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We propose and demonstrate a linear optical device which deterministically performs optimal quantum
measurement or minimum disturbance measurement on a single-photon polarization qubit with the help of an
ancillary path qubit introduced to the same photon. We show theoretically and experimentally that this device
satisfies the minimum disturbance measurement condition by investigating the relation between the informa-
tion gain �estimation fidelity� and the state disturbance due to measurement �operation fidelity�. Our imple-
mentation of minimum disturbance measurement is postselection-free in the sense that all detection events are
counted toward evaluation of the estimation fidelity and the operation fidelity, i.e., there is no need for
coincidence postselection of the detection events.
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A measurement is a process by which we learn about the
observed system by interacting it with a measuring appara-
tus. The role of the measurement process is one of the most
unique features that distinguish quantum physics from clas-
sical physics �1�. One of the fundamental aspects of the
quantum measurement process is that the quantum state of
the observed system is unavoidably altered by the measure-
ment process itself which may be direct, as manifested in
Heisenberg’s uncertainty principle �2�, or indirect, as demon-
strated in the quantum eraser-type test on the complementa-
rity �3,4�.

Quantitative study on the relation between the informa-
tion gain by a measurement and the measurement-induced
state disturbance is, obviously, a relevant and important issue
in quantum physics and quantum information �5�. In particu-
lar, how to achieve the optimal quantum measurement pro-
cess, in which the information gain is maximal while the
measurement-induced state disturbance is minimal, is an im-
portant fundamental as well as a practically relevant problem
in quantum communication �6–8�.

Recently, the trade-off relation between the information
gain and the state disturbance was derived in the context of a
finite d-dimensional quantum system by quantifying the in-
formation gain as the estimation fidelity and the state distur-
bance as the operation fidelity �9�. The measurement proto-
col which saturates the trade-off relation is known as the
minimum disturbance measurement �MDM�. Experimental
demonstrations of MDM to date, however, have been rather
limited. In Ref. �10�, a MDM protocol was implemented for
a single-photon polarization qubit with an ancilla single-
photon polarization qubit by using classical active feed for-
ward and a linear optical nondeterministic quantum logic
operation based on coincidence postselection of detection
events �11�. The scheme, therefore, is probabilistic in prin-
ciple and postselection of the final detection events is neces-
sary. In Ref. �12�, a MDM protocol was demonstrated for an

infinite dimensional Gaussian state by using linear optics,
amplitude and phase modulators, and homodyne detection.
This scheme, therefore, applies to a coherent state but not to
a qubit.

Here, we propose and demonstrate a postselection-free
linear optical MDM device which deterministically performs
optimal quantum measurement of the polarization qubit of a
single photon. The ancilla qubit which interacts with the po-
larization qubit is the path qubit introduced to the same pho-
ton, i.e., our device makes use of the single-photon
polarization-path two-qubit state �13�. We first show theoreti-
cally that this device performs minimum disturbance mea-
surement by investigating the trade-off relation between the
estimation fidelity and the operation fidelity. We then dem-
onstrate that the experimental estimation and operation fi-
delities indeed closely follow the theoretical bound for
MDM. Our MDM is postselection-free in the sense that all
detection events are counted toward the evaluation of the
operation and estimation fidelities. To the best of our knowl-
edge, deterministic MDM for a qubit has not been reported
to date.

The quantum circuit for the proposed MDM scheme is
shown in Fig. 1. The system qubit, which is to be measured,
is prepared in an arbitrary quantum state ���s=� �0�s+� �1�s
with ���2+ ���2=1. The ancilla qubit, initialized in the state
�0�a, is introduced to make optimal measurement on the
system qubit by interacting with it. The controlled-NOT

�CNOT� operation between the system and the ancilla qubits
transforms the initial two-qubit state ���s � �0�a into
� �0�s �0�a+� �1�s �1�a, i.e., the system and the ancilla qubits
are now entangled. The ancilla qubit then undergoes to the
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FIG. 1. �Color online� Quantum circuit for the proposed MDM.
H� is a Hadamard-like transformation on the ancilla qubit and con-
trols the amount of information gain on the system qubit via mea-
surement on the ancilla qubit.
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Hadamard-like unitary transformation H�= � t
r

r
−t �. Here

t and r satisfy the normalization condition �t�2+ �r�2=1
and we assume �t � � �r� without loss of generality.

