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We study the physical implementation of an optimal tomographic reconstruction scheme for the case of
determining the state of a multiqubit system, where trapped ions are used for defining qubits. The protocol is
based on the use of mutually unbiased measurements and on the physical information described in H. Häffner
et al. �Nature �London� 438, 643 �2005��. We introduce the concept of physical complexity for different types
of unbiased measurements and analyze their generation in terms of one and two qubit gates for trapped ions.
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A main task in any experimental physical setup for imple-
menting quantum computation is the ability to determine the
output state of any given quantum algorithm �1�. The stan-
dard procedure applied for quantum state reconstruction of a
density operator lying in a 2N dimensional quantum system,
in the case of N qubits, consists in projecting the density
operator onto 3N, completely factorized, bases in the corre-
sponding Hilbert space �2�. All these measurements are ob-
tained by applying rotations on single qubits �which are re-
ferred to as local operations� followed by projective
measurements onto the logical basis. This was recently
achieved for the case of eight qubits, with trapped ions �3�.
The experiment was done by following the quantum com-
puter architecture based on ions in a linear trap proposed by
Cirac and Zoller �4�. Besides, the experimental implementa-
tions of several quantum protocols have also been reported
by using trapped ions �5�. In all these cases the quality of the
protocols is tested using standard tomography for quantum
state determination. This scheme has also been used in the
cases of considering optical setups �6� and NMR �7�.

As mentioned above, in the standard measurement
scheme only local operations are required to generate all the
necessary projections. In each basis �setup�, 2N−1 indepen-
dent measurements can be performed, so that not all the ex-
perimental outcomes obtained in different bases are linearly
independent, that is, there are redundant measurements. In
the case of a N-qubit system the antidiagonal elements have
the larger errors. Actually, accumulated errors are not uni-
form; these errors depend on the number of single logic gates
used for determining given elements, so that larger errors
appear when single logic gates act on all the particles. As-
suming that there is an error � in the measurement of ion
populations, then the accumulated error for antidiagonal ele-
ments is of the order of ��2N−1+2N−2�2N−1�. These errors
may lead to a density operator which does not satisfy the
positiveness condition and so the information from the ex-
perimental data must be optimized. For this purpose the
maximum likelihood estimation �MLE� method �8� has been
used for the improvement of the density operators in experi-
ments with light qubits �9� as well as in experiments with
matter qubits �5�.

It is well known that the optimal quantum state determi-
nation is related to the concept of measurements on mutually

unbiased bases �MUB� �10�, which we will simply refer to as
MUB tomography. Such bases possess the property of being
maximally incompatible. This means that a state producing
precise measurement results in one set produces maximally
random results in all the others. The set of mutually unbiased
projectors given by

Pn
��� = ��n

������n
����, n = 1, . . . ,2N, � = 1, . . . ,2N + 1, �1�

where

Tr�Pn
���Pn�

����� = �����nn� +
1

2n �1 − ����� �2�

and 	n=1
2N

Pn
���= I �I denotes the identity�, defines a complete

set of projection measurements, in the sense that the mea-
sured probabilities p�n

=Tr�Pn
����� completely determine the

density operator of the system:

� = 	
�=1

2N+1

	
n=1

2N

p�nPn
��� − I . �3�

The number of MUBs for N qubits is �2N+1�, which is es-
sentially less than 3N. The use of MUBs can represent a
considerable reduction in the time needed for performing the
full state determination. For instance, recently the recon-
struction of a quantum state codified in the inner states of
eight ions in a linear trap was reported �3�. In this experiment
the reconstruction process takes more than 10 hours, because
of the measurement in 6561 different bases and a hundred of
times for each one, so the number of measurements is about
656 000, which quickly grows for an increasing number of
qubits. In the case of using MUB tomography, the number of
measurement bases is only 257 for determining all the ele-
ments of the density operator associated with this state. This
could reduce the experimental time, roughly speaking, to
25 min only, where we have considered a linear interpola-
tion. Recently, an alternative reconstruction scheme has been
proposed, which is based on using pyramidal states for single
qubits �11,12�. The implementation of reconstruction using
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pyramidal states requires measurement of N-particle correla-
tions �12�.

In the case of MUB tomography, each coefficient p�n in
Eq. �3� has an error associated with the measurement of only
one projector Pn

��� �1�. Hence, the error in each coefficient is
essentially determined by the ability of projecting the system
onto Pn

���. In practice, such measurements are implemented
by projecting the system onto the logical basis after perform-
ing a set of unitary transformations. Such transformations,
due to their nonlocal features, can be decomposed into a
sequence of single and nonlocal gates, so that the error in
this reconstruction is mainly associated with the quality of
these logic gates. Of course, the reconstructed density opera-
tor can be subjected to the MLE method.

