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Any n-qubit state with n independent perfect correlations is equivalent to a graph state. We present the
optimal Bell inequalities for perfect correlations and maximal violation for all classes of graph states with
n�6 qubits. Twelve of them were previously unknown and four give the same violation as the Greenberger-
Horne-Zeilinger state, although the corresponding states are more resistant to decoherence.
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I. INTRODUCTION

In 1989, Greenberger, Horne, and Zeilinger �GHZ�
showed that no local hidden variable �LHV� theory can as-
sign predefined local results which agree with the perfect
correlations predicted by quantum mechanics for separated
measurements on n�3 distant sites on a system prepared in
the n-qubit GHZ state �1�. Mermin converted the n-party
GHZ proof into a violation of an n-party Bell inequality �2�.
The amount of the violation of Mermin’s inequalities, mea-
sured by the ratio D between the quantum value of the Bell
operator and its bound in LHV theories, grows exponentially
with n. For a given n �with n odd�, Mermin’s inequality gives
the maximal possible violation of any n-party two-setting
Bell inequality in quantum mechanics �3�.

Can we extend this result to other n-qubit states? The
essential ingredient for GHZ-type proofs and Mermin-type
Bell inequalities is that they require an n-qubit quantum
state, which is a simultaneous eigenstate of n commuting
local observables �i.e., a stabilizer state�. Any stabilizer state
is, up to local rotations, equivalent to a graph state �4� �i.e., a
stabilizer state whose generators can be written with the help
of a graph �5��. These states are essential in quantum error
correction �6� and one-way quantum computation �7�. For a
small number of qubits, all classes of nonequivalent graph
states under single-qubit unitary transformations are known
�5�. For 3�n�6, there are thirteen different classes of graph
states which are nonequivalent to GHZ states. For a given n,
some of them are more robust against decoherence than the
GHZ state �8�.

Bell inequalities for graph states constitute a subject of
intense study �9–16�. However, the Mermin inequalities
for most of them are unknown. For a given state, the Mermin
inequality is the Bell inequality such that �I� the Bell opera-
tor is a sum of stabilizing operators of that state �i.e., perfect
correlations�, and �II� the violation is maximal. If the maxi-
mum is obtained for Bell operators with a different number
of terms, then we will choose the one with the lowest num-
ber, since the other inequalities contain this inequality and
require more measurements. For some graph states, the Mer-

min inequality is not unique due to the symmetries of the
graph.

This definition is motivated by the relation between the
original GHZ proof �1� and the Mermin inequality �2�. The
aim of this paper is to introduce the Mermin inequalities for
all graph states �or, equivalently, for all pure states with n
independent perfect correlations� with n�7 qubits.

The graph state �G� is the unique n-qubit state that satis-
fies gi�G�= �G�, for i=1, . . . ,n, where gi are the generators of

the stabilizer group of the state, defined as the set �sj� j=1
2n

of
all products of the generators. The perfect correlations of the
graph state are

	G�sj�G� = 1 for j = 1, . . . ,2n. �1�

The gi’s are obtained with the help of a graph G. For in-
stance, the n-qubit GHZ state is associated to the star-shaped
graph in which qubit 1 is connected to all the other qubits
�see the graphs 1, 2, 3, 5, and 9 in Fig. 1�. This means that

g1=X1�
i�1
n Zi and gi=X1 � Zi for i�1; Xi, Yi, and Zi denote

the Pauli matrices acting on the ith qubit �see �5� for more

details�.
There are many possible GHZ-type proofs for a given

graph state associated to a connected graph of n�3 qubits.
All of them have the same structure. Any LHV theory as-
signing predefined values −1 or 1 to Xi, Yi, and Zi in agree-
ment with the quantum predictions given by Eq. �1� must
satisfy

sj = 1 for j = 1, . . . ,2n. �2�

However, if we choose a suitable subset of q predictions
from the set �2�, and assume predefined values, either −1 or
1, then for some choices it happens that, at most, only
p�q of these predictions are satisfied. For the remaining
q− p quantum predictions, the prediction of the LHV theory
is the opposite: sj =−1. This difference can be reformulated
as a violation of the Bell inequality

� � 2p − q , �3�

where the Bell operator � is the sum of the stabilizing op-
erators of the chosen subset. According to Eq. �1�, the graph
state satisfies*adan@us.es
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	G���G� = q . �4�

Therefore, �G� violates the inequality �3� by an amount
D=q / �2p−q�. For the GHZ proof with n odd, the maximum
contradiction, measured by q / p, and the maximum violation
of the Bell inequality, measured by D, is obtained when
q=2n−1 and p=2n−2+2�n−3�/2. This is Mermin’s inequality �2�.
If we take a different subset of stabilizing operators, then we
can have a violation of a Bell inequality, but usually not the
maximum one.

