
Controlled decoherence in a quantum Lévy kicked rotator

Henning Schomerus
Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

Eric Lutz
Department of Physics, University of Augsburg, D-86135 Augsburg, Germany

�Received 29 January 2008; published 24 June 2008�

We develop a theory describing the dynamics of quantum kicked rotators �modeling cold atoms in a pulsed
optical field� which are subjected to combined amplitude and timing noise generated by a renewal process
�acting as an engineered reservoir�. For waiting-time distributions of variable exponent �Lévy noise�, we
demonstrate the existence of a regime of nonexponential loss of phase coherence. In this regime, the momen-
tum dynamics is subdiffusive, which also manifests itself in a non-Gaussian limiting distribution and a frac-
tional power-law decay of the inverse participation ratio. The purity initially decays with a stretched exponen-
tial which is followed by two regimes of power-law decay with different exponents. The averaged logarithm of
the fidelity probes the sprinkling distribution of the renewal process. These analytical results are confirmed by
numerical computations on quantum kicked rotators subjected to noise events generated by a Yule-Simon
distribution.
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I. INTRODUCTION

The coupling of an open quantum system to an external
reservoir induces a dynamical loss of phase coherence that
results in an irreversible destruction of interference effects
between states of the system �1,2�. This environment-
induced decoherence efficiently suppresses macroscopic su-
perpositions of states and therefore plays a central role in our
understanding of the transition from quantum to classical
physics. An important and often annoying feature of deco-
herence for quantum-mechanical applications is that it typi-
cally occurs very rapidly with an exponential decoherence
factor, D�t�=exp�−t / tc�, where tc is the short coherence time
�1,2�. In some cases, however, the coherence time can be
controlled by properly engineering the reservoir and/or the
interaction between the system and the reservoir �3�. The
feasibility of such schemes has been experimentally demon-
strated in a variety of systems that include cavity QED �4�,
ion traps �5�, and cold atom experiments �6–8�. Besides their
obvious technological implications, these experiments pro-
vide essential tests of the general concept of environment-
induced decoherence.

The atom-optical experiments �6–8� are designed to real-
ize the quantum kicked rotator �9–11�, a paradigm of com-
plex chaotic dynamics which can be simply seen as a particle
moving on a ring and periodically kicked in time. For suffi-
ciently strong kicking strength, the classical motion of a
kicked rotator is chaotic and the evolution in momentum
space is diffusive. In the quantum regime, however, momen-
tum diffusion is asymptotically suppressed due to dynamical
localization �12,13�. In the recent atom-optical reservoir-
engineering experiments, the loss of coherence has been in-
duced by amplitude noise �7� and timing noise �8�. In the
first case, the amplitude of the periodic kicks is randomly
modulated in a controlled manner, whereas in the second
case the period between successive kicks is randomly varied.
In both situations, dynamical localization is extenuated lead-
ing to a nonvanishing quantum momentum diffusion with a

renormalized diffusion coefficient, in agreement with theo-
retical predictions �7,14,15�. These experiments enjoy a high
degree of control and tunability, which makes the atom-
optical setup ideally suited to investigate the decoherence-
induced quantum-to-classical crossover of complex quantum
systems �16�.

One point is especially noteworthy: Reservoir engineering
has so far been used to tune the coherence time, but not the
exponential time dependence of the decoherence factor D�t�
itself. Our aim in this paper is to describe a reservoir cou-
pling scheme for the cold atom experiments which allows us
to modify the time dependence of D�t� and slow down the
loss of phase coherence in a controlled way. To this end, we
superpose the regular periodic pulses with noise events oc-
curring with randomly modulated time intervals � �i.e., we
combine amplitude with timing noise�. We generate these
random time intervals by a renewal process with a waiting-
time distribution w���. Of special interest is the case where
this distribution asymptotically behaves as a power law,
w�����−1−�. By tuning the exponent � of this so-called Lévy
noise �17�, we are able to change the mean waiting time
between successive noise events, given by �̄=�0

�d��w���,
and therefore can smoothly interpolate between a fully
coupled situation where most kicks are perturbed by the
noise �large �� to an almost isolated situation where most
kicks are not perturbed by the noise �small ��. Divergent
moments are a hallmark of Lévy statistics and the mean
waiting time �̄ becomes infinite when ��1. In this case the
noise is nonstationary and nonergodic �18,19�. We show that
this type of noise modifies the decoherence of the atoms in a
striking manner: The exponential time dependence of the de-
coherence factor D�t� is replaced by a Mittag-Leffler func-
tion �20�, which starts out as a stretched exponential and
asymptotically decays as a power law. For this functional
form, the coherence time is ill defined.

In Ref. �21� we briefly discussed one manifestation of the
modified decoherence pattern, namely a subdiffusive mo-
mentum spreading of the atoms. In this work, we present a
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theory that links the subdiffusive behavior to the nonstation-
arity of the noise. This requires us to extend the previous
theories of Refs. �14,15� beyond the perturbative short-time
regime and to account for the additional timing noise from
the renewal process. We also discuss the limiting distribution
function and the inverse participation ratio, which provide
additional information about the dynamics in momentum
space. As alternative measures of coherence, we then con-
sider the purity and the fidelity �22–24� of atoms subjected to
different realizations of the noise, which can be probed in an
echo experiment, such as carried out, e.g., for microcavities
in Ref. �25� �for atom-optical proposals of such experiments
see Refs. �26–28��. For nonexponential decoherence, we find
that the purity initially decays with a stretched exponential,
which is followed by two regimes of power-law decay with
different exponents. The decay of the averaged logarithm of
the fidelity is related to the sprinkling distribution of the
renewal process. Throughout the paper our findings are illus-
trated by comparison to the results from a numerical imple-
mentation of the kicked rotator.

The structure of this paper is as follows. Section II de-
scribes the quantum kicked rotator and the environmental
coupling scheme of combined amplitude and timing noise
generated by a renewal process. In Sec. III we derive the
nonperturbative expression for the decoherence factor and
evaluate it for Lévy noise. In the case of nonstationary noise
with ��1, the decoherence function is nonexponential. Sec-
tion IV discusses how the modified decoherence affects the
momentum spreading, while Sec. V contains the discussion
of the purity and fidelity. The results of this paper are sum-
marized in Sec. VI.

II. LÉVY KICKED ROTATOR

A. Model

The motion of atoms exposed to pulsed standing-wave
potentials can be mapped onto a quantum kicked rotator
�9–11�, i.e., a point particle moving on a ring and subjected
to periodical kicks. In suitable units, the Hamiltonian of the
kicked rotator takes the form

H =
p2

2
+ �

n=−�

�

Kn cos �����t − n + 0+� , �1�

where the kicking potential depends on the 2�-periodic ro-
tation angle � and the kicking amplitude Kn can in general be
kick dependent.

From kick to kick, the stroboscopic classical dynamics of
the kicked rotator is generated by the map

p�t + 1� = p�t� + Kt sin � , �2�

��t + 1� = ��t� + p�t + 1� . �3�

Starting from a given initial state 	�0�, the corresponding
quantum dynamics 	�t+1�=F�Kt�	�t� is generated by the
Floquet operator

F�Kt� = exp�− i
−1p̂2/2�exp�− i
−1Kt cos �̂� . �4�

In both cases, the dynamics consists of a kick in which the
momentum changes by Kt sin �, followed by a free rotation
in which the rotation angle � increases by p.

