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Wave-packet entanglement
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We propose and analyze a scheme by which a many-particle system can be prepared in highly entangled
wave-packet states. One of the particles is prepared initially in a quantum superposition of multiple coherent
states and then coupled via a quadratic interaction Hamiltonian to a number of other particles. The system
evolves into a highly entangled wave-packet state. An appropriate measure of this time-dependent entangle-
ment is given. This scheme is applicable to a number of systems of interest in quantum-information science.
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I. INTRODUCTION

In this paper we analyze the entanglement of superposi-
tions of coherent states via a harmonic oscillator Hamil-
tonian that is quadratic in the interaction between the par-
ticles and symmetric with respect to particle exchange.
Quantum superpositions of coherent states are commonly re-
ferred to as “Schrodinger cat states” [1]. When the coherent
states are only weakly excited, 7<<1, they are generally
called “Schrodinger kitten states™ [2]. We will use this no-
menclature.

Many methods have been proposed for generating super-
positions of coherent states. These range from traditional ar-
eas of investigation such as molecular wave-packet states
[3], coherent atomic states [4], vibrational modes of an atom
or ion in a trap [5,6], modes of the light field [7,8], photon-
atom systems [9], optically via nonlinearity [10-12], via
squeezed states and linear optics [ 13], etc., to the more exotic
involving, for example, the superposition of a macroscopic
mechanical oscillator in its vibrating and nonvibrating states
[14,15] or through a Jaynes-Cummings-type model interac-
tion where discrete levels couple to continuous levels
[16,17].

Experimentally, Schrodinger cat states have been pro-
duced in atomic systems using Rydberg wave packets [18]
and ion traps [19]. In optical systems only Schrodinger kitten
states of the form of a superposition of two coherent states
with identical amplitudes but different phases, i.e., |¥')=|a)
+|ae'?) with |@|<1 have been produced so far in the labo-
ratory [20] (also see [21]).

In this paper we will discuss the entanglement of the
above-mentioned Schrodinger cat states, i.e., the multipartite
entanglement of coherent states. As in the creation of super-
position states, there have been many theoretical schemes to
produce multipartite entanglement. However, the bulk of the
theoretical analysis of continuous variable entanglement has
concerned itself with bipartite systems where the state of
each party is fully described by two linearly independent
coherent states [17,22,23]. Increasing the number of linearly
independent coherent states in each party effectively in-
creases the number of levels in the system, in a sense that we
make more precise later. Increasing the number of levels
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and/or parties in a system exponentially increases the num-
ber of different types of entanglement [24,25] making com-
putation increasingly unwieldy. To keep things simpler, the
next level of complexity is generally taken to be a multipar-
tite system in which there are still only two linearly indepen-
dent coherent states for each party [26], or the system is kept
bipartite but the number M of linearly independent coherent
states is increased in such a way that they are symmetric in
their argument |@) [12,27]. These studies analyze entangle-
ment in the limiting case in which the value of the coherent
state «— . In this way, one trivially obtains an orthogonal
basis in which to analyze entanglement.

Another approach to continuous variable entanglement is
to analyze Gaussian states, i.e., states with a Gaussian char-
acteristic function. For these states the entanglement problem
is reduced to that of a finite level system because Gaussian
states are fully characterized by their first and second mo-
ments. So, when there is only a finite number of modes, the
corresponding matrices of moments are also finite [28,29].

As most physical phenomena consist of multipartite sys-
tems with a countably infinite number of or even a con-
tinuum of levels, it seems worthwhile to explore the en-
tanglement properties of such systems. Quantum systems
with continuum or quasicontinuum energy spectra such as
free particles, atomic or molecular Rydberg electrons, mo-
lecular vibrational and rotational levels, and photons are gen-
erally produced in wave-packet states [30,31]. Additionally,
superpositions of coherent states, also known as wave pack-
ets, can usefully store information, which is useful for quan-
tum information [29]. In this paper we will generalize the
beam-splitter model already discussed in [23,27] to arbitrary
number of parties N and solve it for all time. As in [30,31]
we will assume an arbitrary number M of symmetric linearly
independent coherent states. We will also eliminate the as-
sumption of large coherent state value a by using an or-
thogonal basis that takes advantage of the symmetry of the
linearly independent coherent states in each party. In our
analysis, « can take on any complex value.

