
Spatial coherent transport of interacting dilute Bose gases

M. Rab,1 J. H. Cole,1,2 N. G. Parker,1 A. D. Greentree,1,2 L. C. L. Hollenberg,1,2 and A. M. Martin1

1School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
2Centre for Quantum Computer Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia

�Received 7 November 2007; published 4 June 2008�

We investigate coherent atomic tunneling of a dilute gas Bose-Einstein condensate �BEC� in a three-well
system. In particular, we generalize stimulated Raman adiabatic passage �STIRAP� to adiabatically transport a
BEC of 2000 7Li atoms between two wells with minimal occupation in the intervening well. This protocol
paves the way for a robust method of control in atom-optical devices.
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Classically it is impossible to have transport without tran-
sit, i.e., if the points 1, 2, and 3 lie sequentially along a path
then an object moving from 1 to 3 must, at some point in
time, be located at 2. For a quantum particle in a three-well
system it is possible to transport the particle between wells 1
and 3 such that the probability of finding it at any time in the
classically accessible state in well 2 is negligible. We con-
sider theoretically the analogous scenario for an interacting
Bose-Einstein condensate �BEC�. Specifically, the adiabatic
transportation of a condensate of 2000 7Li atoms from well 1
to well 3 without a macroscopic occupation of the classically
allowed intermediate well is predicted. Such a protocol paves
the way for a robust method of control for atom-optical de-
vices.

The ideas underpinning the protocol for macroscopic
matter-wave transport without transit �TWT� stem from
stimulated Raman adiabatic passage �STIRAP� �1–4�.
STIRAP is a robust technique for transferring population be-
tween two atomic states, �1� and �3�, via an intermediate
excited state, �2�. Using electromagnetic pulses to couple
states �1� to �2� and �2� to �3�, characterized by coupling
parameters K12 and K23. When K23 precedes and overlaps
K12, the population is adiabatically transferred from state �1�
to �3�. Population transfer is achieved via a superposition of
states �1� and �3� with the occupation of state �2� strongly
suppressed. These techniques are used in quantum optics for
coherent internal state transfer �4–7� and have been proposed
�8�, and recently demonstrated �9�, in three channel optical
waveguides. Recently this protocol has been proposed to
transport single atoms �10,11�, Cooper pairs �12�, spin states
�13�, and electrons �14–18� and is referred to as coherent
tunneling adiabatic passage �CTAP�. Here we consider trans-
port of dilute gas BECs containing thousands of interacting
atoms, thus distinguishing our treatment from the previous
single particle cases.

The system under consideration is schematically shown in
Fig. 1�a�, where a three-dimensional harmonic trap is split
into three regions via the addition of two parallel repulsive
Gaussian potentials. With the Bose-Einstein condensate
�BEC� initially in well 1, we show how, through adiabatic
changes to the tunneling rates between the wells, to transport
it into well 3 with minimal occupation of the intervening
well. This effect is shown in Fig. 1�b�, where a BEC of 2000
7Li atoms is transported from well 1 to well 3 over a time-
scale of �1 s, with less than 1% of the atoms occupying

well 2 at any time. As such it appears that the BEC is trans-
ported from well 1 to well 3 without macroscopically tran-
siting through well 2.

Here we elucidate the properties of the three-well system
by first considering a three-mode approximation �19–21�,
where the form of the potential is not important. We then
employ the mean-field Gross-Pitaevskii equation �GPE� to
quantitatively describe the BEC dynamics and consider ex-
perimental scenarios in which to realize macroscopic matter-
wave TWT.

