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We describe a three-dimensional geometry in which both attractive and repulsive Casimir forces arise using
ordinary metallic materials, as computed via an exact numerical method �no uncontrolled approximations�. The
geometry consists of a zipperlike, glide-symmetric structure formed of interleaved metal brackets attached to
parallel plates—because of the interleaving pattern, a net repulsive force can arise from a combination of
attractive interactions. Depending on the separation, the perpendicular force between the plates and brackets
varies from attractive �large separations� to repulsive �intermediate distances� and back to attractive �close
separations�, with one point of stable equilibrium in the perpendicular direction. This geometry was motivated
by a simple intuition of attractive interactions between surfaces, and so we also consider how a rough
proximity-force approximation of pairwise attractions compares to the exact calculations.
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I. INTRODUCTION

We describe a metallic, glide-symmetric, “Casimir zip-
per” structure �depicted in Fig. 1� in which both repulsive
and attractive Casimir forces arise, including a point of
stable equilibrium with respect to perpendicular displace-
ments. Here, the forces are “repulsive” in the sense that they
act to separate the two structures, but in some sense they are
a combination of attractive interactions as discussed below.
We compute the force using an “exact” computational
method �i.e., with no uncontrolled approximations, so that it
yields arbitrary accuracy given sufficient computational re-
sources�, and compare these results to the predictions of an
ad-hoc attractive interaction based on the proximity-force
approximation �PFA�. Casimir forces, a result of quantum
vacuum fluctuations, arise between uncharged objects, most
typically as an attractive force between parallel metal plates
�1� that has been confirmed experimentally �2,3�. One inter-
esting question has been whether the Casimir force can
manifest itself in ways very different from this monotoni-
cally decaying attractive force, and especially under what
circumstances the force can become repulsive. It has been
proven that the Casimir force is always attractive in a mirror-
symmetric geometry of dielectric materials with ��1 on the
imaginary-frequency axis �4�, but there remains the possibil-
ity of repulsive forces in asymmetric structures and/or with
different materials. For example, repulsive forces arise in
exotic asymmetric material systems, such as a combination
of magnetic and electric materials �5–7� �with some sugges-
tions of metamaterials as route to realization �8–10��, fluid-
separated dielectric plates �11�, and possibly also in metama-
terials with gain �8� or for excited atoms �12� �although this
result of Ref. �8� is problematic because the Lifshitz formula
may not be applicable to excited �12� or amplifying �10–13�
media�. Another route to unusual Casimir phenomena is to
use conventional materials in complex geometries, which
have been shown to enable asymmetrical lateral �14� or
“ratchet” effects �15,16� and nonmonotonic dependencies on
external parameters �17�. Both of the previous lateral effects
�14,15� and the repulsive interaction described here intu-

itively arise from competing attractive contributions to the
net force. The basic idea of using geometry to enable unusual
Casimir phenomena provides an interesting supplement to
the materials approach and could be useful in the design of
experiments and technology involving the Casimir effect.
Until recently, however, predictions of Casimir forces in ge-
ometries very different from parallel plates have been ham-
pered by the lack of theoretical tools capable of describing
arbitrary geometries, but this difficulty has been addressed
�in principle� by recent numerical methods �18–21�. Here,
we use a technique based on the mean Maxwell stress tensor
computed numerically via an imaginary-frequency Green’s
function, which can handle arbitrary geometries and materi-
als �18�.