In the absence of noise, the dynamics of the kicked rotator
is entirely controlled by the constant parameter Kn=K. For
K�5, the classical dynamics is chaotic and the growth of the
momentum is on average diffusive with a variance var p�t�
�Dclt. The classical diffusion constant is given by Dcl
�K2 /2 �29�. By contrast, in the quantum regime, the kicked
rotator exhibits dynamical localization, an interference phe-
nomenon akin to Anderson localization in disordered con-
ductors, which manifests itself in an exponentially decaying
envelope of the quasienergy eigenstates F�k� of the Floquet
operator �12�. As a result, momentum diffusion is suppressed
and the variance

var p0�t� � D�t��1 − exp�− t/t��� �5�

saturates after the quantum break time t��D� /
2 �13�. The
constant D� is of the order of the classical diffusion constant
Dcl, but is subject to quantum corrections �30�.

The transition between the quantum and the classical be-
havior of the rotator can be induced by subjecting the kicked
particle to additional random kicks, simulating in such way
the coupling to an external environment, where the charac-
teristics of the imposed noise is controlled externally. In the
case of amplitude noise �7�, the kicking amplitude is explic-
itly n dependent, Kn=K+kn, where the perturbations kn are
random numbers. In the presence of conventional timing
noise �8� the period between the kicks �here set to unity� is
slightly modulated.

In this paper we consider an unconventional combination
of amplitude and timing noise: Kicks always appear at peri-
odic instances and the amplitude of some of the kicks are
perturbed. However, the �integer-valued� time intervals be-
tween the noise events are generated by a renewal process
with waiting-time distribution ���� �see Fig. 1 for a sche-
matic illustration�. The timing of the Nth noise event �N
=1,2 ,3 , . . .� is hence given by

tN = �
n=1

N

�n, �6�

where each waiting time �n is drawn independently from the
same probability distribution ����. The strength of the indi-
vidual noise events will be characterized by the variance
ktN

2 = of the perturbed kicks, whereas on average ktN
=0.

The usual white amplitude noise is obtained for a waiting-
time distribution ����=��,1, so that every kick is perturbed.
A more intriguing case is a waiting-time distribution which
asymptotically behaves as a power law �Lévy noise�,

w��� � c �−1−�, �7�

where c is a constant. For ��1 the mean waiting time �̄
diverges. Unlike the familiar white amplitude noise, Lévy
noise �31� generates a nonstationary process with unconven-
tional statistical features that are reviewed in the following
section.
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B. Statistical properties of Lévy noise

The properties of noise generated by a renewal process
can be conveniently quantified by analyzing the number of
noise events N�t� , t�� within an interval �t� , t��. The number
N�t ,0� is obtained by inverting the random time tN, and
hence is known as the inverse random time of the process
�32�. On average, the rate of change f�t�=�tN�t ,0� of the
inverse random time gives the probability that there is a
noise event at time t. This rate is called the sprinkling distri-
bution and is directly related to the waiting-time distribution
���� via a Laplace transformation,

f̃�u� = 	
0

�

dte−utf�t� =
w̃�u�

1 − w̃�u�
. �8�

We denote, throughout the paper, Laplace-transformed func-
tions by a tilde.

For small values of u, the power-law waiting-time distri-
bution �7� delivers

w̃�u� � 1 − u�̄ �� � 1� , �9�

w̃�u� � 1 − u� c�

��� + 1� sin ��
�� � 1� . �10�

For ��1, it then follows from Eq. �8� that the sprinkling
distribution takes a constant value at large times,

f�t� �
1

�̄
�� � 1� . �11�

As a result, the noise asymptotically becomes stationary in
this case. However, for power-law waiting-time distributions
with ��1, the sprinkling distribution asymptotically decays
over time according to

f�t� � t�−1� sin����/��c� �� � 1� . �12�

Due to the explicit time dependence of f�t�, the noise here
remains nonstationary. We note that nonstationarity also im-
plies nonergodicity, since time averages cannot be replaced
by ensemble averages �19�. A direct consequence of Eq. �12�
is that the mean inverse random time increases sublinearly,

N�t,0� � t� sin����/��c� �� � 1� . �13�

More detailed information about the statistical properties
of the renewal process can be obtained by analyzing the
complete distribution function P�N ; t� , t�� of the number of
noise events. The latter is most conveniently characterized
by the moment-generating function

M�z;t�,t�� = exp�zN�t�,t��� = �
n=0

�

ezNP�N;t�,t�� . �14�

For general time arguments t� and t�, this function can be
expressed as

M�z;t�,t�� = M�z;t�,0� − �ez − 1�	
0

t�
dsf�s�M�z;t� − s,0� ,

�15�

so that it suffices to study the moment-generating function of
the inverse random time N�t ,0�.

We first relate the distribution function P�N ; t ,0� of the
inverse random time to the probability distribution P�tN ;N�
of the Nth random time, which succeeds via the intuitive
expression

P�N;t,0� = 	
0

t

dt��P�t�;N� − P�t�;N + 1�� . �16�

Since Eq. �6� involves a sum of N independent waiting
times, the Laplace transform of P�tN ;N� factorizes,

P̃�u;N� = �w̃�u��N, �17�

and Eq. �16� thus yields

P̃�N;u,0� = 	
0

�

dte−utP�N;t,0� =
1

u
�1 − w̃�u���w̃�u��N.

�18�

�As indicated, the Laplace transformation is taken with re-
spect to the later time argument.� By using the definition �14�
of the moment-generating function M�z ; t ,0�, we find that
its Laplace transform can be expressed as a function of the
sprinkling distribution,
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FIG. 1. �Color online� �a� Schematic illustration of the kicking
sequence in the Lévy kicked rotator. The period of the kicks is set to
unity. The timing of the noise is generated in a renewal process,
which selects the integer-valued waiting times �n from a distribution
����. �b� Waiting-time distributions of the Yule-Simon form �24� for
different values of the parameter �. The distributions display
power-law tails, specified in Eq. �25�, and hence generate Lévy
noise of variable exponent. The lines are a guide to the eye.
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M̃�z;u,0� =
1

u

1

1 − f̃�u��ez − 1�
. �19�

One should note the explicit periodicity, M̃�z ;u ,0�=M̃�z
+2�i ;u ,0�, which is a consequence of the discreteness of the
inverse random time.

When next going back to the time domain, we again must
distinguish between asymptotically stationary and nonsta-
tionary noise. In the former case ���1�, the moment-
generating function is asymptotically exponential,

M�z;t,0� � exp��ez − 1�t/�̄� �� � 1� . �20�

Equation �20� characterizes the counting statistics of a Pois-
son process with mean rate �̄−1. In the nonstationary case �
�1, inserting the asymptotic behavior �10� produces a
moment-generating function of the form

M�z;t,0� � E��t��ez − 1���1 + ���sin ���/��c�� �� � 1� ,

�21�

where E� is the Mittag-Leffler function �20�, defined by

E��z� = �
n=0

�
zn

���n + 1�
. �22�

Expression �21� becomes exact for all times when one passes
to continuous inverse times �ez−1→z� and considers the par-
ticular case of a scale-free Lévy process �32�. The moment-
generating function then starts out as a stretched exponential,
M�z ; t ,0��exp
t� / ���−��ctc��, while for large times it
crosses over to the power law M�z ; t ,0���ctc /��t−�. For
more general waiting-time distributions, a reasonable ap-
proximation is to adapt the time argument by using the mean
inverse random time, such that

M�z;t,0� � E���ez − 1���1 + ��N�t,0�� �� � 1� .