Reducing our three-well system, shown in Fig. 1�a�, such
that each well is described by a single mode basis �19–21�,
�i, gives
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FIG. 1. �Color online� Macroscopic matter-wave transport with-
out transit of a BEC in a three-well system. �a� Schematic represen-
tation of our system at t=0 in the �z-y� plane. Two parallel, repul-
sive Gaussian barriers embedded in an ambient harmonic trap
divide the system into three wells, with the BEC initially occupying
well 1. �b� Isosurface plots of atomic density �niso=0.1n0, where n0

is the initial peak density of the BEC� showing the adiabatic trans-
portation of a BEC of 2000 7Li atoms over a distance of 20 �m
�simulated using the three-dimensional �3D� Gross-Pitaevskii
equation�.
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��t� = �1�t��1 + �2�t��2 + �3�t��3, �1�

where
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− K12 U2 − K23

0 − K23 U3
	��1

�2

�3
	 . �2�

The amplitude of each mode is expressed as �i=
Nie
i�i,

where Ni and �i are the occupation and phase of the ith
mode, respectively �i=1,2 ,3�, and �i=1

3 Ni�t�=NT, where NT
is the total number of atoms in the system. The parameters
Kij describe the tunneling rates between wells i and j. The
dimensionless on-site interaction energy per particle is
Ui=Ei

0+gmNi /NT, where Ei
0 is the ground-state energy of

well i and gm parametrizes the nonlinear atomic interactions
within the system �22�.

The modulation of the tunneling rates K12 and K23 effects
the transfer of atoms between the wells. We assume these
parameters vary with time as,

K12�t� = sin2��t/�2tp��, K23�t� = cos2��t/�2tp�� �3�

for t� �0, tp�, where tp is the total pulse time and the maxi-
mum tunneling rate is �max. We employ this pulsing scheme
due to its robustness against nonlinear effects arising from
the interatomic interactions at t=0 and t= tp. In the adiabatic
limit tp→� and for gm=0 the eigenmode evolution is �15�,

D+ = sin 	1 sin 	2�1 + cos 	2�2 + cos 	1 sin 	2�3,

D− = sin 	1 cos 	2�1 − sin 	2�2 + cos 	1 cos 	2�3,

D0 = cos 	1�1 − sin 	1�3, �4�

where

	1 = arctan�K12/K23�

	2 =
1

2
arctan��2
K12

2 + K23
2 �/E2

0� . �5�

The corresponding mode energies are shown in Fig. 2�a�. For
an initial state where all of the atoms are in well 1, the
system adiabatically follows the green/middle line. In the
adiabatic limit, this corresponds to the passage of atoms from
well 1 to well 3, with zero occupation of well 2, as shown in
Fig. 2�b�, corresponding to ideal TWT, i.e. the current into
well 2 from well 1 �j12�t�� is always equal to the current out
of well 2 into well 3 �j23�t��.

Figures 2�a� and 2�b� are in an ideal limit where the
atomic interactions are zero �gm=0� and the time over which
the pulses were applied was long �tp→ � �. For a realistic
system we must examine how the ideal changes as the pulse
times �tp� are reduced and interactions are included �19�. In
particular, it is expected that away from the idea limit that
j12�t�� j23�t�, resulting in a nonzero occupation of well 2.
Hence, we classify the fidelity of the protocol via the fraction
of atoms in well 3 at the end of the protocol, N3�tp� /NT, and
the maximum number of atoms occupying well 2 during the
protocol, max�N2�t� /NT�. These quantities are shown in Figs.
2�c� and 2�d�, respectively, as a function of the strength of

the nonlinear interactions gm and the pulse time tp, with ef-
ficient TWT occurring in the white regions. Defining the fi-
delity, 
, for TWT through N3�tp� /NT�
 and
max�N2�t� /NT��1−
 to achieve 

0.99 requires that �gm �
�E2

0−E1
0 and tp�max�400. In the absence of nonlinear in-

teractions �gm=0� the condition tp�max�400 comes from the
adiabatic limit of the system and is governed by the energy
difference between the ground-state energies of the wells. As
noted by Graefe et al. �19�, the introduction of nonlinear
interactions introduces nonlinear “eigenstates,” which can in-
hibit adiabatic transfer. Reference �19� considered a Gaussian
tunneling scheme, however, the sinusoidal protocol �Eq. �3��
is much more robust to nonlinear effects, since the energies
of the additional nonlinear states are not close to the dark
state mediating the transfer.

