
Relevance of Bell’s theorem as a signature of nonlocality: Case of classical
angular momentum distributions

A. Matzkin
Laboratoire de Spectrométrie Physique (CNRS Unité 5588), Université Joseph-Fourier Grenoble-1, Boîte Postale 87,

38402 Saint-Martin d’Hères, France
�Received 2 October 2007; revised manuscript received 19 March 2008; published 20 June 2008�

For a system composed of two particles, Bell’s theorem asserts that averages of physical quantities deter-
mined from local variables must conform to a family of inequalities. In this work we show that a classical
model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell
inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be
the analogs of quantum-mechanical angular momentum eigenstates. These distributions are then employed in
four schemes characterized by different types of detectors measuring the angular momenta. When the model
includes an interaction between the detector and the measured particle leading to ensemble dependencies, the
relevant Bell inequalities are violated if the total angular momentum is required to be conserved. The violation
is explained by identifying assumptions made in the derivation of Bell’s theorem that are not fulfilled by the
model, in particular noncommutativity of single-particle measurements. We discuss to what extent a violation
of these assumptions is a faithful marker of nonlocality.
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I. INTRODUCTION

Bell’s theorem was originally introduced �1,2� to examine
quantitatively the consequences of postulating hidden vari-
able distributions on the incompleteness of quantum mechan-
ics put forward by Einstein, Podolsky, and Rosen �3� �EPR�.
In particular, the hidden variables were supposed to locally
and causally complete quantum mechanics by making sense
of the “reality” of physical quantities described by noncom-
muting operators relative to two spatially separated particles
in an entangled state. Bell showed that a correlation function
obtained from averages over the hidden variables of these
physical quantities must satisfy certain inequalities �the Bell
inequalities�, and that these inequalities are violated by
quantum-mechanical averages. Given that experiments have
confirmed with increasing precision the correctness of the
quantum formalism, it is generally stated that the violation of
the Bell inequalities contradicts locality. The strong version
of such statements asserts that quantum mechanics itself is
nonlocal �4�. This vocable is quite popular �in particular
among nonspecialists as well as in quantum information pa-
pers� but there is a general agreement among most specialists
that this strong assertion is unsubstantiated �5–7�. Instead,
the received view is the weak version following which Bell’s
theorem asserts the incompatibility of local hidden variables
with quantum mechanics. Nevertheless, it can objected, in
principle �8,9� or through abstract models �10,11�, whether
the assumptions made in order to derive Bell’s theorem are
necessary in order to enforce locality, or whether they only
rule out a certain manner of ascribing local variables to the
measurement outcomes.

In this work we will show that statistical distributions in
classical mechanics can violate Bell-type inequalities. More-
over, the statistical distributions we will employ are not ex-
otic objects but the classical analogs of the quantum-
mechanical coupled angular momenta eigenstates, so that our
model is essentially the classical version of the paradigmatic

2-particles singlet state. The violation of the inequalities can
of course be achieved only provided the model falls outside
the assumptions necessary in order to prove Bell’s theorem.
This role will be played by a probabilistic interaction that is
assumed to take place between the measured particle and the
detector, combined with the requirement that the total angu-
lar momentum be conserved. Although this interaction is lo-
cal, it nevertheless spoils the derivation of Bell’s theorem,
because it introduces an ensemble dependency of the out-
comes: the resulting averages then involve correlations given
by conditional probabilities between ensembles rather than
between the individual phase-space positions. As a conse-
quence, the different expectation values employed in Bell’s
inequalities cannot be derived jointly, as required in the deri-
vation of the theorem.

The paper is organized as follows. We will start by intro-
ducing the classical phase-space distributions �Sec. II�, first
for a single particle, then for two particles with total zero
angular momentum. We will explain why these distributions
are the classical analogs of the quantum angular momentum
eigenstates. In Sec. III we will investigate three different
examples of Bell-type models. Each of the examples will be
characterized by the same phase-space distribution but by
differing detection schemes. In the first case, the projections
of the angular momentum of each of the particles along ar-
bitrary axes are directly measured by the detectors, leading to
a straightforward application of Bell’s theorem �which will
be briefly derived�. In the second example the detectors yield
discrete outcomes, depending on the values of the angular
momenta; this example, which also abides by Bell’s theorem,
will allow us to introduce conditional probabilities to ac-
count for the correlated angular momenta. The third example
will illustrate the same situation with stochastic variables
�the angular momenta specify probabilities of obtaining an
outcome�. In Sec. IV, we will introduce an example falling
outside the class of Bell-type models. This example will also
involve discrete measurement outcomes, but the presence of
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an interaction leading to ensemble dependencies will be in-
troduced. We will see that ensemble dependencies lead to
noncommutative measurements for a single particle, and to
the violation of the Bell inequalities for initially correlated
two-particle systems. In Sec. V we will discuss these results,
insisting on the role played by the existence of joint distri-
butions and on the relationship between locality and conser-
vation laws. A short summary and our conclusion are given
in Sec. VI.

II. CLASSICAL DISTRIBUTIONS ANALOGS OF
ANGULAR MOMENTA EIGENSTATES

A. One-particle angular momentum distributions

A quantum-mechanical angular momentum eigenstate
�j0m� is characterized by a well-defined value �j0�j0+1� of
the modulus of the angular momentum J and of its projection
Jz �of value m� along a given axis z. In configuration space
the spherical harmonic ��� ,� � j0m��2 gives the probability
distribution corresponding to a fixed value of J and Jz as �
and � �the polar and azimuthal angles� span the unit sphere.
The classical statistical distributions can be considered either
in phase-space, defined by �= 	� ,� , p� , p�
 where p� and p�

are the conjugate canonical momenta, or in configuration
space. Let us assume the modulus J of the angular momen-
tum is fixed. Let �z��� be the distribution in phase-space
given by

�z0
��,�,p�,p�� = N�„Jz��� − Jz0

…�„J2��� − J0
2
… . �1�

�z0
defines a distribution in which every particle has an an-

gular momentum with the same magnitude, namely J0, and
the same projection on the z axis Jz0

, without any additional
constraint. Hence �z0

can be considered as a classical analog
of the quantum-mechanical density matrix �j0m��j0m�. Equa-
tion �1� can be integrated over the conjugate momenta to
yield the configuration space distribution

���,�� = N�sin����J0
2 − Jz0

2 /sin2����−1, �2�

where we have used the defining relations Jz���= p� and
J2���= p�

2+ p�
2 /sin2 � to perform the integration. Further in-

tegrating over � and � and requiring the phase-space inte-
gration of � to be unity allows us to set the normalization
constant N=J0 /2�2.

