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It is usually presumed that spontaneous emission is necessary to remove the entropy lost by laser-cooled
atoms. Here we show that the changes in the laser beams themselves constitute a sufficiently large reservoir of
N states accessible to the system that their entropy S=kB ln�N� is sufficient to absorb the entropy lost by the
atoms in the cooling process. Proper choice of laser parameters could possibly produce cooling of atoms or
molecules over a wide range of temperatures without spontaneous emission.
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It is a long-standing and widely held tenet in the laser
cooling community that spontaneous emission is required to
carry away the entropy lost by a vapor of atoms being
cooled. In this paper we show that spontaneous emission is
not the only way of removing the entropy, and that the laser
fields themselves are capable of absorbing it. We do this by
comparing the entropy lost by the cooled atoms with the
entropy capacity of the laser fields. This description requires
that the light field be included as part of the system, and not
just as an externally applied potential.

In the usual force-momentum description of laser cooling,
the force is calculated from the momentum of absorbed light
h� /c��k or tr���H�. In the usual energy description, the
exchange between atoms and light involves Doppler shifts or
spatially dependent light shifts in inhomogeneous optical
fields. In these usual ��E ,�p� views of laser cooling, the
laser light is treated as a classical field with a fixed potential,
and the entropy loss is usually dismissed with vague refer-
ences to spontaneous emission without any proof.

When an atom absorbs light, its energy increase is com-
pensated by an energy decrease of the light field. A popular
way to depict this energy conservation process is the Jaynes-
Cummings view, where the light field can be described as a
number state. We see that energy conservation in atomic ab-
sorption requires that the light field be considered as part of
the system, and not as an external fixed potential. If the light
field is sufficiently intense that a coherent state description
��� is called for, there is a quandary because the annihilation
operator a does not change the state: a ���=� ���. Energy
conservation is at risk in such a description, and it will be
considered below.

In the ��E ,�p� view, a sufficient condition for cooling a
gas is the application of a velocity dependent force that ei-
ther changes sign or becomes negligibly small over some
finite velocity range. Thus if the force moves all the atoms in
an extended region of velocity space to a narrower region
because it nearly vanishes somewhere within the narrower
region, then the velocity distribution is compressed. The one-
dimensional case is particularly simple to envisage. As long
as this compression does not come at the expense of compa-
rable expansion in other dimensions of velocity space, we
say the sample is cooled. If there is also no comparable ex-
pansion in configuration space, the volume of phase space is
also reduced.

Such a description is incomplete because a velocity-
dependent force does not conserve energy. Since such non-
conservative forces cannot be described in terms of a poten-
tial, the energy change of a particle moving from point A to
point B depends on its velocity. However, by including the
light field as part of the system, the description becomes
conservative because there is simply an energy exchange be-
tween the atoms and the light.

As an example, consider the case of Doppler cooling. The
resonance condition, and hence the optical force, depends on
the Doppler shift seen by moving atoms, �D�−k� ·v� , such
that the light frequency ��=�a−�D, where �a is the atomic
frequency �k� opposite to v� gives a positive �D�. The kinetic
energy change on absorption is �Ekin=Mv�v=�kv=−��D
�for v��v=�k /M�. Then energy conservation is satisfied
with a velocity-dependent force with the light field included
in the system. Analogous arguments apply to the velocity
dependence of other cases of ��E ,�p� exchanges.

The most naive ��E ,�p� view of laser cooling violates
the unitarity theorem. That is, atoms with initially different
velocities have initially orthogonal wave functions because
of their different deBroglie wavelengths. After cooling, their
deBroglie wavelengths may be sufficiently similar that their
wave packets are no longer orthogonal, thereby violating the
theorem. Unitarity in laser cooling may be rescued by in-
cluding the spontaneously emitted light from the excited at-
oms into the system. This fluorescence generally occupies
orthogonal states of the radiation field thereby preserving the
theorem. One of the purposes of this paper is to show that
changes to the laser field itself are sufficient to preserve uni-
tarity.