The mode analysis presented above gives a qualitative
description of adiabatic transport for a three-well system. To
investigate TWT quantitatively for realistic scenarios, the
GPE is employed to describe the evolution of the mean-field
wave function, ��r , t�, via

i�
��

�t
= �−

�2

2m
�2 + V�r,t� + g���2
� , �6�

where g=4��2a /m is directly related to the strength of the
nonlinear interactions used in the mode analysis �gm�, with a
being the s-wave scattering length characterizing the atomic
interactions in the BEC and m is the mass of the constituent
atoms. As compared to the three mode analysis, solving the
GPE includes the effects of �i� all the modes in the system;
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FIG. 2. �Color online� System dynamics according to three-
mode analysis. �a� Energies of the eigenmodes D+, D0, and D− of
the noninteracting �gm=0� system. �b� Evolution of N1�t� /NT and
N3�t� /NT for gm=0 and tp→�. �c� N3�tp� /NT as a function of gm

and tp, with white and black representing N3�tp� /NT=1 and 0, re-
spectively. �d� max�N2�t� /NT� as a function of gm and tp, with white
and black representing N2�tp� /NT=0 and 1, respectively. In �c� and
�d� the solid black and blue/gray curves represent N3�tp� /NT=0.99
and max�N2�t� /NT�=0.01, respectively, and the region bounded by
both corresponds to high fidelities 

0.99. We have assumed E1

0

=E3
0=0 and E2

0=0.1��max throughout.
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�ii� the change of the ground-state energies of the wells as a
function of the tunneling rates; and �iii� the spatial extent of
the BEC wave function. The trapping potential we consider
is

V�r,t� =
m

2
���

2 �x2 + y2� + �z
2z2� + V12�t�e−�z + z0�2/�2�2�

+ V23�t�e−�z − z0�2/�2�2�. �7�

The first term defines the cylindrically symmetric parabolic
trap with radial and axial trap frequencies �� and �z, respec-
tively. The second and third terms represent repulsive Gauss-
ian barriers at z= �z0, with width � and time-dependent am-
plitudes V12�t� and V23�t�. Such barrier potentials can be
induced by the optical dipole force from two parallel blue-
detuned laser beams �23� or using magnetic fields on an atom
chip �24�. The barrier amplitudes, which can be varied by
modifying the laser intensity or the atom chip currents, con-
trol the tunneling rates between neighboring wells.

Recall that in the mode analysis we employed tunneling
rates which initially had opposing values �Eq. �3��. Due to
difficulties in initializing such a state in an experiment and
simulation, our simulations begin with barriers of identical
height Vmax, and therefore initially identical tunneling rates.
Over time, the barriers are smoothly lowered to a minimum
value Vmin before being returned to Vmax, such that the tun-
neling rate variation approximates a Gaussian �25�. Impor-
tantly, there is a time delay of size � between the pulsing of
V12�t� and V23�t�. By analogy to conventional STIRAP, when
V12�t� is pulsed before V23�t�, we term this the intuitive pro-
tocol, and when V12�t� is pulsed after V23�t�, we term this the
counter-intuitive protocol. Only the latter is capable of pro-
ducing TWT and so we concentrate on this.

Despite the qualitatively different TWT protocols for the
mode analysis and GPE simulations, we see qualitative
agreement in the regions of high fidelity �25�. This suggests
that TWT is not particularly dependent on the exact form of
V12�t� and V23�t� �K12�t� and K23�t��, as expected for an adia-
batic protocol. This has been verified through the study of
several different functional forms for V12�t� and V23�t�
�K12�t� and K23�t�� which all produce qualitatively similar
results.

The one-dimensional equivalent of the GPE can be solved
numerically with relative ease and so we consider this limit
first. Employing harmonic oscillator units, we consider a sys-
tem defined by �=0.16lho=0.16
� /m�z, z0=3� and �
= tp /10. Figures 3�a� and 3�b� show the evolution of the con-
densate density ���z��2 for different time pulses but the same
remaining parameters �g1D=0.31, Vmin=5 ��z and Vmax
=104 ��z�. In Fig. 3�a� a large time pulse of tp=1000 /�z
leads to efficient TWT, with the BEC moving smoothly from
well 1 to well 3 with a minimal occupation of well 2. In Fig.
3�b�, however, a significantly reduced pulse time of tp
=14 /�z breaks adiabaticity causing inefficient transfer, with
a significant population in well 2.

