 1/2 1/2 1/2

TABLE V. Geometric measures of entanglement
EG

�K��M1�¯ �MK�, with K=2,3 ,4, for the four-qubit magnon state
�Mg2

�4��.

EG
�4��1��1�1�1� EG

�3��1�1�2� EG
�2���2�2� EG

�2���1�3�

�Mg2
�4�� 0.625 0.583 1/3 1/2
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IV. ASYMMETRIC STATES: GENERALIZED W-LIKE
SUPERPOSITION STATES

In this section, we evaluate the geometric measure of en-
tanglement for the class of asymmetric, generalized N-qubit
W-like superposition states defined as

��W
�N�� = NN�

p=0

N−1

�p+1ei�p+1��2p��N, �52�

where �p are real parameters, �p are real phases, and the
normalization factor is NN= ��p=0

N−1�p+1
2 �−1/2. These states play

a relevant role in quantum-information science according to
the following considerations. It is well known that true tri-
partite entanglement of the state of a system of three qubits
can be classified on the basis of stochastic local operations
and classical communications. Such states can then be clas-
sified into two categories corresponding to the GHZ and W
states. It is known that GHZ states can be used for telepor-
tation and superdense coding, but the standard symmetric W
states cannot. However, it has been shown that the class of
asymmetric, generalized W-like superposition states �52� can
be used as entangled resources for the implementation of
perfect teleportation and superdense coding �41�. Moreover,
several methods for their preparation have been proposed
�42�.

Without loss of generality and information content in the
definition of the state, we assume �p� �0,1� and
�p� �0,2��. Moreover, in the following, we will let �p=0 as
it can be shown that the phases are irrelevant in the calcula-
tion of the geometric measures, being always canceled by the
free phases of the K-separable states in the maximization
procedure. The states �52� are asymmetric, i.e., not invariant
with respect to the permutation of any pair of qubits. We first
give explicit examples of application for the three-qubit and
four-qubit instances, Eq. �52� with N=3,4 respectively. In
the three-qubit case, proceeding as in Sec. III A, we compute
the squared overlap �6� for the state ��W

�3��. Dealing with
asymmetric states, we have to specify the elementary qubits
contained in the two sets Q1 and Q2 which determine the set
S2��Q1�Q2� of the two-separable states. Thus, we compute the
quantity �2

2��i�j ,k�, where i , j ,k=1,2 ,3 with i� j�k denote
the three elementary qubits. The calculation of this quantity
yields

�2
2��i�j,k� = N3

2 max	�i
2,� j

2 + �k
2
 . �53�

In Fig. 4, we plot the relative geometric measure EG
�2���1�2,3�

for the state ��W
�3�� as a function of the variables �1 and �2, at

a fixed value of �3. We see that EG
�2���1�2,3� is formed by two

surfaces whose curve of separation stays at the maximum
attainable value 1/2. Similar plots can be obtained for
EG

�2���2�1,3� and EG
�2���3�1,2�. The absolute geometric mea-

sure of entanglement, as defined in Eq. �7�, is given by
EG

�2����W
�3���=min	i,j,k
	EG

�2���i�j ,k�
 with i , j ,k=1,2 ,3 and i
� j�k; the absolute minimum is evaluated with respect to
all possible permutations of the indices, as the state is not
symmetric under the exchange of any two qubits. The abso-
lute measure of geometric entanglement with respect to
biseparable states is plotted in Fig. 5. The surface describing

EG
�2����W

�3��� is formed by the contributions of three surfaces
whose common intersection is at the absolute maximum 1/3.
Let us notice that this absolute maximum is always achieved
for �1=�2=�3.

In the case N=4, besides the bipartition �1�3, we also have
to take into account the bipartition �2�2. Direct evaluation
yields

�2
2��i�j,k,l� = N4

2 max	�i
2,� j

2 + �k
2 + �l

2
 , �54�

�2
2��i, j�k,l� = N4

2 max	�i
2 + � j

2,�k
2 + �l

2
 . �55�

The relative geometric measures EG
�2���1�2,3 ,4� and

EG
�2���1,2�3,4� are plotted in Figs. 6 and 7, respectively, as

functions of �1 and �2, at fixed �3 and �4. Similarly to the
plot in Fig. 4, these three-dimensional plots are characterized
by two surfaces whose separation curve is set at the maxi-
mum value 1/2. The absolute geometric measure EG

�2����W
�4���

FIG. 4. �Color online� Relative measure of geometric entangle-
ment EG

�2���1�2,3� for the state ��W
�3��, plotted as a function of �1 and

�2, at fixed �3=1 /2. All plotted quantities are dimensionless.