After the H� operation, the joint state of the system and
the ancilla qubits is given as

��t�0�s + �r�1�s��0�a + ��r�0�s − �t�1�s��1�a. �1�

First, consider the case of t=r which is equivalent to ran-
domly guessing the state of the system qubit. If the ancilla
measurement outcome is 0, the state of the system qubit is
unchanged but if the ancilla measurement outcome is 1, it is
necessary to apply the feed-forward �z operation to the sys-
tem qubit, i.e., �1�s→−�1�s, to recover the original quantum
state. Next, consider the case of t�r. More information
about the system qubit can be obtained at the expense of
increased state disturbance. The quantum circuit in Fig. 1,
therefore, allows us to vary the “strength” of the measure-
ment on the system qubit with variables t and r, hence vary-
ing the amount of information we can gain about the system
qubit from the measurement outcomes of the ancilla qubit.

To see if the quantum circuit in Fig. 1 satisfies the mini-
mum disturbance condition in Ref. �9�, it is necessary to
investigate the relation between the estimation fidelity G and
the operation fidelity F. Consider the state in Eq. �1�. The
probabilities of ancilla measurement outcomes 0 and 1 are
calculated to be P0= ���2t2+ ���2r2 and P1= ���2r2+ ���2t2, re-
spectively. The state of the system qubit is then estimated to
be �G= P0 �0�ss�0 � + P1 �1�ss�1�, i.e., when the measurement
outcome of the ancilla qubit is i �i=0 or 1�, the system qubit
is guessed to be in the state �i�s with probability of Pi. The
overlap between the the inferred �guessed� state of the sys-
tem qubit �G and the original state of the system qubit ���s is
defined to be the estimation fidelity G�=s�� ��G ���s and is
dependent on the measurement strength controlled by H�. If
we consider all possible pure states on the Bloch sphere as
the system qubit, the average estimation fidelity is calculated
to be

Gavg =� G�d� =
1

3
�t2 + 1� . �2�

The state of the system qubit after the feed-forward op-
eration in Fig. 1 can be evaluated by tracing over the Hilbert
space of the ancilla qubit on the final system-ancilla two-
qubit state and is found to be �F= ��0��ss��0� � + ��1��ss��1��,
where ��0��s=�t �0�s+�r �1�s and ��1��s=�r �0�s+�t �1�s. The
operation fidelity which quantifies the overlap between the
input state ���s and the output state �F is defined as F�

=s�� ��F ���s. As before, by averaging over all possible pure
states on the Bloch sphere, the average operation fidelity
becomes

Favg =� F�d� =
2

3
�1 + tr� . �3�

Note that the measurement strength setting which is equal to
the classical random guess, i.e., t=r=1 /	2, results in Favg
=1. In other words, the system qubit has not been disturbed.
Any stronger measurement, however, will reduce the average

operation fidelity Favg. By equating Eq. �2� and Eq. �3�, we
arrive at the trade-off relation between Gavg and Favg,

Favg =
2

3
+

	1 − �6Gavg − 3�2

3
, �4�

which in fact is the exact minimum disturbance measurement
condition in Ref. �9� for a qubit.

The actual experimental setup to realize the quantum cir-
cuit in Fig. 1 is schematically shown in Fig. 2. To prepare the
single-photon state needed to implement the proposed MDM
device, we employ the heralded single-photon source using
spontaneous parametric down-conversion �SPDC� �14,15�.
The SPDC signal-idler photon pair was generated in a 3 mm
thick type-II �-barium borate �BBO� crystal pumped by
frequency-doubled ultrafast pulses from a mode-locked Ti:
sapphire laser operating at 780 nm. The pump beam was
focused on the BBO crystal with a lens �f =300 mm� and the
780 nm signal-idler photon pair, emitted in the beamlike
configuration at �3.38° with respect to the pump beam, was
coupled into single-mode fibers using 	10 objective lenses
located at 650 mm from the crystal �16�.