�23�

This results in the same power-law asymptotics for large
times, and accounts for transient behavior in the initial decay.

C. Numerical implementation

Throughout this paper we compare analytical results to
results obtained from a numerical implementation of the
Lévy kicked rotator. In the present section, we describe the
parameters used for these computations.

Dynamical localization is expected to be the strongest
when 
 / �2�� is approximating a quadratic irrational �
= 1

2 �a2+4−a�. In order to render the Hilbert space finite we
choose a=24, set 
=2�M /N, and use the third convergent
of the continued-fraction representation of the quadratic irra-
tional, 1

24+
1

24+
1

24 . This gives M =577, N=13 872.
The integer N is the Hilbert space dimension, which now

is large but finite, corresponding to a quantized momentum
p=
l, l=0,1 ,2 , . . . ,N−1. Similarly, in position space the
momentum quantization carries over to discretized positions
�=2�l /N. The integer M determines the quantum-
mechanical periodicity in momentum space �p and p+2�M

are equivalent�. Each classical period of 2� covers N /M
�24 discretized momentum values.

In all our computations, the particle is initially prepared in
the zero-momentum state 	�0�= �p=0�. The subsequent
propagation is obtained by successive application of the Flo-
quet operator �4�, which can be broken down into the appli-
cation of diagonal matrix multiplications in momentum and
position representation, intervened by fast Fourier transfor-
mations for the passage between both representations.

In each propagation step, the kicking strength is deter-
mined according to the following procedure. The regular
kicking strength is set to K=7.5. The noisy perturbations kn
are taken from a uniform box distribution over an interval
�−W ,W�, so that =W2 /3. This noise is only applied at times
selected by a renewal process, which we generate by the
so-called Yule-Simon distributions �33�

���� =
� ������� + 1�

��� + � + 1�
. �24�

These distributions are paradigms of integer-valued probabil-
ity distributions with a power-law tail,

���� � � ��� + 1��−1−�. �25�

The mean waiting time is given by

�̄ =
�

� − 1
�� � 1� �26�

and diverges for ��1. In the latter case, the asymptotic time
dependence of the sprinkling distribution is

f�t� �
sin����

���� + 1�
t�−1. �27�

These properties directly follow from the Laplace transform
of the waiting-time distribution, which reads as

w̃�u� =
�

� + 1
e−u

2F1�1,1,� + 2;e−u� , �28�

where 2F1 is the hypergeometric function.
The variance of the momentum for the kicked rotator in

the absence of noise is shown in Fig. 2. A single-parameter
fit to the prediction �5� of dynamical-localization theory de-
livers the value D�=
2t�=45.28, which is our only fitting
parameter and will not be adjusted any further throughout the
rest of this work.

III. DECOHERENCE IN QUASIENERGY SPACE

The effect of noise on the quantum kicked rotator has
been first investigated by Ott, Antonsen, and Hanson, who
developed the following intuitive picture �14�. In the absence
of noise the quantum system is fully coherent: The quasien-
ergy eigenstates of the Floquet operator F�K� are exponen-
tially localized in momentum space, chaotic diffusion is
strongly suppressed, and the momentum diffusion constant
asymptotically vanishes. The effect of the external noise is to
couple the quasienergy states and to induce transitions be-
tween them. As a result, dynamical localization is extenuated
and quantum diffusion takes place.
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A systematic approach for calculating the nonzero quan-
tum diffusion constant in the presence of stationary noise has
been developed by Cohen �15�. It is based on an analysis of
the decay of a decoherence factor which is related to the
survival probability of the quasienergy states of the Floquet
operator. In Ref. �15� this decoherence factor was calculated
perturbatively for short times �the emphasis was on station-
ary noise with arbitrary correlations, including the intricate
correlations of zero-temperature noise�. In the following, we
use a simple random-phase approximation to calculate the
decoherence factor beyond the perturbative short-time re-
gime. This approximation is valid for random uncorrelated
noise events and remains immediately applicable to noise
generated by a renewal process, including the case of noner-
godic, nonstationary Lévy noise.

A. Quasienergy transitions and decoherence factor

The quasienergy eigenstates �r� of the noiseless system
are defined by the eigenvalue equation

F�K��r� = exp�− i�r��r� , �29�

where �r is the quasienergy. A noise-free propagation step
does not alter the quasienergy state, while a noisy kick intro-
duces transitions with amplitude

�s�F�Kn��s�� = exp�− i�s��s�exp�− i
−1kn cos ���s�� ,

�30�

where s� and s are the quasienergy index before and after the
propagation step, respectively.

Over a larger time interval �t� , t��, the survival amplitude
in a quasienergy state �r� is defined as

Ar�t�,t�� = �r�T�
n=t�

t�−1

F�Kn��r�exp�i�t� − t���r� , �31�

where T is the time-ordering operator. In this expression, we
have explicitly provided for two time arguments, as is re-
quired when working with a renewal process which may pro-
duce nonstationary noise. The exponential factor compen-
sates for the dynamical accumulation of quasienergy phases
in the noiseless system, for which Ar�t� , t��=1.

The averaged survival amplitude is denoted by

D�1��t�,t�� = Ar�t�,t�� , �32�

where the average is over the index r as well as over the
timing and amplitude of the noise.

The decoherence factor D�t� , t�� that later appears in the
momentum spreading and in the decay of the purity is given
by

D�t�,t�� = Ar�t�,t��As
��t�,t�� , �33�

where the average now extends over both quasienergy indi-
ces r�s.

B. Average over amplitude noise

In order to analyze the decoherence factor, we first as-
sume that the timing of noise events is fixed and average
over the random detunings kn of the noise events, as well as
over the quasienergy indices. These averages become
straightforward within a random-phase approximation,
which uses that the random detunings are uncorrelated and
moreover exploits features of the complex quantum dynam-
ics encoded in the quasienergy transition amplitudes �30�.
For this we must distinguish amplitudes which preserve the
quasienergy index �diagonal matrix elements, which are of
modulus one if there is no noise and less than one in the
presence of noise� from amplitudes describing transitions be-
tween quasienergy states �off-diagonal matrix elements,
which are only finite in the presence of noise�.

For noise strength �
2 the averaged modulus of the
diagonal matrix elements in Eq. �30� can be obtained in a
simple expansion,

exp�− i
−1kl cos �� � 1 − �/2
2�cos2 � = 1 − /4
2,

�34�

which delivers the survival time

tc � 2
2/ . �35�

We will shortly see that tc coincides with the decoherence
time for conventional amplitude noise, which acts stationary
in every kick. The condition set for the noise strength implies
tc�1. This assumption is not very restrictive, since it only
prevents total decoherence by a single event, but does not
impose any restriction on tc with respect to the localization
time t��K2 /2
2, which is also much larger than unity. We
hence reserve the notion of weak noise for the more restric-
tive condition �
4 /K2, which implies tc� t�.