FIG. 5. �Color online� Absolute measure of geometric entangle-
ment EG

�2����W
�3���, plotted as a function of �1 and �2, at fixed �3

=1 /2. All plotted quantities are dimensionless.
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exhibits a behavior similar to that observed for the three-
qubit instance; see Fig. 5.

We finally consider the general instance of N-qubit states,
expressed by Eq. �52� for arbitrary N �with �p+1=0�. We

compute the squared overlap �K
2 �Q1�¯ �QK� associated with

the K-separable state �3�. For simplicity, we choose Q1
= 	1, . . . ,M1
, Q2= 	M1+1 , . . . ,M1+M2
, . . ., QK= 	M1+ ¯

+MK−1+1, . . . ,N
. Direct evaluation yields

�K
2 �Q1� ¯ �QK� = max

	rJs

�s�

NN

2�r0
�1�r0

�2�
¯ r0

�K−1� �
p=0

MK−1

r2p
�K��p+1 + r0

�1�r0
�2�

¯ �
p=0

MK−1−1

r2p
�K−1�

�p+1+MK
r0

�K�

+ ¯ + �
p=0

M1−1

r2p
�1�

�p+1+M2+¯+MK
r0

�2�
¯ r0

�K��2

. �56�

The partial maximization of Eq. �56� �see Appendix B� yields the relation

�K
2 �Q1� ¯ �QK� = max

	�0
�s�


NN
2 �cos �0

�1�
¯ cos �0

�K−1�sin �0
�K�� �

p=0

MK−1

�p+1
2 + cos �0

�1�
¯ cos �0

�K−2�sin �0
�K−1� cos �0

�K�

�� �
p=0

MK−1−1

�p+1+MK

2 + ¯ + sin �0
�1� cos �0

�2�
¯ cos �0

�K�� �
p=0

M1−1

�p+1+M2+¯+MK

2 �2. �57�

As with Eq. �37�, in order to obtain the final result from the
simplified relation �57�, one needs to perform a �numerical�
maximization only over K variables. It is straightforward to
observe that Eq. �57� reduces to Eq. �37� for �p+1=1 for
every p. Moreover, given Eq. �57�, the results �53�–�55� are
immediately recovered as particular cases.

V. CONCLUSIONS AND OUTLOOK

In this work we have introduced and discussed a class of
generalized geometric measures of entanglement. For pure
quantum states of N elementary subsystems, these extended
measures are defined as the distances from the sets of

K-separable states �K=2, . . . ,N�. In principle, the entire set
of these N−1 geometric measures provides a complete quan-
tification and a hierarchical ordering of the different bipartite
and multipartite components of the global geometric en-
tanglement, and allows discrimination among the different
multiparty contributions. After introducing and elucidating
the fundamental properties of the generalized geometric
measures, we have investigated in detail multipartite pure
states of N-qubit systems. For the multiqubit case, we have
derived some general properties of the extended geometric
measures and discussed a systematic method for their evalu-
ation in symmetric states including W�N� states, GHZ�N�
states, and their superpositions; symmetric cluster states; and

FIG. 6. �Color online� Relative measure of geometric entangle-
ment EG

�2���1�2,3 ,4� for the state ��W
�4��, plotted as a function of �1

and �2, at fixed �3=2 /3 and �4=1 /6. All plotted quantities are
dimensionless.

FIG. 7. �Color online� Relative measure of geometric entangle-
ment EG

�2���1,2�3,4� for the state ��W
�4��, plotted as a function of �1

and �2, at fixed �3=2 /3 and �4=1 /6. All plotted quantities are
dimensionless.
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multimagnon states. Moreover, considering asymmetric
states, we have introduced a method for the systematic de-
termination of the multipartite components of geometric en-
tanglement in a large class of generalized W-like superposi-
tion states. We have identified a property of self-similarity
and scale invariance holding for all types of geometric en-
tanglement and symmetric multipartite pure states of many-
qubit systems. Finally, in a series of mathematical appen-
dixes, we have sketched the main mathematical framework
needed for the exact numerical and/or analytical evaluation
of the bipartite and multipartite components of geometric
entanglement in any, arbitrarily chosen, pure state of many-
qubit systems.