In this discussion of Doppler cooling, we have seen that
including the optical field provides for satisfying three con-
ditions: �1� energy conservation between the atomic internal
energy and the field, �2� energy conservation between the
atomic motion and the field, and �3� preservation of unitarity.
Similar arguments hold for other laser cooling schemes. In
each of these cases, the reduction of entropy that is concomi-
tant with the reduction of atomic phase space volume is usu-
ally assumed, without proof, to be compensated by the in-
crease of the entropy of the “required” spontaneously
emitted light. Another purpose of this paper is to examine
this assumption.

We now extend the discussion beyond the limits of the
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usual ��E ,�p� view and treat the laser field as a dynamical
variable. This notion is substantiated in the very eloquent
statement from Ref. �1�:

“Begin by deciding how much of the universe needs to
be brought into the discussion. Decide what normal
modes are needed for an adequate treatment of the
problem under consideration.”

Although this seems a bit superficial at first, in fact it is
very profound. A complete description of the dynamics of
any of these laser cooling processes requires that the entire
light field be considered as part of the system. Only then can
it absorb entropy and transport it out of the system. The
atom-light interaction can then populate different field states
by stimulated emission just as it does when spontaneous
emission populates the otherwise empty field states. Sponta-
neous emission simply redistributes the light into some sub-
set of a much larger set of accessible states, and stimulated
emission can do likewise.

This different description of the light field has absolutely
no effect on the ��E ,�p� discussion above, but only ad-
dresses the optical entropy capacity because now the total
wave function includes the light field. Thus the exchange of
entropy between the atoms and the light field does not vio-
late the Liouville theorem, unitarity, or Ref. �2� because nei-
ther the total entropy of the system nor its phase space vol-
ume is reduced, but merely exchanged between its different
parts.

Our one-dimensional �1D� comparison with the entropy
capacity of the laser fields begins by first finding the entropy
lost by atoms, �Sa. If the number of atoms is unchanged by
the cooling process, the Sackur-Tetrode equation can be used
to find �Sa=kB ln�Vfinal

��� /Vinit
����, where V��� is a phase-space

volume. �For laser cooling, �Sa	0.� Moreover, the changes
of the V���’s are expressed by the product of the compression
in velocity space �vinit /�vfinal with the expansion in configu-
ration space �xinit /�xfinal.

For the latter, we note that all laser cooling schemes have
a characteristic cooling length and time found from the cool-
ing force and the initial atomic kinetic energy spread, which
is determined by the velocity capture range vc of the force.
We first make the natural choice for the initial spatial extent
of the atoms as this cooling length �x. The largest distance
atoms can travel during slowing is another �x, and only the
fastest atoms that start near the extreme end of the sample
will reach 2�x. Since this is a small fraction of all the atoms,
for calculational convenience we choose the final spread to
be �xfinal�	2�x for each direction, a total of 2	2�x.

For the width of the initial velocity distribution �vinit we
take the velocity capture range vc and for �vfinal we take
some measure of the cooling limit. Thus �Sa
=kB ln�2	2�vfinal /vc�	0, and is typically a few times �−kB�
per atom.

It is straightforward to see how the entropy of the light
field can be increased by its interaction with the atoms. The
density matrix of the light field alone, ��, can be evaluated in
any basis, and we suppose it starts in a pure state where ��

= ����2 so its entropy is zero �3�.
After interaction with a two level atom having excited and

ground states designated by �e� and �g�, respectively, the total

wave function of the �atom plus light� system is

�
� = ce�t��e��m� + cg�t��g��n� , �1�

where �ce�t��2+ �cg�t��2=1 and �m�, �n� represent the different
states of the light field when the atom is in �e� or �g� �in the
simplest case, �m� and �n� are number states and m=n−1�.
The density operator for the �atom plus light� system is
�
�

� and we find the final density matrix for the light
alone, ���, by tracing over the atomic states,

��� = 
e�
�

�e� + 
g�
�

�g� = �ce�2�m�
m� + �cg�2�n�
n� .
�2�

Thus the matrix of ��� is diagonal with elements �ce�2 and
�cg�2, and ���� �����

2 unless one of them is zero. The original
light field whose entropy was zero has been changed to one
that is no longer a pure state so its entropy is greater than
zero �3,4�.