The main shortcut of the MUB-tomography scheme is the
experimental implementation of MUB projectors, which is
related to the fact that any set of MUBs contains nonfactor-
izable bases. The measurements on such nonfactorizable
bases require application of nonlocal gate operations, which
currently can not be performed with fidelity 1. Hence, the
natural question for optimizing the experimental implemen-
tation can be casted as follows: Which is the set of MUBs
that requires the minimum number of nonlocal operations?

To approach this problem, we consider a complete set of
MUBs where the basis factorization is denoted by the fol-
lowing set of natural numbers: �k1 ,k2 , . . . ,k��N��, where ��n�
is the number of possible decompositions of 2N+1 as a sum
of positive numbers, such that 	 jkj =2N+1. Here, the nota-
tion �k1 ,k2 , . . . � means that there are k1 completely factorized
bases; k2 bases with two particle entanglement and all the
other particles are factorized, etc. Of course, for a given
number of qubits, only a certain factorization structure is
admitted. For instance, in the two-qubit case the only al-
lowed structure is �3,2�, which means that there are 3 com-
pletely factorized bases and 2 nonfactorized ones. In the case
of 3 qubits, the bases can be described by the following
notation: �nf ,nb ,nnf�, with nf +nb+nnf =23+1. Here, nf de-
notes the number of completely factorized bases; nb the num-
ber of bases with bipartite entanglement, i.e., each state of
such bases is factorized as ���ij ���k,i� j�k, where
i , j ,k=1,2 ,3; and nnf represents the number of nonfactor-
ized. For 3 qubits, there are 4 different sets of MUBs �13,14�,
which are denoted as �3,0 ,6�, �1,6 ,2�, �2,3 ,4� and �0,9 ,0�.
Because any N-qubit entanglement operation can be decom-
posed into a sequence of single qubit gates and controlled-
NOT gates �CNOT gates� �15�, each basis �in the given set of
MUBs� can be characterized by the minimum number CNOT

gates.
In this work we shall concentrate on the experimental

implementation of MUB tomography in the case of trapped
ions as reported in Ref. �5�. In the case of 40Ca+ trapped ions,
where the qubit is codified in the ground state �0�
S1/2�m
=−1 /2� and the metastable �1�
D5/2�m=−1 /2� state, single
logic gates are implemented with a fidelity, �SG, higher than
99%. However, nonlocal operations are less accurate; here
we will assume the reported value for the CNOT gate fidelity,
�CNOT, which reaches a value up to 92�6�% �5�. Then we
can characterize the physical complexity of each set of
MUBs as a function of the number of nonlocal gates needed
for implementing the projection measurements. Then, a com-

plexity of a given MUB is characterized by the number Cj,
which can be defined as

Cj = ln
1

�CNOT
nj

	 nj , �4�

where nj is the number of CNOT gates needed for generation
of such a basis. The total complexity of a given set of MUBs
is then

C = 	
j

Cj . �5�

Thus the total complexity is proportional to the total number
of CNOT gates for preparing all the required projection mea-
surements. As a simplest example let us consider the case of
3 qubits, where there are only 4 different sets of MUBs. The
bases labeled by �nf ,nb ,nnf� have complexities
C	0
nf +1
nb+2
nnf. This means that the most ad-
equate set for MUB-tomography is �0,9 ,0�. We have as-
sumed, in this derivation, that the fidelity of the factorized
bases is 1, in the sense that a sequence of single ion gates are
required for their generation. We also assume that CNOT

gates between neighboring ions have the same fidelity as
between ions that are further apart, because CNOT gates are
implemented by using the center of mass motion as a data
bus. The decomposition of the corresponding bases can be
generated by starting from the standard computational basis
is that given in Table I.

In the 4-qubit case, there are 34 sets of MUBs with
different factorizations, which are labeled by
�nf ,nb ,nt ,nbb ,nnf�, with nf +nb+nt+nbb+nnf =24+1. Then,
there are nf factorized basis; nb basis with bipartite entangle-
ment, ���ij ���k ���l; nt basis with tripartite entanglement,
���ijk ���l; nbb basis with two bipartite subsystems, ���ij ���kl;
and nnf nonfactorized basis, where i� j�k� l and i , j ,k , l
=1,2 ,3 ,4. All such sets can be obtained in a regular way by
applying finite phase-space methods�17�. We remark that al-
ways there exists the so-called “standard” set of MUBs,
which is related to rays in the finite phase space and can be
easily constructed starting with two classes of operators con-
taining either �̂z or �̂x operators �18�. The 4 qubit case is
essentially different from the above discussed 3 qubit case.
The main difference consists in that now there exist two

TABLE I. Decomposition of the MUBs in the case of 3 qubits
for �0,9 ,0� structure, where Rk

�j�=Rk
�j��� /2�, with k=x ,y ,z are the

single ions operations �16� and CNOT
�ij� is the controlled-NOT gate

with the �th and jth ions as source and target, respectively.