��� ,�� gives the statistical distribution of the particles in
configuration space. Its standard graphical representation
�parametrization on the unit sphere� is shown in Fig. 1�a�
along with the quantum-mechanical orbital momentum
eigenstate �a spherical harmonic taken for the same values of
j and m� in Fig. 1�b�. The similarity of both figures is a
statement of the quantum-classical correspondence in the
semiclassical regime, since ���� ,�� is approximately the
amplitude of the configuration space quantum-mechanical
eigenstate for high quantum numbers. Note that rather than
working with the particle distributions in configuration
space, it will also be convenient to visualize the distribution
of the angular momentum in physical space corresponding to
a given particle distribution �see Fig. 1�c��; � and � will then

denote the position of J on the angular momentum sphere.
Let us take a second axis a making an angle �a relative to

the z axis �in this paper we will take all the axes to lie in the
zy plane�. We can define a distribution by fixing the projec-
tion Ja of the angular momentum on a to be constant, �a0
=��Ja−Ja0

���J−J0
2�. In configuration space, this distribution

may be shown to be obtained by rotating the distribution of
Eq. �2� by the angle �a toward the a axis. We will be inter-
ested below in determining the average projection Ja on the a
axis for a distribution of the type �2� corresponding to a well
defined value of Jz. Using Ja=Jz cos �a+Jy sin �a, Jz= p�,
and

�Jy�Jz0
=� J sin � sin � sin �a��p� − Jz0

�d� = 0 �3�

by rotational invariance, we obtain

�Ja�Jz0
=� p� cos �a��p� − Jz0

�d� = Jz0
cos �a. �4�

Note that a given J can belong jointly to several distributions
�a0

and �b0
�a and b being different directions�. But if we

require that any distribution must correspond to a well-
defined value of the angular momentum projection along a
given axis, then distributions such as �a0

and �b0
become

mutually exclusive. The ringlike distribution of the angular
momentum on the angular momentum sphere represented in
Fig. 1�c� �corresponding to the configuration space distribu-
tion shown in Fig. 1�a�� can be generalized to cover the
entire hemisphere centered on the z axis �see Fig. 3�a��. Then
properties such as J1a and J1b being of the same sign on such
hemispheres become mutually exclusive properties.

B. Two-particle angular momentum distributions

The situation we will consider below, by analogy with the
well-known EPR-Bohm pairs in quantum mechanics, is that
of the fragmentation of an initial particle with a total angular
momentum JT=0 into two particles carrying angular mo-
menta J1 and J2. Conservation of the total angular momen-
tum imposes J1=J2�J and

J1 + J2 = 0. �5�

Equation �5� implies a correlation, imposed initially at the
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FIG. 1. �Color online�. Normalized angular distribution for a
single particle in configuration space. �a� Classical distribution
��� ,�� of Eq. �2�. �b� Corresponding quantum distribution �spheri-
cal harmonic �YJM�� ,���2 with J /�=40, �=�, and M /J=5 /8 as in
�a��. �c� Distribution of the angular momentum on the sphere for a
distribution of the type ��� ,��, invariant around the z axis with a
fixed value of Jz.
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source, between the angular momenta of the two particles
and of their projections along any axis a: the knowledge of
the value of J1a allows us to infer the value of J2a, J2a=
−J1a. Without further constraints �or additional knowledge�,
the classical distribution in the two-particle phase-space is
given by

���1,�2� = N��J1 + J2���J1
2 − J2� , �6�

where N is again a normalization constant. The correspond-
ing distributions of the angular momenta in physical space—
easier to visualize than �—are uniform on the sphere, with J1
and J2 pointing in opposite directions �see Fig. 2�a��, reflect-
ing the isotropic character of the fragmentation as well as the
correlation �5�.

III. BELL-TYPE MODELS

A. Setting

The Bell inequalities are obtained by computing average
values of measurement outcomes performed independently
on each of the two particles. Three examples are studied
below, all involving the initial fragmentation of a particle
with zero angular momentum �Sec. II B�. In the first ex-
ample, we assume that the measurements give directly the
value of the projection of the angular momentum of each
particle along an arbitrarily chosen axis. In the second ex-
ample we introduce detectors having a threshold, resulting in
discrete measurement outcomes depending solely on the po-
sition of the particles’ angular momenta. The third example
is a repetition of the second but with stochastic variables.
Bell’s theorem, which is derived in Sec. III B, is verified in
all these cases. To alight the notation, we will choose units
such that J=1.

B. Bell’s theorem

1. Example 1: Direct measurement of the classical angular
momenta

Two particles with initial total angular momentum JT=0
flow apart. Let a and b be two axes in the zy plane. The
projection of particle 1’s angular momentum along the a
axis, J1a and that of particle 2 along b, J2b are measured. The
average of the joint measurement outcomes on the two par-
ticles is directly given by the values of J1a and J2b and the
probability distribution given by Eq. �6�. All these quantities
depend on the phase-space position of the particles, i.e., on
the position of the angular momenta on the sphere �see Fig.
2�a��. The average is computed from

�J1aJ2b� =� J1a��1�J2b��2����1,�2�d�1d�2. �7�

Given the rotational symmetry, z is chosen along a, hence
J1a= p�1

and

J2b = p�2
cos��b − �a� + 	J sin �2 sin �2 sin��b − �a�
 .