Specifically, for a given graph state associated to a con-
nected graph of n�3 qubits, if we consider the Bell operator
consisting of the whole set of stabilizing operators, then we
always have a violation of a Bell inequality �10�, but not the
maximum one. A violation occurs because that Bell operator
contains a simpler Bell operator giving the maximum viola-
tion.

Why are we interested in those Bell inequalities with the
maximum D? D is the measure of nonlocality used in Refs.
�2,3,10�. For graph states and stabilizer Bell inequalities, it
is well defined, easily computable, and the two practical
measures of nonlocality, the resistance to noise and the de-
tection efficiency for a loophole-free Bell experiment, are
connected to D.

�i� In actual experiments, instead of a pure state �G�, we
usually have a noisy one, �=V�G�	G�+ �1−V�1 /2n, where 1
is the identity matrix in the Hilbert space of the whole sys-
tem. D is related to the minimum value of V required to
actually observe a violation of the Bell inequality Vcrit. For
graph states and stabilizer Bell inequalities, if D increases,
then Vcrit decreases. Specifically, a simple calculation gives
that Vcrit=1 /D.

TABLE I. Mermin inequalities for all graph states of n�6 qubits.

Graph state gi ��2p−q Settings D

2 �GHZ3� g1=X1Z2Z3 g1�1+g2��1+g3��2 2-2-2 2

gi=Z1Xi for i�1

3 �GHZ4� g1=X1Z2Z3Z4 g1�1+g2g3+g2g4+g3g4��2 and g1→g1g2 1-2-2–2 2

gi=Z1Xi for i�1 g1�1+gi��1+gj��2 and g1→g1gk 2 −2�i� −2�j� −1�k�
4 �LC4� g1=X1Z2, g4=Z3X4 �1+g1�g2�1+g3��2 and g3→g3g4 2-2-2-1 2

gi=Zi−1XiZi+1 for i=2,3 �1+g1�g2�g3+g4��2 and g3→g3g4 2-2-1-2

gi→gi+1

5 �GHZ5� g1=X1Z2Z3Z4Z5, g1�1+g2��1+g3��1+g4��1+g5��4 2-2-2-2-2 4

gi=Z1Xi for i�1

6 �Y5� g1=X1Z2, g5=Z2X5 g2��1+g1+g5��1+g3+g3g4�+ �1+g1g5�g4�
g2=Z1X2Z5 +�g1+g5�g3�1+g4��7 3-3-3-3-2 15

7

g3=Z2X3Z4 g2→g2g4 3-3-3-3-3

g4=Z3X4 �→g4� and 32 nonsymmetric more

7 �LC5� g1=X1Z2, g5=Z4X5 �1+g1���1+g2�g3�1+g4�+g2g4��1+g5��8 3-3-3-3-3 5
2

gi=Zi−1XiZi+1 for i=2,3 ,4

8 �RC5� gi=Zi−1XiZi+1 �+�i=1
5 gigi+1�9 3-3-3-3-3 7

3

�+gjgi+1+gigi+2+gi−1gi+1

+gi−2gigi+1gi+2+gi−2gi−1gigi+1�9 3-3-3-3-3

�= 1
2 ��i=1

5 �1+gi�−�i=1
5 �1−gi�� and 105 more
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FIG. 1. Graphs representing all classes of n-qubit graph states,
with 2�n�6, that are nonequivalent under single-qubit unitary
transformations and graph isomorphism. The figure is taken from
Ref. �5�.
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�ii� An open problem in fundamental physics is achieving
a loophole-free Bell experiment. A particularly important
problem is the detection loophole �17�. D is related to
the minimum detection efficiency required for a loophole-
free Bell experiment �crit. For graph states and stabilizer
Bell inequalities, if D increases, then �crit decreases. Specifi-
cally, for GHZ states and the Mermin inequality with n odd,
�crit= �2+ �ln 2 / ln D�� /4 �18�.