II. MODEL HAMILTONIAN

Harmonic oscillator models for interactions help to clarify
the types of interactions that lead to entanglement. It is easily
shown that time-dependent interactions that do not contain
terms of the form d;é; do not lead to entanglement between
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coherent states. In this paper we will model weak-coupling
interactions between systems that are in a stable configura-
tion using a coupled harmonic oscillator Hamiltonian, sym-
metric with respect to particle exchange, in the rotating-wave
approximation. The time-dependent interaction term will
have the form

H=tfolda+b'b+ xf(1)@'b+b'a))], (1)

where @ and b are destruction operators for two different
particles, while « and f(¢) denote the strength and time de-
pendence of the interaction, respectively. This leads to the
following Heisenberg equations of motion in the rotating-
wave approximation,

ihd = hawd + horf(t)b,

ihb = fiwb + horf(1)a. (2)
The time dependence of @ and b is then

a(r) = e 4(0)cos[O(1)] - ib(0)sin[O(1) T},

b(1) = e~ ia(0)cos[O(1)] + b(0)sin[O() ]},  (3)

where
CIOE Kf dr' wf(t") 4)
0

is the “area” of the interaction pulse, which is constant for ¢
after the end of the pulse.

Thus, if |¥(0))=|@,B) in a simultaneous eigenstate of
4(0) and h(0), then it is also an eigenstate of d(z) and b(1). As
an eigenstate we then have the relation in the Heisenberg
picture,

a(n)a, By =\, B),
bA(t) a7ﬂ> = )\h(l) Ct’,,8>, (5)
so that in the Schrodinger picture
[W(5) = No(0) ® [N (0)), (6)

where |\ (1)) and |\,(¢)) are coherent states with time-
dependent amplitudes

No(0) = e {a cos[O(1)] - iB sin[O(1)]},

Ay(t) = e~ ia sin[O(1)] + B cos[O(1)]}. (7)

With the model specified above, any interaction of particles
prepared in coherent states results in the final states of the
particles also being in coherent states. It is known that for
such a bilinear interaction, entanglement at the output re-
quires nonclassical states at the input. Several authors (see,
for example, [32]) have pointed out that a squeezed state
input will produce entanglement at the output. In this paper
we will explore another quantum state whose input results in
entanglement and that is the Schrodinger cat state.
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III. MULTIPARTITE-MULTISUMMAND HAMILTONIAN

We examine the evolution of nonentangled Schrodinger
cat states that evolve into entangled Schrodinger cat states
using a multiparty-multisummand generalization of Eq. (1)
in which one party is coupled symmetrically to many. The
system Hamiltonian is then given by

N-1 N-1
H= ﬁw( 20 ara,+ kf(1) 21 (aba, + a;ao)) , (8)
P= p=

where we use the notation p to denote different particles that
are coupled symmetrically to particle 0. This Hamiltonian is
only a slight generalization of Eq. (1). To see this, we trans-
form to a new basis as follows:

N-1 )
R 1 D (—2771611))];
a,=\|——2, ex ,
NN ST v )T

l=p=N-1,

)

so that now the Hamiltonian takes the form
N-1
H= ﬁw<&gao + 2 bib, + k(NN = 1(aby_, + 13;_1&0)) .
p=1

(10)

Using the result of Eq. (3) we can write

ao(1) = ey (0)cos[@y(1)] - iby_, (0)sin[@(1) ]},

by (1) = e~ idp(0)cos[@p(1) ] + by_ (0)sin[ O (1) ]},

b(t)=e"b,(0), 1=g=N-1, (11)
where
On() =O(1)\N-1. (12)

We can then find the d(¢) operators by taking the inverse
Fourier transform

1 N-1 5 mi

~ Tl

b,= —Eexp< qp)&p, I=g=N-1.
N-1,5

N-1
(13)
Explicitly the result is

ao(t) = e cos[O(1)]d,

I N-1
_ ﬁ emion sin[@N(f)]g a,0),  (14)

while for | =p=N-1, we have

. el iy(0)
a1 =e [— i sin[@,(1)] \%

N-1 N-1 i 0)
+cos[Oy(N] D, (1 + e2ﬂim(q—p)/(N—l))_q_ '
q=1 m=2 N-1

(15)
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FIG. 1. Evolution of two particles from a product state to en-
tangled Schrodinger cat states. Initially particle A is in a nonclassi-
cal Schrodinger cat state, that is, a superposition of coherent states
localized at three different points in phase space, while B is in its

ground state. After the interaction the particles are in an entangled
superposition of the three localizations.