�8�

One first integrates over �2 �the term between 	¯
 van-
ishes�, then over p�2

�yielding p�2
=−p�1

because of the cor-
relation ��J1a+J2a��. The last nontrivial integration is over
p�1

,

�J1aJ2b� = �
−1

1

dp�1
− p�1

2 cos��b − �a�2�N� d�̃� , �9�

where d�̃ represents the variables remaining after the inte-
gration of the delta functions. Since � is normalized, we have

�
−1

1

dp�1
2�N� d�̃ = 1. �10�

Integrating Eq. �10� over p�1
allows us to obtain the value

between the �¯� in Eq. �9� thereby avoiding the explicit
calculation of the normalization constant. The result for the
expectation is

E�a,b� � �J1aJ2b� = −
1

3
cos��b − �a� . �11�

2. Derivation of the Bell inequality

The correlation function C�a ,b ,a� ,b�� involved in Bell’s
inequality is given by

C�a,b,a�,b�� = ��E�a,b� − E�a,b���

+ �E�a�,b� + E�a�,b����/Vmax
2 , �12�

where a� and b� are arbitrary axes in the xy plane and Vmax is
the maximal absolute value that can be obtained in a mea-
surement outcome. Let us denote by V1a��1�, V2b��2�, etc.,
the detected values along the relevant axes, with the two-
particle average being

a
bJ2

J1

(a) a
b

(b)

FIG. 2. �Color online�. �a� Uniform distribution of J1 and J2 on
the unit sphere; the angular momenta are correlated via the conser-
vation law �5� and must thus point in opposite directions. In the first
example �Sec. III B�, the detectors measure J1a and the correlated
J2b as the angular momenta span the sphere. �b� Example 2 �Sec.
III C�: Distribution of J2, when D1a=−1 /2 was obtained. A mea-
surement of D2b will yield 	1 /2 depending on the position of J2: if
J2 lies within the light shaded region �intersection of the two posi-
tive hemispheres centered on a and on b, denoted D�−1 /2,1 /2� in
the text�, D2b=1 /2 will be obtained, −1 /2 when J2 belongs to the
dark-shaded region �D�−1 /2,−1 /2��.
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E�a,b� =� V1a��1�V2b��2����1,�2�d�1d�2. �13�

The Bell inequality

C�a,b,a�,b�� 
 2 �14�

puts a bound on the value of the correlation function. It is
obtained �12� by forming the difference

E�a,b� − E�a,b�� =� V1a��1��V2b��2� − V2b���2��

����1,�2�d�1d�2, �15�

where V1a has been factored. Likewise,

E�a�,b� + E�a�,b�� =� V1a��V2b + V2b���d�1d�2.

�16�

We now use �V2��
Vmax ��=b ,b�� to derive

�V2b − V2b�� + �V2b + V2b�� 
 2Vmax. �17�

Take the absolute values and use �V1�
Vmax �=a ,a�� in
each of Eqs. �15� and �16� to obtain two inequalities. Adding
these inequalities and using Eq. �17� leads to the Bell in-
equality

�E�a,b� − E�a,b��� + �E�a�,b� + E�a�,b��� 
 2Vmax
2 .

�18�

In the present example, Vmax=1, and C�a ,b ,a� ,b�� is
bounded by 2�2 /3, so that the Bell inequality �14� is veri-
fied.

As a corollary, note that the factorization made in Eqs.
�15� and �16� is equivalent �13� to the existence of joint
distributions of the form

Faba�b� =� V1a��1�V2b��2�V1a���1�V2b���2�

����1,�2�d�1d�2. �19�

Indeed, Bell’s inequality can be proved �14� by adding and
subtracting Faba�b� from Eq. �15� and then factorizing V1aV2b
and V1aV2b�, respectively. The term Faba�b� is the average
obtained when four measurements are made—two outcomes
are obtained for each particle �particle 1’s V property is mea-
sured along the axes a and a� whereas particle 2 is measured
along the axes b and b��. The factorization, or equivalently
the existence of Faba�b�, is an important assumption in the
derivation of the inequalities.

3. Derivation in the stochastic case and joint distributions

In the stochastic case, a given phase-space position
��1 ,�2� does not determine a unique valued outcome
(V1a��1� ,V2b��2�) as above �corresponding to what is usu-
ally termed ”deterministic case”� but determines instead
well-defined probabilities p�V1a ,V2b ,�1 ,�2� of obtaining
�V1a ,V2b�. The counterpart of the factorization made in Eq.
�15� lies in the factorization of the probabilities,

p�V1a,V2b,�1,�2� = p�V1a,�1�p�V2b,�2� , �20�

where p�V1a ,�1� is the single-particle elementary probability
such that

P�V1a� =� p�V1a,�1����1�d�1. �21�

The expectation value �13� is then replaced by

E�a,b� =� V̄1a��1�V̄2b��2����1,�2�d�1d�2 �22�

with

V̄1a��1� = � V1ap�V1a,�1� , �23�

V̄2b��2� = � V2bp�V2b,�2� . �24�

The derivation leading to Eq. �18� proceeds as above by
replacing the value of the outcomes by their respective aver-

ages V̄1a and V̄2b. The factorization �20� allows us to obtain a
joint probability for an arbitrary number of events from the
elementary probabilities p�V ,��; the counterpart to Eq. �19�
is

Paba�b� =� p�V1a,�1�p�V2b,�2�p�V1a�,�1�

�p�V2b�,�2����1,�2�d�1d�2. �25�

Note that the existence of a joint probability Paba�b� �that
appears here as a consequence of the factorization �20�� leads
immediately to the inequality �18� irrespective of any other
assumption concerning the dependence of the outcomes or
probabilities on supplementary variables �here the phase-
space positions, the “hidden variables” in quantum mechan-
ics�. Indeed, using expressions of the type

E�a,b� = �
V1a,V2b

V1aV2b �
V1a�,V2b�

Paba�b� �26�

for the average values, we have

�E�a,b� − E�a,b��� 
 � Paba�b��V1a�V2b − V2b��� �27�

and an analog inequality for �E�a� ,b�+E�a� ,b���. Adding
both inequalities yields

�E�a,b� − E�a,b��� + �E�a�,b� + E�a�,b���


� Paba�b���V1a�V2b − V2b���

+ �V1a��V2b + V2b���� 
 2Vmax
2 , �28�

since the expression between �¯� is bounded by 2Vmax
2 and

the joint probability sums to 1.