Although the natural choice for a description of the light
beams might seem to be the familiar coherent states ���, the
usual description of ���’s is not well suited to the exchange
of light between beams caused by absorption-stimulated
emission cycles of atoms. In particular, the transition term of
the Jaynes-Cummings Hamiltonian is ��ab†+a†b�, and al-
though ��� is an eigenstate of a, a† ��� is a complicated ob-
ject �5–7�. Moreover, the ���’s are not eigenstates of the
Hamiltonian a†a nor are they orthogonal. Still, they represent
a suitable approximation as long as it is recognized that the
annihilation operator a indeed does change the actual state of
the field, even though in the exact �ideal� case, ��� is an
eigenstate of a �5–8�.

A sample of atoms immersed in a light field is neither a
closed system nor is it in thermal contact with a reservoir, so
the ordinary thermodynamic entropy cannot be defined. In-
stead we use the information definition S=kB ln�N� where N
is the number of states accessible to the system.

If N includes all the empty modes of the radiation field
that can be populated by spontaneous emission, its entropy
capacity is huge �9,10�. Without spontaneous emission, how-
ever, we find the entropy capacity of the light beams �S�

from the number of accessible states N that are sufficiently
distinct �small overlap� after the stimulated emission pro-
cesses have redistributed the light energy. Even though the
coherent states ��� and ���� are not very good approxima-
tions, we may choose the “distinct state” criterion from the
overlap formula e−��−��� to be 1 /e. Then this overlap condi-
tion requires distinct states to have n values that differ by
�2	n, where n����2. Since Ref. �5� shows that the approxi-
mately coherent states are sub-Poissonnian, there are actually
more accessible states than this lower limit estimate.

We need an estimate the field quantum number n, found
from the amount of light that can interact with an atom in a
large, continuous laser beam. We choose a cylinder of base
area equal to the on-resonance atomic absorption cross sec-
tion 
=3�2 /2� and of length ctcool, where tcool is the cooling
time mentioned above. For a beam of intensity I�sIsat we
find n= I
tcool /h�=s�tcool /2, where Isat��hc� /3�3 and �
�1 /� is the excited state lifetime. For Doppler cooling, n
�103.
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The maximum change of n required to stop an atom from
v=vc is �n=Mvc /�k �11�. Since laser cooling requires com-
pression of the velocity distribution from a wide range of
velocities to a narrower one, there are many different values
of �n for the different atomic velocities in the sample, so
many states of the light field can be populated. We find the
number of independent states accessible to the laser field is
N=�n /2	n so that

�Sa + �S� = kB ln�2�vfinal

vr

1
�s�tcool

�
��

,

�3�

where vr��k /M is the recoil velocity and �r��k2 /2M is
the recoil frequency. Moreover, there is a one-to-one corre-
spondence between the states of the light field and the atomic
motional states �12�, just as in the families of velocity selec-
tive coherent population trapping �13,14�, so their overlap is
also small. As long as ��1, meaning �S����Sa�, the light
field has a large enough capacity to absorb the entropy lost
by the atoms.

At this point further evaluation and discussion of Eq. �3�
must be done case by case. The results are summarized in
Table I. Curiously, there is neither any dependence on vc in
Eq. �3� nor buried in �vfinal or tcool.

The first two entries for Doppler molasses are readily cal-
culated from the well-known Doppler limit and velocity
damping constant �15,16�. The cooling limit for Sisyphus
cooling by polarization gradients, typically a few times vr
�16�, is taken from Eq. �4.37� of Ref. �17� �����−�a�, and
experimentally confirmed in Ref. �18�. The second entry is
readily calculated from the increased velocity damping coef-
ficient of Sisyphus cooling �17,19�.

The first entry for the bichromatic force, whose two fre-
quencies are detuned by ��, comes from assuming that the
nonadiabatic transitions leave the atoms distributed between
two ground states at the end of the cooling process �it could
be more� �20�, and the second entry comes from dividing the
velocity cooling range, estimated to be about 1 /4 of the ve-
locity capture range �� /4k, by the �approximately constant�
acceleration 2�k� /�M �21�. The value s=3�2 /�2 optimizes
the bichromatic force.