IV. EXAMPLE OF WAVE-PACKET ENTANGLEMENT

Our example is similar to the one introduced by van Enk
in [27]. We simplify the coefficients but generalize his ex-
ample to arbitrary N and solve for all time. We begin by
choosing an initial state where one oscillator is excited and
this oscillator is in a coherent superposition of localized co-
herent states, i.e., it is a nonclassical Schrodinger cat state.
The other N—1 oscillators are in their ground states. The
initial state is

M-1 M-1
W (0)) =N [Jac*™™) @ [0)* V=N [4,),
o=0 o=0

(16)

where M,N are integers >1. For the case N=2, this corre-
sponds to our first example with S=0. Notice that the phases
of the summation terms in the first particle, |ae?™'), are
equally spaced around a circle of radius a.

A diagram illustrating the evolution of the initial state
under this Hamiltonian is shown in Fig. 1 for the case of two
particles. At an initial time =0 the overall state of the sys-
tem is nonentangled. The first particle is in a nonclassical
superposition of three coherent states, but the second party is
in the ground state. Under evolution of the Hamiltonian, in-
teraction between the parties induces the second party to
evolve into a superposition of coherent states as well. The
resulting overall state is not a separable product of two su-
perposition states, but rather an entangled state of the two
particles.

Applying the operators d,(t) to this state gives us the fol-
lowing relation:

e277i0'/M| lﬂ > when p= 0
5 0 _ a/> ’ 17
a,(0)|¢) 0, otherwise. 4
Therefore,
aAp(l‘)| l/lg.> — )\p(t)€277iU/M| l//0'>’ (18)
where
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e cos[O (1], when p=0,

N(H=) -« . ) 19
o) ——¢"'i sin[@y(r)], otherwise, (19)
VN -1

and |\, (1)e*™™M) is a coherent state with time-dependent
amplitude. One then switches from the Heisenberg picture to
the Schrédinger picture to obtain [W(z)). The result is

M-1 M-1 5_
W) =N [0y =N ®0|>\p(l)€2m”/M>- (20)
=0 =0 P=

Notice that this reduces to Eq. (7) for the case of 8=0 and
M=1. The above solution for \,(#) shows that all properties,
including entanglement, will be periodic in the interaction
area. Each term in the superposition remains a product of
coherent states, but the sum is in general an entangled super-
position.

Interesting in this case is that we start with only one ex-
cited nonclassical state, and we oscillate between this state
and an entangled state of all the oscillators as a function of
the “pulse area” of the interaction, O(z).

V. ORTHOGONAL BASIS CALCULATION

In a continuous variable system there is a lot of freedom
in choosing a basis, and the choice of basis will determine
the level system for each party. The choice of basis is deter-
mined by what is entangled [33]. For example, for the coher-
ent states, one can choose the Fock basis, which is orthogo-
nal, and look at photon number entanglement. The difficulty
with such a basis is that the level system becomes infinite.

In our case, the most natural choice of basis is to choose
a basis that spans the same subspace as the set of linearly
independent coherent states. In our model, which has a finite
number of oscillators, this allows us, after suitable transfor-
mations, to analyze the entanglement using a standard en-
tanglement measure.

In order to transform our states into a more manageable
form, we first recognize that corresponding to each particle,
we have a finite sum of coherent states, so that the dimension
of our Hilbert space is finite. The state vectors in Eq. (20)
form a complete but nonorthogonal basis, which we abbre-
viate as |W,), i.e.,

|W1> = |)\p(t)>’ |W2> = |)\p(t)62ﬂ-i/M>9 ey

|WM> — |)\p(t)82m‘(M—1)/M>. (21)

Next, we recognize that the coherent states in Eq. (21) are
symmetrically displaced in phase around the unit circle. This
symmetry, due to our choice of generalized Schrodinger cat
states, is utilized to our advantage by transforming to an
orthonormal basis as follows:

M-1
1
Wo) =2 20 N, expmios/M)|Vs), (22)
s=0

where the orthonormal basis is given by
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M-1

> exp(- 2mios/M)|\,()e*™ ™M) (23)

|V§>: '/\_/'Ga=0

We can verify that these vectors are indeed orthogonal,
M-1
E eZﬂ'io’;L/MO\p([)eZvTia/M|

=0

(Vv =
“ NM

M-1

E e—2m;V/M|)\p(t)62ms/M>

s=0

N,
M

-1
M . .
S , e—2mmv/M (DN teme/M ,
NN, 2 MO0 )

24)

where w=s—o0. In Eq. (24) we have used the symmetry of
the superposition, i.e., we have used the fact that

<)\p(t)|)\p(t)e27riq/M> — ()\p(t)ez”i"/M|)\p(t)e2"i<"+g)/M>.