Each noise event mixes the initial quasienergy state into
about �= t� /2�1 states whose localization centers are in
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FIG. 2. �Color online� Time dependence of the variance of mo-
mentum var p0�t� for a noiseless kicked rotator with regular kicking
strength K=7.5. The dashed curve is the theoretical prediction �5�
of dynamical-localization theory �13�. A single-parameter fit deliv-
ers the value D�=
2t�=45.28, which is used throughout the rest of
the present work. The inset zooms in onto the region where dynami-
cal localization is established.
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reach of the localization length �30�. Each individual off-
diagonal transition amplitude hence is small, and for weak
noise �tc� t�� the averaged off-diagonal matrix elements in-
deed can be trivially neglected. The averaged Floquet opera-
tor F�Kn� is then simply approximated by

�s�F�Kn��s�� = �s,s�diag�e−i�s−1/�2tc�� , �36�

which is diagonal in quasienergy space.
When tc and t� are of comparable order, individual con-

tributions which include quasienergy transitions are still
small, but in the composed survival amplitude �31� one can-
not disregard the proliferation of such terms when the num-
ber of transitions is increased. It then becomes necessary to
exploit the consequences of the complex dynamics of the
kicked rotator, which induces random phases into the off-
diagonal transition matrix elements. The random phase has
several separate origins:

�1� For fixed s and s�, the transition amplitude �30� sen-
sitively depends on the random detuning kn of the kick.

�2� In momentum space, the quasienergy states have an
exponentially decaying envelope, but a quasirandom internal

structure. Consequently, even after the average over the de-
tuning, the phase of the transition amplitude depends
strongly on the quasienergy indices s and s�.

In the ensuing random-phase approximation, the phase of
the off-diagonal transition amplitudes is assumed to be uni-
formly distributed in �0,2��, while the squared modulus of
these matrix elements is of order 2 / �tct

�� �corresponding to
the bandwidth �= t� /2�. The squared modulus of the diagonal
elements is given by exp�−1 / tc��1−1 / tc.

In this approximation, the averaged Floquet operator
F�Kn� simply retains its diagonal form �36�. This is all we
need for the computation of the averaged survival amplitude
D�1��t� , t�� and leads to the intermediate expression

D�1��t�,t�� = exp�− N�t�,t��/�2tc�� , �37�

where N�t� , t�� is the inverse random time of the renewal
process as introduced in Sec. II.

The random phase approximation also establishes a direct
connection between D�1��t� , t�� and the decoherence factor
D�t� , t��. Since in Eq. �33� the two quasienergy indices r and
s are not identical, there are no contributions which link the
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FIG. 3. �Color online� Averaged distribution of momenta P�p ; t� at selected times t for kicked rotators which are subjected to Lévy noise
generated by a Yule-Simon distribution. The average is over 103 realizations. The smooth curves are fits to double-sided exponential and
Gaussian distributions. The unit of momentum is the localization length p�=D� /
. �a� In the upper panels �=2.0, =1 /30 000, correspond-
ing to a decoherence time tc=12.3 t� �where t� is the localization time�. At t=15 t��1.2 tc the distribution function fluctuates around a
double-sided exponential function. At t=30 t��2.4 tc the distribution function is still exponential, but the fluctuations are suppressed. At
t=120 t��9.8 tc the distribution function is well described by a Gaussian. �b� In the lower panels �=0.5, =1 /3, corresponding to stronger
but nonstationary, increasingly rare noise events. In this case, a decoherence time cannot be defined and the distributions function remains
exponential for all times t� t�. Note that the peak at p=0 arises from coherent backscattering.
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quasienergy states in exactly the same sequence. The deco-
herence factor therefore immediately factorizes into the av-
eraged survival amplitudes of the two quasienergy states,
yielding

D�t�,t�� = �D�1��t�,t���2 = exp�− N�t�,t��/tc� . �38�

The remaining average over the timing of the noise events
does not factorize, but because of the simple exponential
form of Eq. �37�, merely amounts to a factor of 2 in the
exponent. We now analyze this average for different types of
renewal processes.

C. Average over timing noise

In the conventional case of stationary noise with ����
=��,1, where timing noise is absent, the inverse random time,
N�t� , t��= t�− t�, does not fluctuate. According to Eq. �38�,
the decoherence factor

D�t�,t�� = exp�− �t� − t��/tc� �stationary noise� �39�

then decays exponentially over time, and tc is identical to the
coherence time.

For noise generated by a renewal process with power-law
waiting-time distributions, the subsequent analysis depends
on whether the process is characterized by a mean waiting
time �̄, or shows the nonstationary features of Lévy noise.
This bifurcation can be made explicit by realizing that Eq.
�37� is identical to the moment-generating function

M�z ; t� , t�� of the number of noise events, introduced in Eq.
�14�, which must be evaluated at the noise-strength-
dependent value z=−1 / tc. We therefore can immediately ex-
ploit the results of Sec. IIB. �Since we assume tc�1 we can
set ez−1�−1 / tc.�

It follows from Eq. �20� that, when the noise is asymp-
totically stationary ���1�, the decoherence factor retains its
exponential form,

D�t�,t�� � exp�− �t� − t��/�̄tc� �� � 1� . �40�

The effective coherence time �̄tc is directly proportional to
the mean waiting time of the noisy kicks and therefore in-
creases with decreasing exponent �. In particular, the effec-
tive coherence time becomes infinitely large when � drops
below unity. According to Eq. �23�, the functional form of
the decoherence factor then changes to

D�t,0� � E��− ��1 + ��N�t,0�/tc� �� � 1� . �41�

After a �typically short� transient, N�t ,0�� t� sin���� / ��c�.
Hence, we have the remarkable result that Lévy noise in-
duces a nonexponential loss of coherence which typically
starts out as a stretched exponential,

D�t,0� � exp�t�/���− ��ctc��, �initial decay� , �42�

and for large times crosses over to a power law,

D�t,0� � �ctc/��t−� �asymptotic decay� . �43�

The functional dependence of the decoherence factor can
thus be changed in a controlled manner by tuning the value
of the exponent �. We now explore how this affects the
observable properties of the kicked rotator.

IV. MOMENTUM SPREADING

In the atom-optical experiments, the momentum can be
observed by a time-of-flight measurement, where the kicking
sequence is terminated at a specified time t and the atom
cloud is allowed to expand ballistically to a much larger size.
A snapshot is then taken and the travel distance is converted
into the momentum. This technique provides direct access to
the complete momentum distribution P�p ; t� and has been
successfully applied in the recent experiments of Refs. �6–8�.