The idler photon was directly coupled to the trigger
detector so that the detection signal can be used to herald the
single-photon state for the signal photon. A fiber polarization
controller �FPC� and a vertical polarizer �Pol� prepare the
initial polarization state of the signal photon at �V�. It is then
transformed unitarily to an arbitrary polarization qubit ���s
=� �H�s+� �V�s using WP�
�, see Fig. 2, which consists of a
half-wave plate �HWP� at an angle �1 followed by a quarter-
wave plate �QWP� at an angle �2. �The vertical polarization
is defined to be 0°.� The ancilla path qubit, which is initial-
ized at �0�a, is introduced to the same single-photon state by
directing the photon at one �labeled as 0� of the two input
modes of the polarizing beam splitter �PBS�. The other input
spatial mode of the PBS, labeled 1, is not used. For the
prepared initial two-qubit state ���s � �0�a, the CNOT opera-
tion between the polarization qubit and the path qubit is
implemented with the PBS �13,17�.
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FIG. 2. �Color online� Experimental setup. The heralded single-
photon state was used to implement the deterministic MDM in Fig.
1. A fiber polarization controller �FPC�, a vertical polarizer �Pol�,
and WP�
� prepare the initial polarization qubit ���. VBS�t ,r� is
realized by using a pair of HWP’s and a PBS.
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A balanced Mach-Zehnder interferometer with a variable
beam splitter VBS�t ,r�, see Fig. 2, which consists of a PBS
and a HWP in each of the input modes of the PBS, then
implements the Hadamard-like unitary transformation H� on
the path qubit, i.e., creating arbitrary quantum superposition
between the two orthonormal basis vectors �0�a and �1�a of
the ancilla path qubit. The angle of HWP in path 0 is set at �
and the corresponding angle of the HWP in path 1 is set at
�+
 /4. The transmission and the reflection coefficients of
the HWP-PBS system is then given as t=cos 2� and r
=sin 2�. Thus, by varying the HWP angle � we can control
the strength of measurement on the system �polarization� qu-
bit. Note that the initial PBS, which implements the CNOT
operation between the polarization qubit and the path qubit,
and the second PBS, which implements the H� operation on
the path qubit, form a balanced Mach-Zehnder interferom-
eter.

A single photon emerging at the output mode 0 or 1 of
VBS�t ,r� would then mean measurement of the path qubit
with the outcome 0 or 1, respectively. We guess �or infer�
that, if the measurement outcome of the path qubit is 0 or 1,
the input polarization qubit must have been in the �H� or �V�
state, respectively, with a certain fidelity. For a single photon
emerging at the output mode 0 of VBS�t ,r�, i.e., the outcome
of measurement on the ancilla path qubit is �0�, the state of
the system qubit �the polarization state� must be �t �H�
+�r �V�. Similarly, for a single photon emerging at the output
mode 1 of the HWP-PBS system, the polarization state must
be �t �H�+�r �V�. We thus apply the conditional feed-
forward operation �x in the output mode 1 to flip the polar-
ization state so that �H�↔ �V� and this operation was imple-
mented with a HWP set at 45°. �Note that �z was needed for
the protocol described in Fig. 1.�

Finally, to perform state analysis on the output system
qubit �the polarization state�, we first apply the inverse po-
larization transformation WP�
�−1 by using a QWP at an
angle �2+
 /2 followed by a HWP at an angle �1, in each
output mode of the Mach-Zehnder interferometer. The state
of the output system qubit was then analyzed by using a PBS
followed by two detectors, Di��� and Di����, at the output
mode i of the Mach-Zehnder interferometer. Here, �� ����
=0. Keep in mind that the subscript i �i=0 or 1� denotes the
measurement outcome of the ancilla path qubit �18�. Since
we are dealing with the heralded single-photon source, we
record the coincidence count between the trigger detector
and one of the four detectors Di��� and Di����. Note that the
coincidence measurement needed for the heralded single-
photon state has nothing to do with the postselection-free
feature of the present MDM protocol.

The experimental estimation fidelity Gavg and the opera-
tion fidelity Favg are obtained from the detection events as
follows. First, the measurement strength on the ancilla path
qubit was set by choosing the HWP angle � between 0° and
22.5°. When �=22.5°, H� becomes the usual Hadamard op-
eration on the path qubit since t=r=1 /	2 and this corre-
sponds to the weakest measurement or the classical random
guess. The strongest measurement setting is �=0°.