(25)
Thus, we see that the normalization factors N, are given by
M-1
=MD, (e 2misiMyo expf{|\,(1)[*[exp(2mis/M) — 1]}.
s=0

(26)

More generally, we can take account of the fact that the
normalization factors also depend on the particle, by intro-
ducing the notation N When o, is denoted by a concrete
integer we use the notation J\/(U ) to denote the particle
number, as in N ;) where p=1 and 0,=0.

Using the orthogonal basis we can rewrite |W) in this
notation as

M-1

wOy=N > [(5(El’z’;ga1,)modM,o)(Nao NaN 1)
o0+ oN-1=0
X(|Ve) @ -+ @ [Vy D] (27)

VI. SPECIAL CASES

In the bipartite case Eq. (27) reduces to
[¥ (1)) = NN .o No.l Voo @ Vo]

M-1

+ 2 [MU’O O)NM ap 1)][|V(0'0 O)> ® |VM a0 1))])

0=

(28)

which is the Schmidt decomposition. This should not be too
surprising, for as |a| — °, the collection of |W,) in Eq. (21)
becomes an orthogonal set. In this case, Eq. (20) shows
|W()) to be a Greenberger-Horne-Zeilinger (GHZ) state, and
multipartite GHZ states always admit a Schmidt decomposi-
tion [34].

PHYSICAL REVIEW A 77, 062104 (2008)

To see the advantage of this formalism in another ex-
ample, we consider the case of arbitrary particle number N
where M — . We can expand Eq. (26) as follows:

5 M-l
<]LT> — L E (e—Z-rrig/M)o-e\)\p|2[exp(277i§/M)—l]
M M s=0

Ty RM-1 o .
_e S (2 S [N, exp(2ais/M)]”

M s=0 y=0 7'

2 E ( —27TZG/M)0'—

y=0 7' s=0

e—|}\ |)\ |2y

=—E M6y (29)
M = ’}/ (o—y)mod M,0-

NPT

Thus y=mM + o for some non-negative integer m,

|2(mM+(r)

N, < N,
el
( M ) ' ,E) (mM + o0)!” (30)

Then for very large M, compared to
only the first term in the series survives, so that

2 o
(J\i) - e—\)\p\ZM' (31)
M |

(o

This quantity is maximum at the integer o,,,, that is closest
to |\,|% On the other hand, this quantity is quite small for
very large o, i.e., o values that are close to large M. Now Eq.
(27) requires that for each term |V%® "+ ®V, ) the sub-
scripts o, satisfy

N-1

2 o,=qM (32)
p=0

for some non-negative integer g. This, and the largeness of
M, guarantees that for g # 0, at least one of the o), in Eq. (27)
will be very large, and hence the product (N, --* N, )/ MV
will be very small. The situation is different when ¢g=0. In
this case all the 0,=0. So for large M, i.e., M>a=
main contrlbutlon to Eq. (27) is the term (|V 0>®

® [Von-1)-

To illustrate this point, we again refer to the simple bipar-
tite case in Eq. (28). When ¢ # 0, then whenever oy is small,
o,=M -0y is large, and vice versa. Another possibility is that
both o) and o are about equal to M/2. In this case both o’s
are large for large M. In all of these cases the product
N, UoNtTl’ with oy # 0, is always small compared to the term

No.oN.1)- So Eq. (28) reduces to the product state
¥ (1)) ~ MNooNaoll Vo) @ Vol (33)

Thus, for large M, and arbitrary particle number N, the
state always becomes disentangled. Consequently, entangle-
ment does not increase linearly with the number of terms M
in the superposition that makes up the Schrodinger cat state.
In fact, as we shall see in our numerical calculations below,
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as the number of terms M increases, the entanglement even-
tually decreases sharply. This is due to the eventual overlap
of the superposition terms in phase space.