In the presence of dynamical localization, the momentum
distribution shows the exponential envelope of the atomic
wave functions in momentum space, while a Gaussian enve-
lope is expected when diffusive momentum spreading is in-
duced by stationary timing or amplitude noise. In order to
give an early indication of the effects of nonexponential de-
coherence, we compare in Fig. 3 the momentum distribution
of Lévy kicked rotators with asymptotically stationary and
nonstationary noise ��=2 and �=1 /2, respectively�. For �
=2, the strength of the noise is set to =1 /30 000, corre-
sponding to a decoherence time tc=12.3 t�. For t� tc the dis-
tribution function is well described by a double-sided expo-
nential function; when the time is increased it eventually
evolves into a Gaussian distribution. This follows the expec-
tations for conventional stationary noise. By contrast, for �
=1 /2, where a well-defined coherence time does not exist,
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FIG. 4. �Color online� Same as the left-hand panels in Fig. 3, but
for =1 /300 �tc=0.12 t��, so that t=15 t�� tc.
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the probability density keeps its double-sided exponential
shape at all times. This is the case even though we increased
the strength of the individual noise events by four orders of
magnitude to =1 /3, so that tc=0.00123 t� is much reduced.
This indicates that diffusive momentum spreading is never
attained, even in the limit of very strong noise events.

Figure 4 shows the momentum distribution at t=15 t� for
the more moderate noise strength =1 /300 �tc=0.12 t��
which is used in several subsequent figures in this work. For
�=2.0, the momentum distribution is always well approxi-
mated by a Gaussian, while for �=0.5 it is well approxi-
mated by a double-sided exponential function as soon as
t� t�.

We now proceed to characterize the evolution of the mo-
mentum distribution by two quantities, the variance var p
and the inverse participation ratio �IPR�.

A. Variance of momentum

The temporal evolution of the momentum distribution
P�p ; t� has two origins. The first component is the spreading
of the momentum wave function of an individual atom with
respect to the mean momentum of the atom. This momentum
spreading is characterized by the variance,

var p�t� = �p2� − �p�2. �44�

As indicated, this variance is computed from the quantum-
mechanical expectation values, and then averaged over the
noise. The second component of the evolution of the momen-
tum distribution is the spreading of the mean momenta of the
different atoms. Hence, in general, the variance �44� is
smaller than the total variance computed from the momen-

tum distribution P�p ; t�. In the particular case of the kicked
rotator, however, this difference becomes negligible, due to
the symmetry �� , p�→ �−� ,−p� which holds even in presence
of the noise.

In the following, we first establish a general relation be-
tween the variance of the momentum of the noise-free and
noisy systems, and then evaluate this relation for the Lévy
kicked rotator. We will then find that nonexponential deco-
herence manifests itself in a subdiffusive spreading of the
momentum.

As in the earlier theories of delocalization due to decoher-
ence �15�, the starting point of our considerations is the
force-force correlation function,

C�t�,t�� = �Kt�Kt� sin �t� sin �t�� , �45�

which is composed of the momentum increments in an indi-
vidual time step, as given by Eq. �2�. In the above equation,
�t is the angle operator in the Heisenberg picture. The aver-
age includes an average over the initial momentum of the
particle, so that the expectation value is replaced by the nor-
malized trace N−1 trN, where N is the Hilbert space dimen-
sion.

The total change of the momentum is obtained by inte-
grating the force over time. The variance therefore reads as

var p�t� = �
t�,t�=0

t−1

C�t�,t�� . �46�

In order to establish the relation to the decoherence factor,
the force-force correlation function is expanded in the basis
of quasienergy eigenstates �15�,

C�t�,t�� = �
�rn,sn�

��rt��sin ��st���st��sin ��rt��Kt�Kt� �
l,m=t�

t�−1

�rl�F�Kl��rl+1���sm+1�F�Km��sm� . �47�

The prime in the sum over quasienergy indices excludes the
initial index rt�, which originates from the normalized trace
and hence instead is averaged over.

We first apply the random-phase approximation to the ma-
trix elements of the sine kicking potential, which in principle
selects three types of terms: �i� Terms with rt�=rt�, st�=st�,
but rt��st�; �ii� terms with rt�=st�, rt�=st�, but rt��rt�; �iii�
terms with rt�=rt�=st�=st�.

The terms of type �ii� and �iii� involve the expectation
value of the force, which vanishes in the specific case of the
kicked rotator, thanks to the symmetry �� , p�→ �−� ,−p� �a
careful analysis of such terms will be required for the purity,
see Sec. V�. For the terms of type �i�, on the other hand, the
product of transition matrix elements �rl�F�Kl��rl+1� in
quasienergy space exactly arranges itself into the definition
of the decoherence factor �33�. This correspondence also

holds when C�t� , t�� is evaluated for t�� t�, provided we de-
fine D�t� , t��=D�t� , t��.

For t�= t�, the average over the noise also gives rise to a
contribution to the typical force acting on the particle of the
form Kt�

2 �sin �2�=K2 /2+ � /2�f�t��, where f�t� is the sprin-
kling distribution. Collecting all terms, we arrive at

C�t�,t�� = C0�t�,t��D�t�,t�� +


2
f�t���t�,t�, �48�

where C0�t� , t�� is the force-force correlation function in the
absence of noise. Besides the correction from the sprinkling
distribution, which is small for weak noise, this recovers the
result from the perturbative short-time theory in Ref. �15�. It
follows that the correct extrapolation of the decoherence fac-
tor beyond the initial decay is given by Eq. �38�.
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The variance of the momentum follows when Eq. �48� is
inserted into Eq. �46�. It is then convenient to pass to a con-
tinuous time argument and perform integrations by parts, so
that all force correlations are expressed in terms of the vari-
ance of the momentum in absence of the noise, which we
denote by var p0�t�. We then obtain as one of our main re-
sults the following expression:

var p�t� = var p0�t�D�t,0� +


2
N�t,0�

+ 	
0

t

ds var p0�t − s��sD�t,s�

− 	
0

t

ds var p0�s��sD�s,0�

− 	
0

t

ds�	
0

s�
ds� var p0�s� − s���s��s�D�s�,s�� .

�49�

The second term on the right-hand side can be neglected for
small noise strength . Equation �49� expresses the momen-
tum variance in presence of noise exclusively in terms of the
variance in absence of the noise, and derivatives of the de-
coherence factor D�t� , t��, which play the role of memory
kernels. Because of the monotonicity properties of D�t� , t��
all terms are positive. Since the result is expressed directly in
terms of var p0, Eq. �49� moreover accounts for all dynami-
cal correlations of the noiseless dynamics. In particular, the
random-phase approximation used in the derivation only re-
lies on the complex quantum dynamics of the noiseless sys-
tem, but does not require that it displays dynamical localiza-
tion.

In exploring the consequences of Eq. �49� for the kicked
rotator, we combine Eq. �5� for the momentum variance in
absence of the noise with the various decoherence factors
found in Sec. III. First, let us again make contact with the
known results for stationary noise, for which the decoher-
ence factor decays exponentially as given in Eq. �39�. The
corresponding momentum spreading is

var p =
D�

1 + tc/t�
t +

D�t�

�1 + t�/tc�2 �1 − exp�− t/t� − t/tc�� .

�50�

This result was first proposed in Ref. �15� as one of two
possible extrapolations of the perturbative short-time results,
and has been successfully applied to quantify the decoher-
ence process in the experiment of Ref. �7�. The present deri-
vation shows that the other proposed extrapolation indeed
was rightfully discarded. For large times, the second term
approaches a constant and can be neglected in comparison to
the first term, which increases linearly in time. Hence, for
stationary noise when quantum coherence is lost exponen-
tially, the momentum diffuses asymptotically with a renor-
malized diffusion constant D� / �1+ tc / t��.