�iii� In addition, D provides the relevant parameters of the
underlying GHZ-type proof: q and p. Any GHZ-type proof
can be converted into an n-party quantum pseudotelepathy
game in which a team assisted with a graph state always
wins, while a team with only classical resources wins only
with probability p /q �19�. Therefore, the higher D, the lower
p /q and the higher quantum advantage.

The knowledge of the Mermin inequalities for all graph
states is important for

�a� Quantum information. Graph states are essential for
quantum information tasks. Mermin inequalities are useful
tools for their experimental analysis. For instance, in recent
experiments preparing 6-qubit graph states V is around 0.5
�20–22�, thus Bell inequalities with D	2 are required to
observe violation. We will show that for all 6-qubit graph
states, Mermin inequalities have D	2.

�b� Nonlocality vs decoherence experiments. For GHZ
states, D increases exponentially with n �2�. However, GHZ
states’ entanglement lifetime under decoherence decreases
with n �8�. Therefore, a fundamental limitation seemingly
exists to observe macroscopic violations of Bell inequalities
with GHZ states. A natural question is: Does this limitation

TABLE II. Symmetric Mermin inequalities for all graph states of n=6 qubits.

Graph state gi ��2p−q Settings D

9 �GHZ6� g1=X1Z2Z3Z4Z5Z6 g1�1+�i�j�1gigj +�i�j�k�l�1gigjgkgl��4 1-2-2-2-2-2 4

gi=Z1Xi for i�1 and g1→g1g2 1-2-2-2-2-2

10 gi=XiZ6 for i=1,2 ,3 �1+g1��1+g2��1+g3��1+g5�g6�4 2-2-2-1-2-2 4

g4=X4Z5 g5→g4g5 2-2-2-1-2-2

g5=Z4X5Z6 �1+g1��1+g2��1+g3��g4+g5�g6�4 2-2-2-2-1-2

g6=Z1Z2Z3Z5X6 g5→g4g5 2-2-2-2-1-2

11 �H6� g1=X1Z6, g2=X2Z6 g1�1+g2��1+g3��1+g4��1+g5�g6�4 1-2-3-3-3-2 4

g3=X3Z5, g4=X4Z5 g1↔g2 �i.e., permute them� 2-1-3-3-3-2

g5=Z3Z4X5, g6=Z1Z2X6 �1+g1��1+g2�g3�1+g4�g5�1+g6��4 3-3-1-2-2-3

g3↔g4 3-3-2-1-2-3

12 �Y6� g1=X1Z2, g6=Z2X6 �1+g1�g2�1+g3�g4�1+g5��1+g6��4 2-2-1-2-2-2 4

g2=Z1X2Z3Z6, g3=Z2X3Z4

g4=Z3X4Z5, g5=Z4X5

13 �E6� g1=X1Z2, g5=Z4X5 �1+g3+g3g6���1+g1�g2+g4�1+g5��
g2=Z1X2Z3, g4=Z3X4Z5 +�1+g1�g2g4�1+g5��8 2-3-3-3-2-2 3

g3=Z2X3Z4Z6, g6=Z3X6 and 37 more

14 �LC6� g1=X1Z2, g6=Z5X6 �1+g1�g2�1+g3��1+g4�g5�1+g6��4 2-2-3-3-2-2 4

gi=Zi−1XiZi+1 for i=2,3 ,4 ,5

15 g1=X1Z6, g2=X2Z4 �g3+g5��1+g1��1+g2��1+g4��1+g6�
g3=X3Z4Z6, g5=Z4X5Z6 +�1+g3g5��g4+g2g4+g6+g1g6��16 3-3-3-3-3-3 5