C. Discrete outcomes

In this second example, we take over the setup of the first
example except for the measurement outcomes: we now as-
sume that a given detector placed on an axis can only give
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two values, depending on the sign of the angular momen-
tum’s projection. The outcomes are given by

D1a��1� = �
1

2
if J1a � 0

−
1

2
if J1a � 0� �29a�

D2b��2� = �
1

2
if J2b � 0

−
1

2
if J2b � 0� �29b�

and depend only on the positions J1 and J2 of the angular
momentum �hence on the phase-space position of the mea-
sured particles�. The average value

�D1aD2b� =� D1a��1�D2b��2����1,�2�d�1d�2 �30�

takes the form

�D1aD2b� = �
k,k�=−1/2

1/2

kk��
D�k,k��

�d�1d�2, �31�

where D�k ,k�� represents the domain of integration on which
the joint conditions sgn�J2a�=−sgn�J1a�=−sgn�k� and
sgn�J2b�=sgn�k�� hold �see Fig. 2�b��. The integral gives the
probability

Pkk� � P�D1a = k � D2b = k��

= P�D1a = k�P��D2b = k��D1a = k� , �32�

where P��D2b=k��D1a=k� is the probability of obtaining
D2b=k� conditioned on the knowledge that D1a=k. The con-
ditional probability appears because of the initial correlation
�5�—the positions of the angular momenta are not indepen-
dent. The conditional probability can more easily be deter-
mined on the angular momentum sphere by computing the
area where sgn�J2b�=sgn�k�� relative to the area of the hemi-
sphere where sgn�J2a�=−sgn�k� �of area 2��. This area is
given by the intersection of the two relevant hemispheres
�see Fig. 2�b��, i.e., a spherical lune whose area can be put
under the form 2�k�k−k��+4kk���b−�a�. Since � is uniform
on the sphere, we have P�D1a=k�=1 /2 from where

Pkk� = k�k − k�� +
2kk�

�
��b − �a� , �33�

and the average �D1aD2b� becomes

E�a,b� = −
1

4
+

��b − �a�
2�

. �34�

The maximal detected value here is Vmax=1 /2. The correla-
tion function is computed from Eq. �12� and it may be veri-
fied that C�a ,b ,a� ,b�� is bounded by 2: Bell’s inequality
�14� is again verified.

D. Discrete outcomes: a stochastic model

We now elaborate on the preceding example to give a
model in line with the stochastic version of Bell-type vari-
ables. A given position of the angular momentum of a par-
ticle in phase-space does not specify the outcome S, as in Eq.
�29�, but the probabilities p�S1a=k ,�1� of obtaining the out-
come k. For definiteness we will replace Eqs. �29� by

p�S1a =
1

2
,�1� = �

3

4
if J1a � 0

1

4
if J1a � 0� , �35a�

p�S2b =
1

2
,�2� = �

3

4
if J2b � 0

1

4
if J2b � 0� , �35b�

p�S1a = −
1

2
,�1� = �

1

4
if J1a � 0

3

4
if J1a � 0� �36a�

p�S2b = −
1

2
,�2� = �

1

4
if J2b � 0

3

4
if J2b � 0� . �36b�

The expectation value involves first averaging, for each
phase-space position, over the two possible outcomes, before
averaging over the distribution � of the angular momenta:

�S1aS2b� =� S̄1a��1�S̄2b��2����1,�2�d�1d�2 �37�

with �cf. Eqs. �22�–�24��

S̄1a��1� = �
k

kp�S1a = k,�1� , �38�

S̄2b��2� = �
k�

k�p�S2b = k�,�2� . �39�

Taking into account the correlation at the source �Eqs. �5�
and �6��, we proceed as in the preceding example, except that
now each probability Pkk� contains several contributions with
a weight given by p�S1a=k ,�1�p�S2b=k� ,�2� that depends,
through Eqs. �35� and �36�, on the domains D�	1 /2, 	1 /2�
over which sgn�J1a�= �1 and sgn�J2b�= 	1. For example
for k ,k�= 1

2 , we have
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P1/21/2 =
9

16
�

D�1/2,1/2�
�d�1d�2 +

3

16
�

D�1/2,−1/2�
�d�1d�2

+
1

16
�

D�−1/2,1/2�
�d�1d�2

+
3

16
�

D�−1/2,−1/2�
�d�1d�2; �40�

now each integral represents a probability P(sgn�J1a�
= �1�sgn�J2b�= 	1). Comparing with Eqs. �31� and �32�,
we see that in the stochastic case, the probabilities Pkk� de-
pend as in the preceding example on the areas on the angular
momentum sphere occupied by the individual positions of
each angular momentum compatible with the outcomes �al-
though in the stochastic case there are many more such areas,
each contributing with a given weight�. Overall, Eq. �37�
yields

�S1aS2b� = �
k,k�=−1/2

1/2

kk�Pkk� =
1

8
��b − �a

�
− 1� .

C�a ,a� ,b ,b�� is readily computed and is again, in line with
Bell’s theorem, bounded by 2.

IV. A DETECTION MODEL VIOLATING THE
INEQUALITIES

The fourth example has similarities and differences with
the models studied in Secs. III C and III D. A given detector
on an axis measures the angular momentum’s projection but
only delivers the outcomes 	1 /2. However, the outcomes
depend on a probabilistic random interaction between the
detected particle and the detector. This interaction has a spe-
cific property �it vanishes on average� that results in the in-
troduction of an ensemble dependency. We will see that this
feature combined with the conservation of the angular mo-
mentum between ensembles prevents the factorization that
was seen above to be necessary in order to derive Bell’s
theorem.

A. Particle-detector interaction for a single particle

1. Basic properties

Let �1��1� be the phase-space distribution for the single
particle 1 and R1a= 	1 /2 denote the outcome obtained by
placing a detector on the a axis. Let P�R1a=k ,�1� be the
probability of obtaining the reading k on the detector if the
statistical distribution of particle 1 �or equivalently, the dis-
tribution of J1� is known to be �1. We will impose the fol-
lowing constraint on the interaction: the average �J1a��1

over
phase-space of the measured value is the one obtained by
averaging over the measurement outcomes. This constraint
takes the form

�R1a��1
= �

k=−1/2

1/2

kP�R1a = k,�1� = �J1a��1
, �41�

meaning that whereas individual outcomes depend on the
interaction, on average the net effect of this interaction is

zero. The models leading to Eq. �41� are not unique—any
model verifying Eq. �41� and obeying �kP�R1a=k ,�1�=1
will do. Depending on the specific model, Eq. �41� will not
be verified for an arbitrarily chosen distribution �1; only a
class of distributions can be consistent within a given model.
In the present model, we will assume as in the previous
examples that �1 can only be a uniform distribution occupy-
ing one �or both� of the two hemispheres of the angular mo-
mentum sphere.