Second, for an input system qubit �the polarization state�
���s, we measure the coincidence counts between the trigger
detector and one of the four state analyzing detectors Di���

and Di���� while keeping the phase difference between the
two arms of the Mach-Zehnder interferometer at 0, modulo
2
. Since the multimode fiber coupled detectors have
slightly different coupling efficiencies, the raw coincidence
counts are then corrected for the measured coupling efficien-
cies, resulting in Ni��� and Ni����. The normalized count
is defined as ni���=Ni��� /Ntot, where Ntot=N0���
+N0����+N1���+N1����, and similarly for ni����.

Third, the state-dependent operation fidelity F� is then
evaluated as F�= �� ��F ���=n0���+n1���. The state-
dependent estimation fidelity is evaluated as G�= �� ��G ���
= P0 � �H ����2+ P1 � �V ����2, where the probability of measure-
ment outcome of i is given as Pi=ni���+ni����. The state-
dependent G� and F� are then obtained for six different input
system qubits, i.e., �H�, �V�, �L�= ��H�+ i �V�� /	2,
�R�= ��H�− i �V�� /	2, �D�= ��H�+ �V�� /	2, and �A�
= ��H�− �V�� /	2 �10�. The state-averaged estimation and op-
eration fidelities Gavg and Favg are then obtained by averag-
ing G� and F� values, respectively, for the six input states.
Finally, the whole procedure was repeated for 10 different
measurement strengths, i.e., 10 different angle settings of �.

A sample of the experimental data is shown in Table I.
The setting for the measurement, �=22.5°, corresponds to
the classical random guess, i.e., the theoretical estimation
fidelity G=0.50. The numbers correspond to channel effi-
ciency corrected coincidence counts �Hz�, averaged over four
independent measurements, for six different input states. We
perform three sets of measurements such as in Table I to
experimentally evaluate the estimation fidelity Gavg and the
operation fidelity Favg for each of the measurement settings.

The final experimental data are shown in Fig. 3. The solid
line shows the theoretical optimal trade-off relation of Eq.
�4� between the information gain �or classical guess; estima-
tion fidelity� and the state disturbance due to measurement
�operation fidelity�. The experimental data are shown in solid
squares and they summarize the results of three experimental
runs. It is clear that the experimentally obtained Gavg and
Favg closely follow the MDM condition in Eq. �4�. Slightly
less than ideal operation fidelity, i.e., F�1, when the estima-
tion fidelity G=0.5 is due to the imperfect alignment of the
Mach-Zehnder interferometer, imperfect optics, and small ef-
ficiency differences between the detectors. �To reach F=1,
the Mach-Zehnder interferometer would have to exhibit
100% interference visibility.�

In summary, we have proposed a minimum disturbance
measurement protocol and the corresponding postselection-

TABLE I. An experimental data set for �=22.5°. Channel effi-
ciency corrected coincidence counts �Hz�, averaged over four inde-
pendent measurements, are shown.

� N0��� N0���� N1��� N1����

�H� 71.72 0.48 73.73 0.40

�V� 82.97 0.26 77.08 0.11

�D� 77.69 0.67 78.07 2.31

�A� 80.73 1.67 73.51 2.97

�R� 78.07 1.33 74.16 4.95

�L� 83.02 2.00 75.46 1.65
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free linear optical scheme to implement the protocol using
the single-photon polarization-path two-qubit state. We have
also demonstrated the proposed scheme using the heralded
single-photon source from spontaneous parametric down-
conversion, showing good agreement with the theoretical
G-F bound for the optimal quantum measurement. Finally, it
is interesting to note that the present protocol and scheme
could be expanded to explore optimal quantum measurement
bound for high-dimensional quantum states or qudits by us-
ing, for example, multipath interferometric geometries to re-
alize high-dimensional path qudits �19,20�.
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FIG. 3. �Color online� Experimental data. Solid line shows the
theoretical optimal trade-off relation. The experimental fidelities,
Gavg and Favg, are shown as solid squares.
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