A challenge of great potential interest is to extend the
mathematical framework and the recursive computation
schemes developed for multiqubit states to higher-
dimensional quantum systems. A further significant issue
concerns the extension of the geometric setting to mixed
states, beyond the immediate, but in practice not very useful,
procedures based on the convex hull construction. Devising
alternative, but conceptually equally satisfactory, extensions
would be especially important in order to establish a deeper
understanding of the possible operational characterizations
for the set of geometric measures of entanglement in the
presence of classical noise and non unitary quantum opera-
tions. Finally, it would be important to investigate to what
extent the multicomponent measures of geometric entangle-
ment defined in the present work could be exploited to con-
struct geometric monotones obeying a structure of shared
entanglement and monogamy bounds for distributed en-
tanglement, and their role in the understanding of quantum
critical phenomena and quantum cooperative systems.
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APPENDIX A: HYPERSPHERICAL PARAMETRIZATION

A very convenient parametrization for the moduli rJ in
Eq. �22�, that automatically solves the normalization con-
straint, is the representation in hyperspherical coordinates in
dM dimensions:

v0 = cos �0,

v1 = sin �0 cos �1,

]

vdM−2 = sin �0 ¯ sin �dM−3 cos �dM−2,

vdM−1 = sin �0 ¯ sin �dM−3 sin �dM−2, �A1�

where �L are angles with values in the interval �0, �
2 �. Let us

note that the one-to-one mapping between rJ and vL �with

J ,L=0, . . . ,dM −1�, or equivalently between the indices J
and L, can be chosen by following a suitable ordering. In
fact, the term vL will be constituted by a product of L trigo-
nometric functions; thus, it would be convenient to have ex-
pressions involving parameters vL with low values of the
index L. Considering the state �22�, the most immediate
choice for rJ is obtained by letting rJ=vJ for J=0, . . . ,dM
−1. Interpreting the two levels 0 and 1 of the single qubit as
the ground and the excited levels, respectively, of the el-
ementary system, a further useful choice for the mapping
between J and L can be obtained by associating the param-
eter vL with the coefficient rJ of the N-qubit ket in the order
of growing number of excitations. Let us recall that, for an
arbitrary N-qubit state, the global ground state �00. . .0� is
labeled by the index J=0; the kets with single excitation,
e.g., of the form �010. . .0�, are labeled by the indices J=2p

with p=0, . . . ,N−1; the kets with two excitations, e.g., of
the form �01010. . .0�, are labeled by the indices J=2q+2s

with q=1, . . . ,N−1 and s=0, . . . , p−1; and so on. One can
decide to choose the following mapping for the parametriza-
tion:

r0 = v0,

r2p = vp+1, p = 0, . . . ,N − 1,

r2q+2s = vN+q+s,

q = 1, . . . ,N − 1,s = 0, . . . ,q − 1,

] . �A2�

Clearly, the choice of the mapping between rJ and vL can be
suitably made by looking at the terms that survive in the
squared overlap �6�.

APPENDIX B: EVALUATION OF EQS. (33), (36), (44), and
(56)

Here we outline the analytical evaluation of the squared
overlaps �33�, �36�, �44�, and �56�. The quantity �2

2��M1�M2�
in Eq. �33� involves only coefficients of the form r0

�s� and r2p
�s�

�s=1,2�. Therefore, when using the hyperspherical represen-
tation �A1�, by exploiting the freedom in the ordering, we
choose the mapping given in Eq. �A2�, specifically

r0
�s� = v0

�s� = cos �0,

r2p
�s� = vp+1

�s� = sin �0
�s�
¯ sin �p

�s� cos �p+1
�s� ,

p = 0, . . . ,Ms − 1. �B1�

Such parametrization leads to the explicit expression

�2
2
„�M1�M2… = max

	�Js

�s�


1

N
†cos �0

�1� sin �0
�2��cos �1

�2�

+ sin �1
�2�	cos �2

�2� + sin �2
�2��¯�cos �M2−1

�2�

+ sin �M2−1
�2� cos �M2

�2� ��
�
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+ cos �0
�2� sin �0

�1�cos �1
�1�

+ sin �1
�1�	cos �2

�1� + sin �2
�1��¯�cos �M1−1

�1�

+ sin �M1−1
�1� �cos �M1

�1� �
‡2. �B2�

Analyzing the structure of the �W�N�� states, it is convenient,
given a generic integer M, and a set of generic variables �i,
i=1, . . . ,M, to introduce the following function:

f��1
�s�, . . . ,�Ms

�s� � = cos �1
�s� + sin �1

�s�	cos �2
�s� + sin �2

�s�

��¯�cos �Ms−1
�s� + sin �Ms−1

�s� cos �Ms

�s� ��
 .