Let us examine for such distributions the consequences of
Eq. �41�. Assume that �1 corresponds to a uniform distribu-
tion of J1 on the positive hemisphere centered on the a axis,
to be denoted �1a+ �Fig. 3�a��. If a measurement is made
along the b axis, a direct computation of �J1b��1a+

gives

�R1b��1a+
= �

k

kP�R1b = k,�1a+� =
1

2
cos��b − �a� . �42�

If one measures R1a the average �42� becomes +1 /2, i.e., the
only positive detected outcome. Therefore since the prob-
abilities are positive, we must have

P�R1a = 1/2,�1a+� = 1, �43�

P�R1a = − 1/2,�1a+� = 0. �44�

Conversely if the distribution is �1a− �uniform on the lower
hemisphere� we obtain the opposite probabilities,

P�R1a = 1/2,�1a−� = 0, �45�

P�R1a = − 1/2,�1a−� = 1, �46�

and

a
b

(a)
b

+½

-½

a(b) a
b

(c)

FIG. 3. �Color online�. �a� The ensemble �1a+ for the single-
particle model described in Sec. IV A. Any J1 in this ensemble has
a positive projection J1a; measuring R1a gives the outcome +1 /2
with certainty, without changing the ensemble, since �1a+ is sym-
metric relative to the a axis and �J1a��1a+

=1 /2. �b� In the same
situation R1b is measured. Now the symmetry axis of the ensemble
�1a+ does not coincide with the b axis. Hence measuring R1b can
yield either +1 /2 or −1 /2 with probabilities proportional to
�H�	J1b�J1b��1a+

. The ensemble is modified during the measure-
ment, undergoing a rotation toward the positive or negative b axis
as indicated by the arrows. �c� The two-particle distribution after
R1a was measured and the outcome is known to have been R1a=
−1 /2, in which case particle 1 is described by the ensemble �1a−.
Conservation of the angular momentum then requires that particle 2
be described by �2a+, so that if R2a were measured, the outcome
+1 /2 would be obtained with certainty �Eq. �58��. If instead R2b is
measured, we have a single-particle problem for particle 2 identical
to the one portrayed in Fig. 2�b�.
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�R1b��1a−
= �

k

kP�J1b = k,�1a−� = −
1

2
cos��b − �a� . �47�

Note that Eq. �42� along with the normalization of the prob-
abilities uniquely determines the value of the probabilities,

P�R1b = 	
1

2
,�1a+� =

cos��b − �a� 	 1

2
, �48�

as well as the equality between the relative expectation value
corresponding to positive �respectively, negative� outcomes
R1b and the average of the angular momentum projection
over the regions where J1b is positive �respectively, nega-
tive�, i.e.,

	
1

2
P�R1b = 	

1

2
,�1a+� = �H�	J1b�J1b��1a+

, �49�

H denoting the unit-step function.
The main property of this particle–detector interaction

based model is that the detected result does not depend on a
phase-space point �or on a given individual position of the
particle’s angular momentum on the sphere�, be it through a
deterministic value ascription or through well-defined prob-
abilities. Indeed, if this were the case, then Eqs. �43�–�46�
would imply that

R1a��1� = 1/2 ⇔ J1a � 0 and R1a��1� = − 1/2 ⇔ J1a � 0,

�50�

as in the example studied in Sec. III D. But then assume that
R1b is measured and the ensemble is known to be �1a+ �uni-
form distribution on the positive hemisphere centered on the
a axis�. On the angular momentum sphere �1a+ can be seen
as being composed of the intersections with �1b+ and �1b−,
�1a+= ��1a+��1b+�� ��1a+��1b−�. The respective integration
domains are D�− 1

2 , 1
2 � and D�− 1

2 ,− 1
2 � �we use the notation

introduced in Sec. III C; see Fig. 2�b��. Hence

�R1b��1a+
=� R1b��1��1a+��1�d�1

=
1

2
�

D�−1/2,1/2�
�1b+��1�d�1

−
1

2
�

D�−1/2,−1/2�
�1b−��1�d�1, �51�

yielding �1−2��b−�a� /�� /2 in contradiction with the con-
straint �41� defining the model, �J1b��1a+

=cos��b−�a� /2.
We see therefore that the value ascription given by Eq.

�50� does not fit with the main property of the model �23�
The reason is that Eq. �41� introduces an ensemble depen-
dency on the model: the probabilities do not depend on the
phase-space position but on the ensemble, as if the particle’s
angular momentum effectively occupied an entire hemi-
sphere �physically, this may happen, for example, if the par-
ticle follows a stochastic motion with its angular momentum
constrained to remain in the ensemble, the time scale of the
measurement being significantly larger than the time scale of

the stochastic motion�. Equation �50� should thus be replaced
by

R1a��1� = 	 1/2 ⇔ J1a � 0 for every J1a � �1. �52�

2. Further considerations

Although this has no effect on the computations, it will be
convenient, in order to provide a physical interpretation, to
detail the consequences arising from the model. Equation
�52� associates an outcome R1a along an axis a with J1a
being of the same sign for every member of the hemispheric
ensemble �1a	 �see Fig. 3�a��. Since R1a= 	1 /2= �J1a��1a	

,
we can envisage that the random interaction occurring during
a measurement effectively changes the distribution of the
angular momentum: for instance, if initially the distribution
is on a given hemisphere, say �1a+, Eq. �52� is realized and
R1a=1 /2 is obtained with certainty, reflecting �J1a��1a+

. If R1b

is measured, the final distribution is �1b+ �respectively, �1b−�
if the outcome k=1 /2 �respectively, −1 /2� is obtained �see
Fig. 3�b��. The outcome thus appears as the average value of
the angular momentum projection in the post-measurement
distribution and Eq. �42� can be written as

�R1b��1a+
= �

k=	1
�J1b��1b�k�

P�R1b = k,�1a+� = �J1b��1a+
.