In the presence of asymptotically stationary noise gener-
ated by a renewal process with ��1, the decoherence func-
tion is given by Eq. �40�, in which the coherence time is

modified by the mean waiting �̄. This does not induce any
qualitative change in the momentum spreading, which is still
diffusive according to a renormalized diffusion constant
D� / �1+ �̄tc / t��.

As � approaches unity from above, the decoherence time
increases, and the quantum diffusion constant vanishes at �
=1. It is clear that this must be accompanied by a qualitative
change of the momentum spreading itself. For ��1, the
asymptotic spreading is dominated by the last term in Eq.
�49�, which can be approximated as

var p�t� � − var p0���	
0

t

ds�	
0

s�
ds��s��s�D�s�,s��

=
D�t�

tc
N�t,0� . �51�

Using the power-law asymptotics �13� of the inverse random
time for ��1, we immediately find that the momentum
spreads subdiffusively,

var p�t� �
D�t�

tc

sin ��

�c
t�. �52�

The full time dependence of the momentum variance of Lévy
kicked rotators with asymptotically stationary or nonstation-
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FIG. 5. �Color online� Time dependence of the momentum
spreading var p�t� for kicked rotators which are subjected to Lévy
noise generated by a Yule-Simon distribution with noise exponent
�=2.0 �panel �a�� and �=0.5 �panel �b��. The results of numerical
computations �solid curves� are compared to the theoretical predic-
tion from Eq. �49� �dashed curves�. The straight solid line labeled
“classical” is the classical diffusion.
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ary noise is shown in Fig. 5. The upper panel shows the
results for �=2, for which the momentum spreading is dif-
fusive. The classical diffusion is attained for moderate noise
strength �1 /300. The lower panel shows the results for
�=1 /2, and confirms that in this case the spreading is sub-
diffusive, var p� t1/2. Note that this behavior persists even
when the strength of the individual noise events is large. The
theoretical predictions in the plots follow from Eq. �49�,
where var p0�t� is taken from Eq. �5�, while D�t� , t�� is de-
termined for Eq. �38� �i.e., the moment-generating function
of N�t� , t�� for the Yule-Simon distribution is evaluated at
z=−1 / tc=− /2
2�. There is good agreement between the nu-
merical results and the theoretical predictions.

B. Inverse participation ratio

In this section we study an alternative measure of the
momentum spreading, the inverse participation ratio �IPR�,
and show that this quantity also reveals the existence of two
distinct �exponential and nonexponential� decoherence re-
gimes. The inverse participation ratio is defined as

RIPR�t� = �
n

�	n�t��4, �53�

where 	n are the amplitudes of the wave function in a fixed
basis. The IPR can be interpreted as a measure for the in-
verse dimension of an effective Hilbert space explored by the
quantum dynamics. In general, the IPR is basis dependent. In
the following, we provide a quasiclassical estimate of the
IPR by introducing basis states which cover Planck cells of
area 2�
 in phase space and are centered at phase-space
positions ��n , pn�. This estimate turns out to be independent
of the details of the quasiclassical basis.

For a given time, the complex amplitudes 	n fluctuate as
n is varied, corresponding to speckle noise in the phase-
space position ��n , pn�. In order to quantify these fluctua-
tions, we introduce a phase-space function P��n , pn ; t� such
that the statistical average of the squared amplitude is

�	n�t��2 � 2�
P��n,pn;t� . �54�

By assuming that the real and imaginary parts of 	n are
Gaussian distributed and independent, we have

�	n�t��4 = 2�	n�t��2 2. �55�

In the quasiclassical approximation, the function P�� , p ; t� is
now identified with a smooth, properly normalized phase
space density with continuous variables � and p. By combin-
ing Eqs. �54� and �55�, the IPR can then be written in the
form

RIPR�t� =	 d� dp

2�

2�2�
P��,p;t��2. �56�

The above expression is invariant under canonical transfor-
mations of the phase-space variables and hence exhibits the
advertised independence of details of the quasiclassical basis.

In the Lévy kicked rotator, the quasiclassical probability
density becomes � independent after a short time, so that to a
good approximation P�� , p ; t�� P�p ; t� /2�. This leads to a
compact expression for the IPR,

RIPR�t� = 2
	 dpP2�p;t� . �57�

The integral in Eq. �57� can be calculated in two simple
cases: For a Gaussian profile, P�p ; t�= �2� var p�t��−1/2 exp
�−p2 /2 var p�t��, typical for diffusive spreading, we obtain

RIPR�t� =



� var p�t�
�Gaussian profile� . �58�

On the other hand, for a double-sided exponential probability
distribution, P�p ; t�= �� /2�exp�−��p�� with �=2 /var p, we
find

RIPR�t� =



2 var p�t�
�exponential profile� . �59�

Interestingly, in both Eqs. �58� and �59� the IPR is propor-
tional to 
 /var p�t�. In view of Eq. �52�, we hence expect
that the asymptotic decay of the IPR is a power law with
exponent −1 /2 for ��1, while for ��1 the exponent is
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FIG. 6. �Color online� Time dependence of the inverse partici-
pation ratio IPR for kicked rotators which are subjected to Lévy
noise generated by a Yule-Simon distribution with =1 /300. The
main panels are single logarithmic while the insets show the same
data in a double-logarithmic presentation. �a� Noise with exponent
�=2.0, corresponding to a decoherence time tc=0.12 t� �where t� is
the localization time� so that the momentum distribution P�p ; t� is
always well approximated by a Gaussian. The dashed line is the
quasiclassical prediction �58�. �b� Noise with exponent �=0.5,
where for t� t� the momentum distribution P�p ; t� is always well
approximated by a double-sided exponential function. The dashed
line is the quasiclassical prediction �59�.
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reduced to −� /2. These predictions are confirmed by the
numerical results shown in Fig. 6. We can therefore conclude
that the quasiclassical expressions �58� and �59� offer a good
quantitative estimate of the IPR of the Lévy kicked rotator.

V. PURITY AND FIDELITY

A convenient quantity to further elucidate the loss of co-
herence in a quantum-dynamical system is the fidelity
�22,23,34,35�,

F�t� = ��	�t��	��t���2, �60�

where the states 	�t� and 	��t� start out from the same initial
condition 	�0�=	��0�, but are propagated with different re-
alizations of the noise. An extensive review of the intricate
features of the fidelity can be found in Ref. �24�.

A remarkable property of the fidelity is that it can be
directly probed in an echo experiment �25�. In the latter, the
quantum state is first let to evolve up to a certain time t at
which the dynamics is reversed, e.g., by applying a pulse that
inverts the momentum �p→−p�. When at time 2t the
momentum-reverting pulse is applied again, the system ap-
proximately returns into its initial state. The fidelity charac-
terizes the quality of this echo, which is never perfect be-
cause of imperfections in the momentum-reverting pulse and
the noise in the dynamics. The destruction of phase coher-
ence in a quantum system such as the kicked rotator can
therefore be directly studied in echolike experiments. To our
knowledge such a measurement has not yet been performed

in kicked rotator experiments. However, recently several pro-
posals on how to measure the fidelity in atom-optical experi-
ments have been put forward �26–28�.