The geometry that we consider is depicted schematically
in Fig. 1: We have two periodic sequences of metal “brack-
ets” attached to parallel metal plates, which are brought into
close proximity in an interlocking “zipper” fashion. In Fig. 1,
we have colored the two plates and brackets red and blue to
distinguish them, but they are made of the same metallic
material. This structure is not mirror symmetric �and in fact
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FIG. 1. �Color online� Three-dimensional schematic of the Ca-
simir “zipper” geometry of interlocking metal brackets �shown in
different colors for illustration only�, along with a two-dimensional
xy cross section. The dashed lines extruding from the plates to the
squares indicate their out-of-plane connectivity.
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is glide symmetric, although the glide symmetry is not cru-
cial�, so it is not required to have an attractive Casimir force
by Ref. �4�. Furthermore, the structure is connected and the
objects can be separated via a rigid motion parallel to the
force �a consideration that excludes interlocking “hooks” and
other geometries that trivially give repulsive forces�. This
structure is best understood by considering its two-
dimensional cross section, shown in Fig. 1 �right-hand side�
for the middle of the brackets: In this cross section, each
bracket appears as an s�s square whose connection to the
adjacent plate occurs out-of-plane. �Here, the brackets are
repeated in each plate with period �=2s+2h and are sepa-
rated from the plates by a distance d. The plates are sepa-
rated by a distance 2d+s+a, so that a=0 is the point where
the brackets are exactly aligned.� The motivation for this
geometry is an intuitive picture of the Casimir force as an
attractive interaction between surfaces. When the plates are
far apart and the brackets are not interlocking, the force
should be the ordinary attractive one. As the plates move
closer together, the force is initially dominated by the attrac-
tions between adjacent bracket squares, and as these squares
move past one another �a�0 in Fig. 1�, one might hope that
their attraction leads to a net repulsive force pushing the
plates apart. Finally, as the plates move even closer together,
the force should be dominated by the interactions between
the brackets and the opposite plate, causing the force to
switch back to an attractive one. This intuition must be con-
firmed by an exact numerical calculation, however, because
actual Casimir forces are not two-body attractions, are not
generally additive, and can sometimes exhibit qualitatively
different behaviors than a two-body model might predict
�5,17,22,23�. Such a computation of the total force per unit
area is shown in Fig. 2, and demonstrates precisely the ex-
pected sign changes in the force for the three separation re-
gimes. These results are discussed in greater detail below.

Previous theoretical studies of Casimir forces in geom-
etries with strong curvature have considered a variety of ob-
jects and shapes. Forces between isolated spheres �21� and
isolated cylinders �24�, or between a single sphere �25�, or
cylinder �20,25� and a metal plate, all exhibit attractive
forces that decrease monotonically with separation. When a
pair of squares �17� or cylinders �24� interacts in the presence
of two adjacent metal sidewalls, the force is still attractive
and monotonic in the square-square or cylinder-cylinder
separation, but is a nonmonotonic function of the sidewall
separation. When two corrugated surfaces are brought to-
gether in a way that breaks mirror symmetry �i.e., the corru-
gations are not aligned between the two surfaces�, a lateral
force can arise �26,27�, and an asymmetric lateral force from
asymmetric corrugations can lead to a “ratchet” effect in
which random forces preferentially displace the plates in one
direction �15�. Such a lateral force has also been observed
experimentally �28�. In the geometry of Fig. 1, in contrast,
there is no lateral force �due to a mirror-symmetry plane
perpendicular to the plates�, and hence we consider only the
normal force between the plates. Because of the strong cur-
vature of the surfaces relative to their separations, simple
parallel-plate approximations are not valid �although we con-
sider their qualitative accuracy below�, and the force must be
computed numerically.

II. NUMERICAL RESULTS

The numerical method we employ is based on integration
of the mean stress tensor, evaluated in terms of the
imaginary-frequency Green’s function via the fluctuation-
dissipation theorem �18�. The Green’s function can be evalu-
ated by a variety of techniques, but here we use a simple
finite-difference frequency-domain method �18,29� that has
the advantage of being very general and simple to implement
at the expense of computational efficiency. In particular, the
computation involves repeated evaluation of the electromag-
netic Green’s function, integrated over imaginary frequency
w=−i� and a surface around the object of interest. The
Green’s function is simply the inverse of a linear operator
����� +w2��iw ,r��, which here is discretized using a
finite-difference Yee grid �29� and inverted using the
conjugate-gradient method �30�. In order to simplify the cal-
culations, we assume the length of the brackets in the z di-
rection L to be sufficiently long to make their contributions
to the force negligible �we estimate the minimum length be-
low�. We can therefore describe the geometry as both z in-
variant and y periodic �with period ��. This implies that it is
only necessary to compute the Green’s function using an xy
unit cell, with the periodic and invariant directions handled
by integrating over the corresponding wave vectors �18�.
Furthermore, we approximate the bracket and plate materials
by perfect metals, valid in the limit of small length scales
�which are dominated by long-wavelength contributions
where the skin depth is negligible�. In this case, the contri-
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FIG. 2. �Color online� Top: Plot of the Neumann �blue, TE�,
Dirichlet �red, TM� and total �black, TE+TM� Casimir pressure �in
units of 	c /�4� between the objects of Fig. 1, as a function of a /s.
The inset illustrates a two-dimensional cross section. Bottom: Sche-
matic indicating the various qualitatively different Casimir force
regimes between the two structures.
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butions to the force can be separated into two polarizations:
transverse electric �TE� with the electric field in the xy plane
�a scalar magnetic field with Neumann boundary conditions�;
and transverse magnetic �TM� with the magnetic field in the
xy plane �a scalar electric field with Dirichlet boundary con-
ditions� �18�, and these two contributions are shown sepa-
rately in Fig. 2.