Clearly ��1 for all three cases so we can conclude that
the laser beams themselves have sufficient capacity to absorb

the entropy lost by the cooled atoms by redistribution of the
laser light into a larger number of accessible states. Since the
system is “open,” the outgoing light beams carry away the
entropy. Spontaneous emission is not required for this aspect
of laser cooling. In some sense, this hypothesis may be re-
lated to cavity cooling �see Ref. �22�, and references therein�.

We see that the entropy lost by the atoms can be trans-
ferred to the light field, and it is not dissipated until the
outgoing light hits the walls. Since the walls are not part of
the system, this final destruction of the light field is indeed a
dissipative, nonconservative, and irreversible process. The
model here is different from those of previously studied
cases �2,9,10� because it includes the applied light field as a
dynamical variable rather than as a c-number parameter in
the Hamiltonian.

Although it is now clear that spontaneous emission is not
required to carry away the entropy removed from a vapor
atoms during laser cooling, it is also true that spontaneous
emission is indeed crucial for energy exchange in some
forms of laser cooling. For example, the kinetic energy ex-
changed between an atom and a light field in a single exci-
tation cannot exceed the larger of �kv or ��r.

Since excited atoms do not absorb resonantly, their return
to the ground state without the spontaneous emission needed
for further absorption can only occur by stimulated emission.
If it occurs by the original exciting beam, there is no net
energy exchange in the process. If stimulated emission is
induced by another beam, for example, the counterpropagat-
ing beam in Doppler molasses or Sisyphus cooling, then the
absorption-stimulation emission sequence in the opposite or-
der is equally likely when spatially averaged over a wave-
length, and on average there is no net energy transfer and no
net force.

For Doppler molasses, only spontaneous emission be-
tween absorptions can exploit the Doppler shifts to allow
energy loss because the average frequency of the emitted
light is �a���. For Sisyphus cooling, where the force arises
from the absorption-stimulated emission sequences in inho-
mogeneous fields �e.g., standing waves�, spontaneous emis-
sion is needed for the transitions between the top of one hill
to the bottom of another �17�. Without it, the energy ex-
change is limited to the light shift, and that is usually much
smaller than atomic kinetic energies. Thus the indispensable
role of spontaneous emission in many forms of laser cooling
is not for entropy dissipation, but for energy transfer.

By contrast, the bichromatic force has no such limits
�20,23�. With appropriate parameters and spatial offsets of
the standing waves of the two different frequencies, there are
positions where the light shifts and detuning just cancel, and
exact crossings of the eigenstates can occur. Atoms passing
through such positions can mediate the exchange of red-
detuned light for blue, and vice versa, resulting in energy
exchange between the atoms and the light beams �20�. This
mechanism has no significant limit on the energy scale of
interest here, and more important, has no counterpart in
monochromatic light.

We have seen how the light beams have the capacity to
absorb the entropy lost by laser-cooled atoms, and that spon-
taneous emission is not required for this task. We have also
seen that it is indeed required to mediate the energy loss of

TABLE I. A summary of the values for entry into Eq. �3�. The
velocity limit of Doppler cooling is vD�	�� / �2M�. See text for a
discussion. For Sisyphus cooling ����−�a is the laser detuning.
For the bichromatic case, 2� is the frequency difference between
the two fields, and typically ��20 – 40�.

�vfinal /vD �rtcool �

Doppler molasses 1 1 1 / 	s

Sisyphus cooling 	s� / 2� � / � 1 / 	2

Bichromatic force 	� / 2� � / 16 	�50�� / � �
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the atoms in some forms of laser cooling. The combination
of these two results provides a completely different view of
the role of spontaneous emission in laser cooling. Among the
possible consequences may be the application of laser cool-
ing to molecules, where the spontaneous emission to a

plethora of ground state sublevels makes the desirable closed
cycle schemes extremely difficult to attain.
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