VII. USING THE BARNUM-KNILL-ORTIZ-VIOLA
ENTANGLEMENT MONOTONE

We remarked above that our Hilbert space is finite, and in
fact partitioned as follows:

N-1
H=® H,, (34)
p=0
where each H,, is M dimensional. The state |W(r)) derived in
Eq. (20) is a multilevel-multipartite state in this Hilbert
space. It is also a pure state and, as such, its entanglement
can be studied through a measure of entanglement (hereafter
referred to as BKOV) introduced by Barnum, Knill, Ortiz,
and Viola [35]. The BKOV measure of entanglement is de-
fined by choosing an appropriate Lie algebra g of operators
with regard to the symmetry of the system. In our case, re-
specting the partition of our Hilbert space given by Eq. (34),
our Lie algebra is given by

N-1
g= @ su(M),. (35)
p=0
The BKOV of a normalized state | V) is defined by
D

Py=AY (VIE, )2, (36)
d=1

where D is the dimension of g, the set {Ed} is a Hermitian
basis for g, and A is a normalization factor chosen so that
when | ) is a product state, the purity is equal to 1. In our
case D=N(M?>-1) and A=M"/[N(M-1)]. We choose our
Hermitian basis for g by choosing a basis for each su(M),
corresponding to each party, or in this paper, corresponding
to each particle. This basis consists of off-diagonal elements
of the form

1
%(|m>(n| +H.c), —F(i|m><n| +H.c),
V2 V2

Osn#F¥m=M-1,
(37)

and diagonal elements of the form

1
T+ J?

J-1
(E lm)(m| - J|))(J ) l=J=M-1. (38)

m=0

Each such basis term is then tensored with a normalized
identity on the remaining parties. The normalization is cho-

sen with respect to the trace inner product, ie., (E;,E,)
=Tr(E4E})=1. In words, their inner product as vectors is
equal to their trace as matrices.

As an example, in the bipartite two-level case our Lie
algebra would be su(2) @ su(2). A normalized basis for su(2)
is then the three Pauli matrices divided by 2. So the basis
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for our Lie algebra consists of six operators, three for each
party. They would be

1 1 1 1 1 1
0, ® -1, ~0,® —I, -0, ® —I,
2 2 ’ 2 2

1 1 1 1 1 1
—I® \/Zo,, —1I® oy, “I1® /<o,
2 2 2 2 2 2 -

(39)

where I denotes the 2 X2 identity matrix.

Notice that because a product state has purity equal to 1,
maximum BKOV purity is equivalent to minimum entangle-
ment. We note as well that BKOV is an entanglement mono-
tone and has been shown to be equivalent to the Meyer-
Wallach measure of entanglement for the case of N-party
qubit systems when the Lie algebra is chosen to be
EBlly;(%su(Z) [36,37]. An objection to the Meyer-Wallach mea-
sure, and hence to the BKOV measure, is that it cannot dif-
ferentiate between completely entangled states such as GHZ
states and states that are entangled but separable into sub-
systems, such as tensor products of Bell states [38]. For our
purposes, where we are only interested in the evolution be-
tween a GHZ-type continuous variable state and a com-
pletely disentangled state, the BKOV measure suffices.

VIII. NUMERICAL CALCULATIONS OF BKOV
ENTANGLEMENT IN THE ORTHOGONAL BASIS

We first note that from Egs. (24), (26), and (27), we see
that time enters in (V, |V, ), N,,), and N only through
Oy(7). That is, the expf—iwpt) term in Eq. (19) disappears.
Therefore, there is no exp(—iwt) term in Eq. (36) and the
BKOV depends on time only through ®u(7). We can thus
express the entanglement of our states entirely in terms of
the pulse of the interaction.

Using the BKOV measure we illustrate in Figs. 2 and 3
the entanglement we obtain as a function of pulse area,
M, N, and a.

When |a| =<1 the entanglement is suppressed. This is the
case in which the different wave packets overlap since their
variance is Ve and indicates that the generation of the so-
called Schrodinger kitten states are not useful for entangle-
ment. On the other hand, when |a@|=1 the entanglement is
quite pronounced provided M is not too large. In fact, for
large « increasing M increases the entanglement. However,
making M too large will overlap the different wave packets,
and we return effectively to the case of the Schrodinger kit-
ten states. As a— o the state |W(¢)) tends to a state that is
GHZ for all area except when the BKOV is identically equal
to 1. This is illustrated in Fig. 2(b).