�B3�

By means of Eq. �B3�, the expression �B2� can be recast in
the more compact form

�2
2��M1�M2� = max

	�Js

�s�


1

N
	cos �0

�1� sin �0
�2�f��1

�2�, . . . ,�M2

�2� �

+ cos �0
�2� sin �0

�1�f��1
�1�, . . . ,�M1

�1� �
2. �B4�

To proceed, we first maximize the function f��1
�s� , . . . ,�M

�s��,
i.e., Eq. �B3�, over the Ms independent variables �h

�s� �h

=1, . . . ,Ms�. This task can be accomplished as follows: First,
trivially, �M

�s�=0 maximizes cos �M
�s�. Next, the contribution

�cos �M−1
�s� +sin �M−1

�s� � reaches the maximum value �2 for
�M−1

�s� = �
4 . After the elimination of the parameters �M−1

�s� and
�M

�s�, the term �cos �M−2
�s� +sin �M−2

�s� �2� appears. Observing that
terms of the form �cos �+sin ��n� acquire the maximum
value �1+n for �=arcsin� n

1+n , the cascade maximization
procedure yields that Eq. �B3� is maximized at the value �Ms

for �M−h
�s� =arcsin� h

1+h , with h=0,1 , . . . ,M −1. Recalling that
1�M1�M2=N−M1 and performing the final maximization
in Eq. �B2� yields

�2
2��M1�M2� =

M2

N
. �B5�

The above maximum overlap squared is reached for the val-
ues �0

�1�=0, �0
�2�= �

2 , and �N−M−h
�2� =arcsin� h

h+1 with h
=0,1 , . . . ,M2−1.

One can now consider the squared overlap
�K

2 �M1�¯ �MK�, Eq. �36�. Proceeding as for Eq. �33�, and
thus using, for any s, the hyperspherical representation �A1�
with the mapping given by Eq. �B1�, one can express Eq.
�36� in terms of the angular parameters �Js

�s�. Moreover, by
using definition �B3�,

�K
2 �M1� ¯ �MK� = max

	�Js

�s�


1

N
�cos �0

�1� cos �0
�2�

¯ cos �0
�K−1�sin �0

�K�f��1
�K�, . . . ,�MK

�K�� + cos �0
�1� cos �0

�2�
¯ cos �0

�K−2�

�sin �0
�K−1�f��1

�K−1�, . . . ,�MK−1

�K−1��cos �0
�K� + ¯ + sin �0

�1�f��1
�1�, . . . ,�M1

�1� � � � cos �0
�2�

¯ cos �0
�K−1� cos �0

�K��2.

�B6�

The maximization of the functions f , corresponding to the
replacement f��1

�s� , . . . ,�Ms

�s� �→�Ms, reduces relation �B6� to
Eq. �37�.

Next, we consider the squared overlap �44�. By choosing
the mapping

r0
�s� = v0

�s� = cos �0
�s�,

r2Ms−1
�s� = v1

�s� = sin �0
�s� cos �1

�s�,

r2p
�s� = vp+2

�s� = sin �0
�s�
¯ sin �p+1

�s� cos �p+2
�s� ,

p = 0, . . . ,Ms − 1, �B7�

we obtain the relation

�2
2��M1�M2� = max

	�q
�s�

� cos 


�N
�cos �0

�1� sin �0
�2� sin �1

�2�

� f��2
�2�, . . . ,�M2+1

�2� �

+ sin �0
�1� sin �1

�1� sin �0
�2�f��2

�1�, . . . ,�M1+1
�1� ��

+
sin 


�2
�cos �0

�1� cos �0
�2�

+ sin �0
�1�cos �1

�1� sin �0
�2� cos �1

�2���2

. �B8�

By maximizing the functions f , we arrive at the final expres-
sion Eq. �45�.

Coming to the squared overlap �K
2 �Q1�¯ �QK�, i.e., Eq.

�56�, one can proceed as for Eq. �36� in order to obtain a
relation identical to Eq. �B6� with the functions f replaced by
the functions F defined as

HIERARCHIES OF GEOMETRIC ENTANGLEMENT PHYSICAL REVIEW A 77, 062304 �2008�

062304-13



F��1
�s�, . . . ,�Ms

�s� � = �1
�s� cos �1

�s� + sin �1
�s�	�2

�s� cos �2
�s� + sin �2

�s�

��¯��Ms−1
�s� cos �Ms−1

�s� + sin �Ms−1
�s�

��Ms

�s� cos �Ms

�s� ��
 , �B9�

where �p+1
�s� =�p+1+Ms+1+¯+MK

, with p=0, . . . ,Ms−1. It is
straightforward to notice that the following relation holds:

max
�

	x cos � + y sin �
 = �x2 + y2, �B10�

where x and y are real parameters. By exploiting iteratively
the maximization procedure for terms of this form, we find
that Eq. �B9� is maximized at the value ��p=0

Ms−1��p+1
�s� �2. Fi-

nally, by maximizing all the functions F, the squared overlap
�56� reduces to Eq. �57�.