In the present section, we study various statistical aspects
of the fidelity for the case that its decay is induced by Lévy
noise.

A. Purity

The statistical average of the fidelity

F�t� = tr �2�t� �61�

is formally equivalent to the so-called purity of the statistical
mixture of the perturbed states, which is described by the
density operator

��t� = �	�t���	�t�� . �62�

The average is over the amplitude and timing noise gener-
ated by the renewal process. The initial state is fixed, so that
the purity starts at tr �2�0�=1. For completely incoherent su-
perpositions the purity tends to the value 1 /N, where N is the
Hilbert space dimension.

In the following, we show that the initial and intermediate
decay of the purity is directly related to the decoherence
function D�t�. For the long-time asymptotics, we moreover
establish a connection to the inverse participation ratio.

In the quasienergy basis, starting from Eq. �61�, the purity
can be expanded as

tr �2�t� = �
�rn,sn,rn�,sn��

� 	r0
	r0�

�
	s0

� 	s0� �
l,m,l�,m�=0

t−1

�rl+1�F�Kl��rl��rl�+1
� �F�Kl�

� ��rl�
� ���sm+1�F�Km��sm���sm�+1

� �F�Km�
� ��sm�

� � , �63�

where the prime in the sum denotes the constraint rt=rt�, st
=st�. Furthermore, 	r is the initial wave function, expanded
in the quasienergy eigenbasis, and the values Kl and Kl� are
obtained from independent realizations of the renewal pro-
cess, which differ both in the timing as well as in the detun-
ings of the noisy kicks.

We first apply the random-phase approximation to the ex-
pansion coefficients 	r, which selects three groups of terms:
�i� Terms with r0=r0�, s0=s0�, but r0�s0; �ii� terms with r0
=s0, r0�=s0�, but r0�r0�; �iii� terms with r0=r0�=s0=s0�.

For each class of terms, the random-phase averages over
the detunings and timing of the noisy kicks can be carried
out following the procedure which we applied to the deco-
herence factor and the survival probability in quasienergy
space, described in Sec. III. For the terms of group �i�, this
procedure selects only diagonal matrix elements with fixed
rn=rn��r, sn=sn��s, just as encountered for the decoherence
factor. Since we now deal with two independent renewal
processes, they deliver a factor exp�−N�t ,0� / tc
+N��t ,0� / tc� which depends on the sum of inverse random

times in the propagation of the two states. After averaging
over the timing noise of the two independent renewal pro-
cesses, these terms therefore deliver a factor D2�t ,0�.

Among the terms of group �ii�, the random-phase approxi-
mation requires to pair all amplitudes to probabilities, rn
=sn, rn�=sn�. In the calculation of the variance var p�t�, these
terms could be neglected because they were multiplied by
the vanishing expectation value of the detuned force. We
shall denote these contributions by Sr→s,cl�t ,0�.

Among the terms of group �iii�, both terms which are
completely diagonal �type �i�� as well as terms which are
paired to probabilities �type �ii�� survive. A neat separation of
these terms follows when we require that for r=s, the terms
are called of type �ii� when they contain at least one quasien-
ergy change. Appropriately attributing these terms to the
groups �i� and �ii�, the purity then takes the form

tr �2�t� = �
r,s

�	r�2�	s�2�D2�t,0� + Sr→s,cl�t,0�� , �64�

where the restriction r�s is now lifted.
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For the term proportional to D2�t ,0� we can now exploit
the normalization of the initial wave function. Looking at the
second term, it is easy to see that these contributions can be
neglected for short times t� tc, since per definition they con-
tain at least one quasienergy transition. The significance of
these terms becomes apparent when one reevaluates the pu-
rity for long times. For this we start from the general expres-
sion

tr �2�t� = �
nm

	n
��t�	n��t�	m�

��t�	m�t� , �65�

and adopt the quasiclassical basis in which we computed the
IPR �see Sec. IV B�. For large times t� tc it is reasonable to
assume that the relative phases of the wave-function expan-
sion coefficients 	n and 	n� in this basis are completely ran-
domized. Assuming furthermore �	n�2��	n��

2, we find that
tr �2�t� asymptotically approaches the IPR as defined in Eq.
�53�. The terms of group �ii� are therefore associated to the
eventual saturation of the purity at the inverse of the effec-
tive Hilbert space dimension. We hence arrive at our main
result for the purity,

tr �2�t� � D2�t,0� + RIPR�t� . �66�

The initial and intermediate decay of the purity is given by
the first term, which is simply the square of the decoherence
function D�t ,0�. For stationary noise the initial decay is thus
exponential, tr �2�t�=exp�−2t / tc�. A similar behavior is pre-
dicted for Lévy noise with ��1, for which tc replaced by
�̄tc. For nonstationary noise with ��1, Eq. �41� predicts that
the initial and intermediate decay shows the functional fea-
tures of the squared Mittag-Leffler function, i.e., a stretched
exponential which for later times crosses over to a power law
with exponent −2�.

The long time behavior of the purity is given by the satu-
ration at the inverse effective Hilbert space dimension, which
we estimate in terms of the inverse participation ratio. Ac-
cording to Eqs. �58� and �59�, this term is proportional to
�var p�t��−1/2. For ��1 the exponential decay therefore as-
ymptotically crosses over to a power-law decay with expo-
nent −1 /2. As discussed before, for ��1, D2�t� itself al-
ready crosses over from a stretched exponential to a power
law with exponent −2�. As a consequence of the subdiffu-
sive momentum spreading, this intermediate power law is
asymptotically replaced by a slower power law with expo-
nent −� /2.

As a function of the inverse random time N�0, t�, the
crossover to the asymptotic power law of the saturation
background sets in at N�0, t�� tc ln t�. For ��1, this condi-
tion translates into a well-defined crossover time t
� �̄tc ln t�. For ��1, however, the nonergodicity of Lévy
noise entails that the crossover is blurred.

The numerical results presented in Fig. 7 confirm the
quantitative and qualitative predictions of Eq. �66� for the
purity of the Lévy kicked rotator. For ��1 the initial decay
is exponential and the asymptotic decay is algebraic with
exponent −1 /2. The background contribution is here clearly
visible and displays the predicted power-law decay. For �
�1 the decay is a stretched exponential which crosses over
to an algebraic decay with exponent −2�. Because of this

significant slow down of the decoherence, the eventual cross-
over of the exponent to −� /2 is only observed in the numeri-
cal data for ��0.7; for smaller values of �, the background
contribution is hardly discernible.

B. Averaged logarithm of the fidelity

For a system with complex quantum dynamics such as the
kicked rotator, it is often observed that the fidelity fluctuates
significantly from realization to realization �34�, and from
Fig. 7 it is clear that this tendency is exacerbated for noner-
godic noise. These fluctuations are suppressed when one in-
stead considers the averaged logarithm ln F�t� of the fidelity.