The resulting force per unit area between the plates, for
the chosen parameters d /s=2 and h /s=0.6, is plotted as a
function of a /s in Fig. 2 �top�; error bars show estimates of
the numerical accuracy due to the finite spatial resolution. A
number of unusual features are readily apparent in this plot.
First, the sign of the force changes not only once, but twice.
The corresponding zeros of the force lie at a /s�−0.8 and
a /s�−10−2. The first zero, a /s�−0.8, is a point of unstable
equilibrium, to the left of which the force is attractive and to
the right of which the force is repulsive. The second zero at
a /s�−10−2 corresponds to a point of stable equilibrium,
with respect to perpendicular displacements, for which the
force is attractive to the right and repulsive to the left. �This
point is still unstable with respect to lateral displacements,
parallel to the plates and perpendicular to the brackets, how-
ever: Any such lateral displacement will lead to a lateral
force that pulls the red and blue brackets together.� In be-
tween these equilibria, the repulsive force has a local maxi-
mum at a /s�−0.5. Finally, at a /s�0.6 the magnitude of the
attractive force reaches a local maximum �a local minimum
in the negative force on the plot�, and then decreases asymp-
totically to zero as a /s→
. Thus, as the two objects move
apart from one another, the force between them varies in a
strongly nonmonotonic fashion �distinct from the nonmono-
tonic dependence on an external parameter shown in our pre-
vious work �17,22,24��. These three different sign regimes
are shown schematically in Fig. 2 �bottom�, as predicted by
the intuitive picture described above.

III. COMPARISON TO PROXIMITY-FORCE
APPROXIMATION

Since the qualitative features of the Casimir force in this
geometry correspond to the prediction of an intuitive model
of pairwise surface attractions, it is reasonable to ask how
such a model compares quantitatively with the numerical
results. The most common such model is the proximity-force
approximation �PFA�, which treats the force as a summation
of simple “parallel-plate” contributions �25�. �Another pair-
wise power-law heuristic is the “Casimir-Polder interaction”
approximation, strictly valid only in the limit of dilute media
�31�.� Applied to a geometry with strong curvature and/or
sharp corners such as this one, PFA is an uncontrolled ap-
proximation and its application is necessarily somewhat ad-
hoc �due to an arbitrary choice of which points on the sur-
faces to treat as “parallel plates”�, but it remains a popular
way to quantify the crude intuition of Casimir forces as pair-
wise attractions.

Applying the PFA approximation to the two objects in
Fig. 1, we treat the net force as a sum of three contributions:
The force between the two parallel plates, the force between
each square and the opposite plate, and the force between
adjacent red and blue squares. Namely,

PPFA =
1

�L
�Fpl-pl + 2Fsq-pl + 2Fsq-sq� , �1�

where the first term is the pressure between two parallel
plates �pl-pl�, and the two remaining terms correspond to the
square-plate �sq-pl� and square-square �sq-sq� interactions.
The factors of � and L are introduced because these expres-
sions are computed per unit length in the z direction, and per
period in the y direction.