�53�

Note that this implies that consecutive measurements involv-
ing projections along different axes do not commute: the con-
dition �52� cannot be realized jointly along two different di-
rections, like the classical analogs of the angular momenta
eigenstates presented in Sec. II �24�. If the initial distribution
is �1a+ measuring R1b then R1a� entails that R1b is measured
over �1a+ but R1a� over �1b	 depending on the outcome R1b.
In the reverse order, R1a� is measured first, the average being
given by �J1a���1a+

and R1b then involves the values of J1b

over one of the distributions �1a�	. Equation �53� also allows
us to compute the change in the angular momentum projec-
tion due the measurement,

��J1b� � �J1b��1b�2k�
− �J1b��1a+

= − 2kP�R1b = k,�1a+� , k = 	
1

2
. �54�

Consider now the uniform distribution on the entire sphere
�1�. It can first be envisaged as the angular momentum oc-
cupying the upper or lower hemispheres along a definite di-
rection �say a� so that

�1� = ��1a+ + �1a−�/2. �55�

Since distributions in classical mechanics obey the principle
of linear superposition, �1� can also be taken as a sum of the
expressions given by Eq. �55� over different directions a.
Alternatively the angle a in Eq. �55� can be taken to vary in
time �then the measurement does not involve a change in the
distribution but rather a selection of the angular momenta
such that J1a�0 or J1a�0�, or J can be distributed on the
entire spherical surface �then the measurement induces a
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change in the distribution �1�→�1a	�. Only in these latter
cases is the distribution spherically symmetric; all these pos-
sibilities lead to the same probabilities and average values,
yielding P�R1a= 	1 /2,�1�

�=1 /2 for any axis a as well as a
vanishing average �41� as required.

B. Two-particle expectation

1. Distribution and conservation of the angular momentum

Before computing the two-particle averages and correla-
tion functions, we make explicit the initial distribution and
the conservation of the angular momentum for the model.
We have seen that the defining property Eq. �41� implied that
value ascription depended on distributions �taken to be en-
sembles on given hemispheres� and not on individual phase-
space positions. The two-particle distribution given above by
Eq. �6� is �i� spherically symmetric and �ii� anticorrelates the
individual positions of the angular-momenta J2=−J1, so that
we have J2a=−J1a for projections along arbitrary axes a on
the sphere. We require the extension of these two properties
so that they hold over the initial distribution, to be denoted
by ��. We must thus have for any of the two particles i and
axis direction a

�Ria���
= �Jia���

= 0, �56�

so that both outcomes Ria= 	1 /2 can be obtained with equal
probability. The correlation between the outcomes for the
two particles is obtained by applying Eq. �49� to ��, giving

�H�J2a�J2a���
= �H�− J1a�J1a���

. �57�

By Eq. �53� we have R1a= �J1a��1	a
so that by way of Eq.

�57� the anticorrelation J2a=−J1a implies that the outcomes
and the distributions for the particles along the same axis are
anticorrelated,

�J2a��2a�
� R2a = − R1a � − �J1a��1a	

. �58�

Equations �56�–�58� hold for any arbitrary axis a. The anti-
correlation for the measurement outcomes, based on the con-
servation of the angular momentum over the ensembles, im-
plies anticorrelations between these ensembles. Measuring
R1a links the outcome to one of the two ensembles �1a	

depending on whether R1a= 	1 /2. In turn, this also fixes
�2=�2a�. Note that contrary to the correlation between indi-
vidual phase-space positions �for which one has J2a=−J1a
and J2b=−J1b jointly for any axes a and b�, Eq. �58� cannot
hold jointly along several directions. This is a consequence
of Eq. �52� not holding simultaneously along several axes.

There are different possibilities for choosing explicit real-
izations of ��: all these possibilities lead to the same results
and all hinge on the conservation of the total angular mo-
mentum along an arbitrary axis demanded by Eq. �58�. For
example, �� can be taken as proportional to �1b+�2b−
+�1b−�2b+. Equation �58� is then ensured provided the
change in the angular momentum �54� after the first measure-
ment is taken into account in the angular momentum balance
for the other particle. Alternatively as in Eq. �55�, b can be
taken as varying in time, giving

�� =
1

2
��1b�t�+�2b�t�− + �1b�t�−�2b�t�+� . �59�

As for the single-particle distribution �1�, measuring R1a
then selects the individual positions of J1a such that J1a�0,
correlated with the individual positions J2a�0. Another pos-
sibility for �� would be to take the distribution �6� and con-
sider R1a as inducing a change in the distribution ��→�1a	.

2. Computation of the correlation

Since the measurement outcomes do not depend on the
individual phase-space positions, the average E�a ,b�
��R1aR2b���

cannot be obtained as in the preceding example
from the phase-space averages �30� and �31�, but from the
probabilities of detecting a given outcome as a function of
the distribution. E�a ,b� is computed from the general for-
mula, also employed in Sec. III C,

�R1aR2b���
= �

k,k�=−1/2

1/2

kk�Pkk�, �60�

where as in Eq. �32� Pkk� is given by

Pkk� = P�R1a = k � R2b = k�,���

= P�R1a = k�P�R2b = k��R1a = k� �61�

and the two particle expectation takes the form

�R1aR2b���
= �

k=−1/2

1/2

kP�R1a = k�� �
k�=−1/2

1/2

k�P�R2b = k��R1a = k�� .