By passing from the fidelity to its logarithm, the multipli-
cative suppression of coherence per noise event is converted
into additive contributions. For initial and intermediate
times, the averaged logarithm hence probes the mean number
of noise events in both noise realizations,

N�0,t� + N��0,t� = 2	
0

t

f�t��dt�, �67�

where f�t� is the sprinkling distribution. This leads to the
prediction

ln F�t� = −
2

tc
	

0

t

f�t��dt� �short and intermediate times� ,

�68�

while asymptotically a saturation background should set in
�we do not give an estimate of this background�.

The validity of this prediction is confirmed by the numeri-
cal results in Fig. 8, which shows the averaged logarithm in
a representation that makes it readily comparable to the re-
sults for the purity �Fig. 7�. There is good agreement for
small and intermediate time, until saturation sets in, which is
not incorporated in Eq. �68�. Two noteworthy observations in
the comparison to the purity are first the inequality
exp�ln F�� tr �2, and second the fact that the statistical fluc-
tuations are now distinctively suppressed. This indicates that
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FIG. 7. �Color online� Time dependence of the purity tr �2 of
Lévy kicked rotators for different noise exponents � and fixed noise
strength =1 /300. The results of numerical simulations �solid
curves� are compared to the theoretical predictions from Eq. �66�
�dashed curves�
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the logarithm of the fidelity probes typical noise realizations,
while the purity is influenced by rare noise realizations in
which coherence is exceptionally well preserved.

VI. DISCUSSION AND CONCLUSIONS

In this concluding section, we would like to situate our
work in the general context of the study of anomalous diffu-
sion and nonexponential relaxation. The investigation of dif-
fusion in complex environments enjoys a long history start-
ing with the seminal work of Scher and Montroll on
dispersive transport in amorphous semiconductors �36�. Sub-
sequently, extensive work on non-Brownian motion and non-
exponential decay induced by Lévy noise in space and/or in
time in classical systems has been carried out, most promi-
nently using the powerful continuous time random walk
�CTRW� formalism �for a review see Ref. �37��. In the last
few years, this line of research has been extended to quantum
systems. The main aspect of these developments is the pos-
sibility to study the interplay of complex dynamics and quan-
tum phenomena. Thus, the interaction with a composite en-
vironment with extra degrees of freedom, and the
entanglement of the quantum system with the latter, has for
instance been shown to lead to power-law decay �38�. The
relaxation of a quantum two-level system subjected to sta-
tionary and nonstationary power-law noise has been, respec-
tively, examined in Refs. �39,40�. In the latter work, the pres-
ence of aging dephasing has been demonstrated.
Additionally, anomalous fast decoherence induced by spatial
Lévy noise, stemming from a chaotic random-matrix envi-
ronment, has been investigated in Ref. �41�.

Our approach in the present work has been to use the
quantum kicked rotator as a powerful tool to explore deco-
herence and its interplay with complex quantum dynamics,
in particular, nonstationarity. The latter property is well
known from the physics of disordered or glassy materials
�42�. Taking advantage of the unique degree of tunability of
the atom-optical realization of the kicked rotator, we have
put forward a way to engineer a complex reservoir, providing

full control over the stationarity of the environment or the
absence thereof. Specifically, we have proposed to simulate
the coupling to a complex reservoir with the help of Lévy
noise with variable exponent. In this manner, we extend
usual quantum reservoir engineering in the spirit of the early
studies of anomalous diffusion in complex media based on
the random walk concept. The renewal process that we in-
vestigate can actually be regarded as corresponding to a
CTRW with power-law waiting time, but with a renormal-
ized diffusion range given by the localization length of the
kicked rotator.

It is appropriate to mention that anomalous diffusion has
been shown before to occur in quantum kicked rotators sub-
jected to deterministic aperiodic kicking. More precisely,
subballistic wave-packet spreading induced by quasiperiodic
Fibonacci kick sequences has been established both away
and at resonance �43,44�. The effect of Lévy noise at reso-
nance has also been the subject of a recent study �45�. An
important difference to the present study is the fact that these
studies do not consider the simultaneous presence of the pe-
riodic kicks in the intervals between the noise events. As a
consequence, the classical momentum dynamics for the qua-
siperiodically kicked systems is subdiffusive, and hence does
not differ qualitatively from the quantum dynamics. The pro-
tocol proposed in the present paper stipulates the presence of
such periodic kicks, which induce diffusive classical momen-
tum dynamics, while quantum mechanically they drive the
system toward localization. The ensuing qualitative differ-
ence between the noiseless quantum and classical dynamics
indeed provides the terrain in which we explore the conse-
quences of decoherence.

The theory of decoherence that we have developed in this
paper combines the properties of Lévy noise, encoded in the
generating function of the number of noisy events �14�, and a
random-phase approximation, which exploits the complex
quantum dynamics of the rotator appearing in the quasien-
ergy transition amplitudes �30�. It is worth emphasizing that
it is nonperturbative �with respect to time� and applies both
to stationary and nonstationary noise.

One of the central results of our paper, contained in Eq.
�41�, is the demonstration of a regime of nonexponential loss
of phase coherence when the noise is nonstationary �Lévy
exponent ��1�. This regime is characterized by an infinite
coherence time, indicating that classical behavior can never
be attained, even though the amplitude of the noise is dra-
matically increased by several orders of magnitude. This re-
markable property finds its origin in the divergence of the
mean waiting time between random kicks and hence in the
absence of a characteristic time scale in the engineered res-
ervoir.

The existence of a regime of slow decoherence has direct
consequence for experimentally accessible physical quanti-
ties of the kicked rotator. We have first shown that the mo-
mentum spreading �52� is subdiffusive and that the momen-
tum profile retains a double-sided exponential shape, see Fig.
3. These asymptotic features are in stark contrast to those in
the usual decoherence regime, here realized for Lévy expo-
nent ��1, which is characterized by normal diffusion and a
Gaussian profile. The momentum distribution is routinely
measured in kicked rotator experiments. In the atom-optical
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FIG. 8. �Color online� Averaged logarithm of the fidelity of
Lévy kicked rotators for different noise exponents � and fixed noise
strength =1 /300. The results of numerical simulations �solid
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experiments �6,7�, the variance of the momentum is acces-
sible up to times of the order of 10 break times t�, indicating
that the subdiffusive dynamics depicted in Fig. 5 is measur-
able with current setups.

Two other important quantities that we have considered
are the fidelity and the purity �or average fidelity�, which are
more traditional quantities for the characterization of deco-
herence. Here again we have found clear signatures of the
nonexponential decoherence regime. In Eq. �66� we have es-
tablished a direct connection between the purity on the one
hand and the decoherence factor and the inverse participation
on the other. As a consequence, we could show that for
��1 the decay of the purity evolves from a stretched expo-
nential to an algebraic decay, while ��1 the decay changes
from exponential to algebraic with exponent −1 /2 �see Fig.
8�. The fidelity can be directly measured in echo experi-
ments, see for example, Ref. �40�, and various measurement

schemes have been proposed for kicked rotator experiments
�26–28�. We also mention that we have found a direct rela-
tionship �68� between the averaged logarithm of the fidelity
and the sprinkling distribution of the renewal process.

Our concluding message is that reservoir engineering can
be extended to mimic the coupling to complex nonstationary
environments, allowing us to control in a precise manner the
loss of phase coherence and reveal hitherto unexplored de-
coherence scenarios.
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