In Fig. 3 we plot the entanglement as measured by the
BKOV measure as a function of the renormalized area
~(2)/(27r) for different values of « and two different values
of N. We note in this case that the amount of entanglement is
periodic in the area ® with period given by ©y=m when
N=3.

When @y=m/2 or ®y=37/2 there is also a local BKOV
maximum in the graphs, i.e., a local minimum in entangle-
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ment. These occur when the first oscillator is unexcited and

the entanglement in this case is entirely in the mode Z;O of Eq.
(10). That is, the residual entanglement is in the remaining
N-1 oscillators. When N=2 (not shown here) there is no
residual entanglement since N—1=1. In this case, when the
first oscillator is unexcited, there is no entanglement. In this
case the local BKOV maximum becomes a global maximum.
Thus, entanglement is symmetric as a function of ® in the
first and second oscillators and the period of entanglement as
a function of O is halved, i.e., Oy=0=7.

We can summarize the above as follows: At the time
t=0, ®y=0, and we are in the initial state corresponding to
maximum excitation of the first particle, but with the other
particles remaining in their respective ground states. There-
fore, there is no entanglement in the system since all of the
particles, but one, are in their ground state. The BKOV is
thus at a maximum, i.e., equal to 1. When the area O,
=a/2 or ®y=3/2, we have no excitation of the first par-
ticle but maximum excitation of the remaining particles. In
this case the total entanglement of the system is from en-
tanglement among the remaining particles (for N>2). There
is no entanglement with the first particle since it is in its
ground state.

The total amount of entanglement for ®y=7/2 and O
=37/2 depends on the magnitude of A, and N. For small N
the entanglement increases with N, since there is no en-
tanglement when N=2. For larger N the entanglement de-
creases due to the VN—1 factor in the denominator of \
Eq. (19). Increasing the value of |a| counters this effect. This
is illustrated in Figs. 3(a) and 3(b). In the case of a=1.25 the
entanglement decreases from N=3 to N=30. For a=50 the
situation is reversed and the entanglement increases, while
for @=5 the situation is mixed.

IX. NEW QUANTUM OPERATOR

Finally, we add that our orthogonal basis construction can
be used to define a new quantum operator that is analogous
to the displacement operator

D(a)|0) = exp(ad’ — ad)|0) = | a) (40)

that generates a coherent state from the ground state, or the
squeezing operator that generates a squeezed state from the

ground state. This new quantum operator ¢ generates a su-
perposition of coherent states, that we refer to in this paper as
a Schrodinger cat, from the ground state. Specifically, we
have

2
Cloy= exp(| 2| >—|a M, o), (41)
where
LM
|a,M,0'> - 2 —277i§(r/M|a827Ti§/M>’ (42)
Ns o
ie., |a,M,o) is a basis vector as given by Eq. (23).

With a bit of whimsy, we call C our cat operator. It is
derived from a function Cy,; defined by
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M-1
1 . )
C}(\r/[(x) — M 2 e—2mg(r/M exp(eZﬂ'zq/Mx)
s=0
Na(x) 2 « mM+o
= 6"( =3 = (43)
M m=0 (mM + (T)'

where the second equality follows from Eq. (26) and the
third equality follows from Eq. (30) with x substituted for
IN,|*. Then

C=CY(aa). (44)

The cat operator formalism allows us to write complicated
superposition states in a compact manner. For instance,
7(a™(@")™)|0) gives us a complicated infinite sum of Fock
or coherent states in which only every mth Fock state is

PHYSICAL REVIEW A 77, 062104 (2008)

retained in the sum. Also, in analogy to the displacement and
squeezing operators, this operator formalism also allows us
to analyze moments and variances of the entangled
Schrodinger cat states, allowing noise analysis for these
states (see [39]).

X. CONCLUSION

In this paper we have shown that generalized Schrodinger
cat states are very useful in entangling wave-packet states of
many systems and that the resulting entanglement can be
analyzed conveniently via an orthonormal basis. This basis is
discrete allowing a quantitative treatment of the time-
dependent entanglement of the coupled systems. An analytic
scheme involving what we call “cat operator” provides a set
of tools that are powerful in analyzing the entangled states.
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