�62�

For any particle i and direction a, we have

P�Ria = 	 1/2,��� = 1/2. �63�

The conditional probability P��R2b=k��R1a=k� is, as in the
example involving discrete outcomes studied above in Sec.
III C, the probability of obtaining R2b=k� if it is known that
R1a=k. But we have just seen that obtaining an outcome
R1a=k is linked to the respective densities �1a�sgn�k�� and
�2a�sgn�−k��. The conditional probability is therefore given by

P��R2b = k��R1a = k� = P�R2b = k�,�2a�sgn�−k��� , �64�

which is a single-particle probability of the type given by Eq.
�48�. Note that in order to compute the expectation value, we
do not need to know the values of these individual probabili-
ties, as the knowledge of the conditional expectation—the
expression between brackets in Eq. �62�—is sufficient. The
two-particle conditional expectation is given by the single-
particle average �J2b��2a�sign�−k��

whose expression was deter-
mined above �Eqs. �41�, �42�, and �47��. We can rewrite the
average in the form

�
k�=−1/2

1/2

k�P��R2b = k��R1a = k� = − k cos��b − �a� . �65�

We can now compute the expectation E�a ,b���R1aR2b�
from Eqs. �62� and �65�. The result is easily seen to be
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E�a,b� = −
1

4
cos��b − �a� . �66�

In the present derivation, we have assumed that the knowl-
edge of particle 1’s outcome was obtained first, hence the
appearance of the conditional probability regarding the out-
comes of particle 2. But obviously by Bayes’ theorem the
result is the same if we assume instead that R2b is known
first, and the conditional probability then concerns the com-
putation of the outcomes of particle 1 �15�.

The correlation function C�a ,b ,a� ,b�� is again given by
Eq. �12� with Vmax=1 /2. C�a ,b ,a� ,b�� violates the Bell in-
equality �14� for a wide range of values, the maximal viola-
tion being obtained for C�0, �

4 , �
2 , 3�

4 �=2�2. This correlation
function, with E�a ,b� given by Eq. �66�, is familiar from
quantum mechanics—it is precisely the correlation obtained
for the two particles with spin 1/2 in the singlet state. It was
shown in this case that Eq. �66� can be seen as a consequence
of a particular correlation between vectors whose projection
is conserved on average �15,16�.

V. DISCUSSION

A. Ensemble dependence

We have seen in our fourth example �Sec. IV� that corre-
lation functions obtained from two-particle distributions in
classical mechanics can lead to a violation of the Bell in-
equalities, without nonlocality being explicitly involved �it
may play an implicit role, see Sec. V C below�. The main
difference between this model and the other examples we
have given consists in the ensemble dependencies: probabili-
ties, average values, and conservation laws are relative to a
collective property �a given distribution� and do not depend,
as in the other cases, on the individual phase-space positions.
Indeed, the constraint �41� cuts the link between a definite
phase-space position of a particle and a given measurement
outcome �be it in a probabilistic or deterministic way�.

In this respect, it is noteworthy to compare the interpreta-
tion of the conditional probabilities appearing in examples 2
�Sec. III C� and 4 �Sec. IV�. In both cases P��V2b=k��V1a
=k� is grounded on the correlation �5� and represents the
probability of obtaining V2b=k� given the knowledge that
V1a=k. In both cases the distribution of J2 is modified once
the outcome V1a=k is known �25� �it changes from a uniform
distribution on the sphere to a uniform distribution on the
positive or negative hemisphere centered on a, depending on
k�. However, in example 2 the probabilities depend on the
individual phase-space positions of the particles: although it
may be unknown in practice, J1 has in principle a definite
position that determines V1a=k, and to this position corre-
sponds the definite position J2=−J1 that will determine the
outcome V2b; so the conditional probability is computed by
finding the individual positions of J2 such that V2b=k� com-
patible with the positions of J1 imposed by V1a=k �namely
J1a�0�. In example 4 an outcome V1a=k cannot be linked in
principle to an individual position of J1 and thus we can only
infer from the outcome the ensemble to which J1 must be-
long; then from the conservation law we know the distribu-
tion for J2, which allows us to compute P��V2b=k��V1a=k�

from the probability P�R2b=k� ,�2a�sgn�−k���. Hence we can
only correlate observable outcomes with ensembles, not with
individual positions of the angular momenta. Assuming that
a given phase-space position determines probabilities, as in
the stochastic model of Sec. III D, only brings in several
combinations of possible outcomes allowed by the definite
positions of J1 and J2=−J1 on the angular momentum
sphere, but still allows us to correlate these individual posi-
tions with measurement outcomes.

B. Joint distributions and noncommutative measurements

We had remarked in Sec. III B that the existence of a joint
probability Paba�b� is sufficient to ensure that a Bell-type in-
equality holds, irrespective of whether the assumption that
measurement outcomes and probabilities depend on the indi-
vidual phase–space positions is made. But if that specific
assumption is made, then one is led to the existence of a joint
probability by imposing the factorization �20�. Along these
lines, there are two ways of seeing why Bell’s theorem does
not apply to our fourth example.

First, the ensemble dependence can formally be thought
of as arising from elementary phase-space probability func-
tions specific to a given ensemble, i.e.,

P�R1a = k,�1� =� p��1;�1��1��1�d�1 �67�

�compare with Eq. �21��. By employing expressions such as
Eq. �67� in the expectation value as given by Eqs. �60� and
�61�, it can be seen directly that the ensemble dependence of
the elementary probabilities spoils the factorization �20�—
for example, instead of p��2�, one has outcome dependent
expressions such as p(�2 ;�2�R1a�) �15�.

The second manner starts with the remark made above
concerning the noncommutation of the R measurements in-
troduced in our model; in classical mechanics, measurements
usually commute, but this is not the case if they arise from
collective phenomena �encapsulated in the ensemble depen-
dency�. By requiring that the angular momentum be con-
served between ensembles �just as it is when individual
positions are considered�, the consequences of the noncom-
mutation are carried over from one particle to the other. As
seen in Sec. IV A 2 in the single-particle case, the probabili-
ties and outcomes when R1b is measured after a first mea-
surement is made will be different depending on whether R1a
or R1a� was measured first. Because Eq. �58� links the out-
comes with the ensembles, this is also the case in the two-
particle problem when R2b �or R2b�� is determined after R1a

or R1a� were measured. Put differently, although Eq. �58�
holds for the a, a�, b, and b� axes, it cannot hold jointly for
all the axes because the single-particle ensembles �1a	 and
�1a�	 are mutually exclusive, as well as �2b	 and �2b�	 �see
Secs. II and IV A 2�. Hence a joint probability Paba�b� cannot
be defined and the model is not constrained by the inequality
�28�. This is consistent with the equivalence �13,17� shown
between the verification of Bell’s inequality and the commu-
tation of the four observables entering Eq. �19�. The en-
semble dependence introduced in our model appears as a tool
in order to enforce, in a classical context, the noncommuta-
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tion of the measurements along different axes made on the
same particle.