APPENDIX C: EVALUATION OF EQ. (50)

In order to compute the squared overlap �2
2��M1�M2�, Eq.

�50�, we exploit again the hyperspherical coordinates �A1�,
and we introduce the following mapping:

r0
�s� = v0

�s� = cos �0
�s�,

r2p+2q
�s� = vl�p,q�+1

�s� = sin �0
�s�
¯ sin �l�p,q�

�s� cos �l�p,q�+1
�s� ,

l�p,q� = 0, . . . ,Ls − 1, p = 1, . . . ,Ms − 1,

q = 0, . . . ,p − 1,

r2p
�s� = vp+1+Ls

�s� = sin �0
�s�
¯ sin �p+Ls

�s� cos �p+1+Ls

�s� ,

p = 0, . . . ,Ms − 1, �C1�

where . Furthermore, by defining the function

g��1
�s�, . . . ,�Ls

�s�� = sin �0
�s�
¯ sin �Ls

�s�, �C2�

Eq. �50� is recast in the form

�2
2��M1�M2� = max

�Js

�s�
�sin �0

�1� cos �0
�2�f��1

�1�, . . . ,�L1

�1��

+ cos �0
�1� sin �0

�2�f��1
�2�, . . . ,�L2

�2��

+ sin �0
�1� sin �0

�2�g��1
�1�, . . . ,�L1

�1��

�f��1+L1

�1� , . . . ,�M1+L1

�1� �g��1
�2�, . . . ,�L2

�2��

�f��1+L2

�2� , . . . ,�M2+L2

�2� ��2. �C3�

The functions f��1+Ls

�s� , . . . ,�Ms+Ls

�s� � in the last term of Eq. �C3�

can be maximized at the value �Ms. It is quite straightfor-
ward to observe that the functions f and g are connected by
the relation

f��1
�s�, . . . ,�Ls

�s�� = f��1
�s�, . . . ,�Ls−1

�s� � + g��1
�s�, . . . ,�Ls−1

�s� �cos �Ls
.

�C4�

By using property �C4� and applying the maximization rela-
tion �B10� to the variables �L1

�1� ,�L1−1
�1� , . . . ,�1

�1� ,�0
�1�, Eq. �C3�

reduces to

�2
2��M1�M2� = max

�J2

�2�
�N

2
�−1

	cos2 �0
�2�L1 + sin2 �0

�2�

��f2��1
�2�, . . . ,�L2

�2�� + g2��1
�2�, . . . ,�L2

�2��M1M2�
 .

�C5�

Observing that L1	L2 ,M1M2, a further maximization on the
variable �0

�2� yields

�2
2��M1�M2� = max

�J2

�2�
�N

2
�−1

�f2��1
�2�, . . . ,�L2

�2��

+ g2��1
�2�, . . . ,�L2

�2��M1M2� . �C6�

In order to maximize Eq. �C6�, one has to find the conditions
for the vanishing of the first partial derivatives with respect
to each variable �q

�2� with q=1, . . . ,L2, and to select the ab-
solute maximum in the intervals 0��q

�2��
�
2 . Without report-

ing the whole set of calculations, we outline briefly the main
steps of the maximization procedure. The first partial deriva-
tive with respect to �L2

�2� yields the following condition:

g��1
�2�, . . . ,�L2

�2���f��1
�2�, . . . ,�L2

�2��

− M1M2g��1
�2�, . . . ,�L2−1

�2� �cos �L2

�2�� = 0. �C7�

By using Eq. �C7� together with all the other partial deriva-
tives with respect to �q

�2� �q=1, . . . ,L2−1�, it is not difficult
to verify that the absolute maximum of �2

2��M1�M2� is given
by

�2
2��M1�M2� = �N

2
�−1

max	L2,M1M2
 . �C8�

Indeed, from Eq. �C7� one has that if g��1
�2� , . . . ,�L2

�2��=0, then
Eq. �C6� reduces to the maximization of the function
f��1

�2� , . . . ,�L2

�2��, i.e., �L2. On the other hand, if

f��1
�2�, . . . ,�L2

�2�� = M1M2g��1
�2�, . . . ,�L2−1

�2� �cos �L2
,

then the maximum is reached for �q= �
2 , i.e., f� �

2 , . . . , �
2 �=0

and g� �
2 , . . . , �

2 �=1. It can be verified that all the other values
of �q leading to the vanishing of the first partial derivatives
are associated with relative maxima.
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