We now consider the possibility of producing efficient
TWT in a realistic BEC system. We performed simulations
of the full 3D GPE. Since strong nonlinear interactions sup-
press TWT, we focus on a system with weak interaction

strength, i.e. a small s-wave scattering length a and low atom
number NT. Our simulations are based on recent 7Li soliton
experiments �26,27�. These experiments have two key ad-
vantageous features. First, the experiments worked with low
atom number, with typically several thousand atoms in the
condensate. Second, the experiments employed a Feshbach
resonance to control the s-wave scattering length, allowing
low attractive scattering lengths of the order a=−0.1 nm. In
principle, similar experiments could probe the high fidelity
parameter space of g and tp.

We consider NT=2000 and a=−0.2 nm, and realistic pa-
rameters for our trapping system: �r=�z=2��40 Hz, �
=1 �m, Vmax=100 ��, Vmin=5 ��, and z0=3 �m. The BEC
dynamics under the counter-intuitive protocol and for a pulse
time of tp=400 �−1=1.6 s and a pulse delay of �=0.16 s are
presented in Fig. 1�b� as chronological frames of an isosur-
face of BEC density �25� and in Fig. 3�c� as a carpet plot of
the radially integrated axial density. For these parameters we
clearly see efficient TWT, i.e. the 2000 7Li atoms are adia-
batically transported a distance of approximately 20 �m with
negligible occupation of well 2. Crucially, the time scale for
this process is just under 2 s, which is the lifetime of such
condensates �27�. These results have a fidelity 
=0.985,
which is limited by the maximum occupation of well 2 dur-
ing the transfer, where well 2 is defined as the spatial region
�−z0 ,z0�. However, defining well 2 as the classically allowed
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FIG. 3. �Color online� Dynamics of the system according to the
1D GPE. �a� Carpet plot showing the evolution of condensate den-
sity �dark�high density, light�low density� for an effective 1D
interaction parameter of g1D=0.31 and a pulse time of tp

=1000 /�z. �b� As �a� but for a small pulse time of tp=14 /�z. Note
the breakdown of the adiabatic transfer. �c� Evolution of the radially
integrated axial density for the counter-intuitive protocol for a real-
istic BEC of 2000 7Li atoms with attractive interactions a=
−0.2 nm. The horizontal dashed lines correspond to the center of
the Gaussian barriers �z0. We assume �=2��40 Hz, �=1 �m,
z0=3 �m, Vmax=100 ��, and Vmin=5 ��.
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region between −z0 and z0 where the chemical potential of
the initial state is less than V�r , t�. For this definition the
maximum atom number at any time that occupies this clas-
sically allowed region is less than 0.01NT �
�0.99�.

We have also simulated the dynamics of this system for
the intuitive protocol, where the first barrier is pulsed before
the second barrier. Under this protocol a macroscopic occu-
pation, 0.15NT, of well 2 during the transfer is predicted.
Hence, a straightforward experimental confirmation of TWT
is to reverse the pulses and compare the condensate density
in the middle well through the pulse sequence �9�.

In conclusion we propose a protocol for the transport of
BECs in three-well systems. This protocol enables the adia-
batic transport of a macroscopic BEC such that the transient
occupation of the intermediate well is heavily suppressed:
transport without transit. In particular, we have shown that
this works within both a three-mode approach and the mean-
field GPE approximation. We have mapped out the parameter
space for which we expect TWT to occur. Specifically, we

predict the TWT of an interacting BEC of 2000 7Li atoms a
macroscopic distance of 20 �m over a time scale of 1.8 s.
This phenomenon is not only of interest from the viewpoint
of testing the wave nature of a BEC, but also paves the way
for a method of control in atom optical devices. Future ex-
tensions to this work include the examination of non–mean-
field effects, such as quantum fluctuations �28�, and systems
with more than three wells �29�.
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