C. Conservation laws and locality

Factorization, enforcing the existence of joint distribu-
tions, and as such a necessary assumption in the derivation of
Bell’s theorem, is usually argued to be intimately linked to
locality. According to Bell �18�, factorization is a conse-
quence of local causality, given that spacelike separated
events can only have common causes in their backward light
cone: therefore the probability of obtaining a certain result in
an event regarding one of the particles cannot depend on
what has been measured on the other. It is known, however,
that factorization can be seen �19,20� as a consequence of
two separate conditions, outcome independence �the condi-
tional probability of one event does not depend on the out-
come obtained in the other event� and parameter indepen-
dence �dependence on the measurement direction of the
other event�. Only the violation of outcome independence
can result in a genuine violation of local causality �it would
permit superluminal signaling�, whereas the violation of pa-
rameter independence allows a “peaceful coexistence” �20�
between local causality and other types of correlations pre-
venting the factorization.

The present model—like typical quantum-mechanical en-
tangled systems—respects parameter independence �Eq.
�63�� but violates outcome independence �Eq. �64�� �the de-
pendencies here must be understood relative to the en-
sembles and not relative to the individual positions of the
angular momenta�. This outcome dependence of the condi-
tional probabilities is due to the conservation of the angular
momentum, as encapsulated by J2=−J1 �anticorrelation be-
tween individual positions�, Eq. �57� �correlation between
ensembles occupying opposite hemispheres centered on the
same arbitrary axis� and Eq. �58� �anticorrelation between
the outcomes made on the same arbitrary axis�. Parameter
independence on the other hand guarantees that the predic-
tions relative to R1a do not depend on what measurement or
whether a measurement is carried out on particle 2, and vice
versa �Eq. �63��. It is clear, nevertheless, that the angular
momentum conservation affects the distributions of both par-
ticles. For example, if �� is given by Eq. �59�, made up from
rotating distributions, measuring R1a not only freezes the ro-
tation of particle 1’s distribution, but also that of particle 2
�precisely because the angular momenta are correlated and
need to be conserved�. If instead �� is taken as a uniform
distribution on the sphere for the individually anticorrelated
angular momenta, measuring R1a changes the distribution
�1�→�1a	 but also �2�→�2a�. Hence it can be argued that
the conservation of the angular momentum as implemented
in our model actually results from an implicit implementa-
tion of nonlocality. There are several answers to this ques-
tion, depending on the status one gives to conservation laws
and ensemble distributions, or on how nonlocality or causal-
ity are defined. The three following positions can be singled
out:

�i� The changes in the distributions are real physical ef-
fects, but the conservation of the angular momentum results

from a symmetry that is intrinsically linked to space-time.
Indeed the correlation �58� arises by generalizing the angular
momentum conservation for individual positions to en-
sembles accounting for noncommutative measurements.
There is no need to invoke a specific mechanism for a con-
servation law—conservation laws and symmetry principles
are just postulated. But if desired, a field can be can be as-
cribed the role of transporting the angular momentum; in this
respect, it may be useful to make the analogy with Feyn-
man’s paradox in which mechanical angular momentum is
transmitted between two charged particles through the elec-
tromagnetic field �21�.

�ii� The changes in the distributions are real physical ef-
fects due to a nonlocal form of causation. The requirement
given by Eq. �58� is sufficient to imply nonlocality. Action at
a distance effects are quite common in nonrelativistic classi-
cal mechanics, although the modern view is to ascribe such
effects �like gravity or several phenomena in electrostatics�
to the action of fields. Here the nonlocal effect would consist
in accounting for angular momentum conservation. This does
not necessarily contradict the preceding position since it can
be argued that symmetries can give rise to nonlocality, a
position leading to a holistic vision of symmetries as holding
beyond a space-time framework.

�iii� The changes in the distributions are not physical ef-
fects: one must distinguish the observed frequencies �which
are measured� from the calculus of probabilities �whose role
is to make logical inferences given a certain state of infor-
mation �22��. Conditional probabilities do not therefore ex-
press causation and the factorization of the probabilities does
not follow from the requirement of local causality. In Bell’s
term, the variables entering the probabilities are not beables,
an argument that may be supported by the fact that individual
angular momenta positions do not ascribe values and that the
status of ensembles as beables is questionable; moreover,
these correlations cannot be employed to communicate �no
signaling guaranteed by parameter independence�. The en-
sembles and their correlations are theoretical constructs en-
capsulating the state of knowledge we have of the situation,
including the constraints �like conservation laws�.

VI. CONCLUSION

To summarize, we have first constructed classical distri-
butions analogs of the quantum-mechanical angular momen-
tum eigenstates; these classical distributions are character-
ized by being mutually exclusive, leading, with appropriate
assumptions to noncommutative measurements. We have
then derived Bell’s theorem in the deterministic and stochas-
tic cases; both cases are characterized by the fact that an
individual position of the angular momentum ascribes a
value �with certainty or with a given probability� to a mea-
surement of the projection along any axis. As a result, a joint
probability distribution for an arbitrary number of events can
be defined. Three different examples of Bell-type models
were studied. A non-Bell-type model was introduced in Sec.
IV: in this model, individual positions of the angular mo-
menta are irrelevant to determine the measurement out-
comes, that only depend on ensembles. As a result, single-
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particle measurements do not commute, and a distribution
for joint measurements along different axes cannot be de-
fined. If it is further assumed that the total angular momen-
tum must be conserved, the Bell inequalities are violated.

The present results do not disprove Bell’s theorem—as we
have seen, in these circumstances the assumptions made in
the derivation of the theorem are not fulfilled. We have ar-
gued that the violation of the inequalities in our classical

model is due to the conservation of the total angular momen-
tum in the context of noncommutative measurements; non-
locality does not need to be invoked �although it may�. From
this perspective, the violation of the Bell inequalities would
not necessarily constitute a marker of nonlocality. It still re-
mains to be investigated what type of collective or individual
phenomena are compatible with the type of model intro-
duced in this work.
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