The first two PFA contributions are relatively simple to
calculate because they are between parallel metal surfaces,
and thus �in the PFA approximation� are the ordinary Casimir
force weighted by the respective areas,

Ppl-pl = −
	c�2h

120�

1

�2d + a + s�4 �2�

Psq-pl = −
	c�2s

240�

1

�d + a�4 �3�

Computing the square-square force is less straightforward,
since there is some ambiguity as to what the PFA approxi-
mation even means for two nonparallel surfaces �separate
from the question of its accuracy�. In PFA, one adds up “par-
allel plate” contributions to the force between two objects by
including a force between each point on one surface and a
corresponding point on the other surface, where correspond-
ing points are connected by parallel “lines of interaction.” In
this geometry, we take the lines of interaction to lie parallel
to the center-to-center displacement between two squares, as
depicted by the inset in Fig. 3, but of course this choice is
somewhat arbitrary. �A similar choice was made in Ref. �32�
to define the PFA force between two eccentric cylinders.�
The PFA force between one pair of squares is then
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FIG. 3. �Color online� Comparison of Casimir pressure �in units
of 	c /�4� as a function of a /s between the stress-tensor �exact�
numerical results �black squares� and the proximity-force approxi-
mation �solid green�. Also shown are the individual square-square
�dashed blue� and square-plate �dashed orange� contributions to the
PFA force. Inset: Schematic illustration of the chosen PFA “lines of
interaction” between squares �dashed black lines�.
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Psq-sq = −
	c�2a

240�D5��2�a�
3

�H3 − 1� +
sH3

h
�Hh − �a��	

���Hh − a� + �2Hh

3
�A3 − 1� +

sA3

�a� − s
��a� − Hh�	

����a� − Hh�
 , �4�

where D��a2+ �h+s�2, H�1+s /h, and A�1−s / �a�. The
resulting net force is shown in Fig. 3, along with the contri-
butions due to the isolated square-square and square-plate
PFA forces �a separate line for the plate-plate contributions is
not shown because this contribution is always very small�.

For comparison, Fig. 3 also shows the exact total force
from Fig. 2, and it is clear that, while PFA captures the
qualitative behavior of the oscillating force sign, in quantita-
tive terms it greatly overestimates the magnitude of the re-
pulsive force. Of course, since it is an uncontrolled approxi-
mation in this regime there is no reason to expect
quantitative accuracy, but the magnitude of the error illus-
trates how different the true Casimir force is from this simple
estimate. The PFA estimate for the square-plate force, how-
ever, does help us to understand one feature of the exact
result. If there were no plates, only squares, then the force
would be zero by symmetry exactly at a=0, and indeed the
exact result including the plates has zero force at a�0;
clearly, the contribution to the force from the plates is neg-
ligible for a�0, and this is echoed by the PFA Psq-pl force.
Also, using a PFA approximation, one can attempt to esti-
mate the order of magnitude of the force contribution from
the ends of the bracket, which was neglected in the exact
calculation. This contribution to the total force must decrease
as 
1 /L for a fixed a, and is estimated to be less than 1% of
the peak repulsive force for L
60�.

IV. CONCLUDING REMARKS

Because the basic explanation for the sign changes in the
force for this structure is fundamentally geometrical, we ex-
pect that the qualitative behavior will be robust in the face of
imperfect metals, surface roughness, and similar deviations
from the ideal model here. The main challenge for an experi-
mental realization �for example, to obtain a mechanical os-
cillator around the equilibrium point� would appear to be
maintaining a close parallel separation of the brackets �al-
though it may help that in at least one direction this parallel-
ism is a stable equilibrium�. Furthermore, although in this
paper we demonstrated one realization of a geometry-based
repulsive Casimir force, this opens the possibility that future
work will reveal similar phenomena in many other geom-
etries, perhaps ones more amenable to experiment.

Since the repulsion between the two objects here appears
to be a result of attractive interactions between surfaces, our
result also invites the following unanswered question: Is it
possible to design a geometry with a repulsive Casimir inter-
action, with ordinary vacuum-separated metallic materials,
that cannot be understood as a combination of surface attrac-
tions? More precisely, can one obtain a repulsive Casimir
interaction between a metallic or dielectric object lying in
x�0 and another lying in x�0, i.e., two objects with a sepa-
rating plane in vacuum, so that the distances between the
surfaces are strictly nondecreasing as they are moved apart?
The geometry here does not have a separating plane in the
repulsive regime, while Ref. �4� only eliminated the mirror-
symmetric case, so either a more general theorem or an
asymmetric counterexample would represent important de-
velopments.
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