2

g4=Z2Z3X4Z5, g6=Z1Z3Z5X6 and 6 more

16 g1=X1Z2, g5=Z4X5 g3�1+g1+g2+g1g2+g4+g5+g4g5��1+g6�
g2=Z1X2Z3Z4, g4=Z2Z3X4Z5 +�1+g1�g2�1+g5+g6�+g4�1+g5��1+g1+g6�

g3=Z2X3Z4Z6 +�1+g1�g2g4�1+g5��12 3-3-3-3-3-3 3

g6=Z3X6 and 3 more

17 g1=X1Z2Z6 �g1�1+g2g5��g3+g4��
g2=Z1X2Z3, g5=Z1Z4X5 +�1+g1��g2+g5��1+g3g4��1+g6��8 3-3-3-3-3-3 3

g3=Z2X3Z4, g4=Z3X4Z5 �→g3� 3-3-3-3-3-3

g6=Z1X6

18 �RC6� gi=Zi−1XiZi+1 �i=1
64 si−1−�i=1

6 gi−g1g3g5−g2g4g6�19 3-3-3-3-3-3 55
19

19 g1=X1Z2Z3Z6, g4=Z3X4Z5Z6 g1g4+g3g6+g1g3g4g6+g2�g4+g6+g4g6�
g2=Z1X2Z3Z5, g5=Z2Z4X5Z6 +g5�g1+g3+g1g3�+ �g2+g5��g3g4+g1g6

+g1g3g4g6�
g3=Z1Z2X3Z4, g6=Z1Z4Z5X6 +g2g5�g1g4�1+g3+g6�+g3g6�1+g1+g4���9 3-3-3-3-3-3 7

3
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also hold for other types of graph states? What happens to
those graph states whose lifetime under decoherence does
not decrease with n �8�? To answer these questions we need
to know how D scales with n within a family of graph states,
and which graph states have higher D.

II. MERMIN INEQUALITIES FOR GRAPH STATES

For each graph state, our task is to obtain, from all pos-
sible Bell operators which are sums of stabilizing operators,
those which provide the highest violation. The exhaustive
study for n�6 becomes computationally difficult because
the number of potential Bell operators to test scales like 22n

.
However, if we restrict our attention to Bell operators with
the same symmetry as the underlying graph, this investiga-
tion is still computationally feasible for n=6.

In Table I we present all the Mermin inequalities for all
graph states with 2�n�6 qubits. In Table II we present the
Mermin inequalities possessing the same symmetry as the
underlying graph for all graph states with n=6 qubits. In
both tables we have followed the classification and the label-
ing of the qubits of Fig. 1 �taken from Ref. �5��. LCn �RCn�
denotes the n-qubit linear �ring� cluster state �10�, Y5 denotes
the 5-qubit graph state associated to the graph “Y”, H6 the
6-qubit graph state associated to the graph “H”, etc. The
quantum prediction for each Bell operator � is q �i.e., the
number of terms of ��; p is the maximum number of the q
perfect correlations that a LHV theory can satisfy; D= q

2p−q is
the violation of the Bell inequality ��2p−q.

Some of the inequalities in Tables I and II were previ-
ously known. For the n-qubit GHZ states with n odd, we
recover the original Mermin inequalities �2�. For the n-qubit
GHZ states with n even, the original Mermin inequalities are
the sum of our two symmetric inequalities �the fist two in-
equalities for the GHZ4 in Table I and the two inequalities
for the GHZ6 in Table II�. Our inequalities have the same

violation as Mermin’s, but only half of the terms. For n even,
Ardehali proposed a method giving an additional violation of
2 �23�. Ardehali’s inequalities do not use only perfect cor-
relations. Ardehali’s method can be extended to other graph
states �24�. Mermin’s inequalities have been tested in the
laboratory using 3- �25� and 4-qubit GHZ states �26,27�.
Sources of 5- �28� and 6-qubit GHZ states �20,21� already
exist.

For the 4-qubit cluster state �LC4�, the Mermin inequali-
ties in Table I contain those introduced in �11,12�. These
inequalities have been recently tested in the laboratory
�29–31�.

However, twelve of the Mermin inequalities in Tables I
and II are new. They include those for the RC5, important for
quantum error correction codes �6�; for the H6 a universal
resource for one-way quantum computation recently pre-
pared in the laboratory �21�; and for thee Y6, which allows a
demonstration of anyonic statistics in the Kitaev model
�22,32,33�.

A remarkable fact is, that four 6-qubit graph states have
the same violation as the GHZ6: the graph state no. 10, the
H6, the Y6, and the LC6 �see Table II�. This is interesting
because these states are more resistant to decoherence than
the GHZ6 �8�. This proves that the nonlocality vs decoher-
ence ratio of GHZ states is not universal: there are states
with similar violations but that are more robust against de-
coherence.
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