Basis Gate operations Basis Gate operations

1 Ry
�1�Rx

�3�CNOT
�23� Ry

�2� 6 Ry
�2�Rz

�3�CNOT
�13� Ry

�1�

2 Rx
�1�Ry

�3�CNOT
�23� Ry

�2� 7 Rz
�2�Rx

�3�CNOT
�12� Ry

�1�

3 Rz
�3�CNOT

�23� Ry
�2� 8 Ry

�2�Ry
�3�CNOT

�12� Ry
�1�

4 Ry
�3�CNOT

�13� Ry
�1� 9 Rx

�2�CNOT
�12� Ry

�1�

5 Rx
�2�Rx

�3�CNOT
�13� Ry

�1�
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locally nonequivalent completely nonfactorized states. Such
states are isomorphic to the so-called graph states �19–21�.
The first type, A, are isomorphic to the eigenstates of the set

��̂z�̂xÎÎ, �̂x�̂z�̂xÎ, Î�̂x�̂z�̂x,ÎÎ�̂x�̂z�. The second type, B, are

isomorphic to the eigenstates of the set ��̂z�̂xÎÎ, �̂x�̂z�̂x�̂x,

Î�̂x�̂zÎ, Î�̂xÎ�̂z�. Nevertheless, both types of sets in the opti-
mal decomposition are obtained by applying 3 CNOT gates
only. Taking into account that MUBs with factorizations
�1,3� and �2,2� can be generated with 2 CNOT gates, we
realize that the optimum set of MUBs corresponds to the
factorization structure �0,0 ,12,2 ,3�, which only contains
type A graph states. The complexity of such a set is C	37
while, for instance, the standard set of MUBs, �3,0 ,0 ,2 ,12�,
has a complexity C	40.

The optimum set of MUBs corresponds to a set of 255
disjoint operators which are arranged in a table consisting of
17 lines, so that each line contains 15 commuting operators
�14�. The whole table can be obtained from only 8 elements
arranged in two lines of commuting operators,

1̂σ̂zσ̂xσ̂y σ̂xσ̂x1̂σ̂x 1̂σ̂zσ̂yσ̂z σ̂yσ̂zσ̂zσ̂x

1̂1̂σ̂z1̂ σ̂yσ̂x1̂σ̂x σ̂zσ̂zσ̂z1̂ σ̂xσ̂x1̂σ̂z �6�

with factorization �4� and �1,3� for the first and second row,
respectively. All other operators of the above table can be
generated by using the following rule: Ar,c=Ar,c−3
Ar,c−4
and Ar,c=A2,c
A1,r+c−3 for r�2, where the index r �c� labels
the rth MUB �cth operator which has the basis states as
eigenvectors of the rth MUB�, and r �c� goes from 1 to 24

+1 �1 to 24−1�. Here, the sums are modulo 15. The 4 qubit
case is somewhat special, because the standard table contains
two bi-factorized bases �2,2� and so there is no substantial
difference with respect to the optimum set. This apparently
does not occur for a larger number of qubits, i.e, the standard
table forN�4 would contain 2N−2 completely nonfactorized
bases. The decompositions for the optimal set of MUBs is
given in Table II.

The situation is quite different in the 5 qubit case, in
which there exist at least 9000 nonisomorphic sets of MUBs
with different factorizations, which are labeled by
�nf ,nb ,nt ,nbb ,nf ,nbt ,nnf�, where nf denotes the number of
bases with four-particle entanglement, ���ijkl ���n, and nbt the
number of bases with bipartite and tripartite entanglement,
���ijk ���lm, with i� j�k� l�m and i , j ,k , l ,m=1,2 ,3 ,4 ,5.
In the case of 5 qubits, there are four locally nonequivalent
completely nonfactorized states �22�. In this case the stan-
dard table does not contain partially factorized bases and has
the structure �3,0 ,0 ,0 ,0 ,0 ,30�, and it is given by

1̂1̂σ̂zσ̂z 1̂ σ̂zσ̂zσ̂z1̂σ̂z 1̂1̂1̂1̂σ̂z 1̂σ̂z 1̂σ̂z1̂ 1̂1̂1̂σ̂z1̂

1̂1̂σ̂xσ̂x1̂ σ̂xσ̂xσ̂x1̂σ̂x 1̂1̂1̂1̂σ̂x 1̂σ̂x1̂σ̂x1̂ 1̂1̂1̂σ̂x1̂
.

The set of MUBs corresponds to 1023 disjoint operators
which are arranged in a table consisting of 33 lines, so that
each line contains 31 commuting operators. All the other
projectors of this table are obtained by using the following
rule: Ar,c+18=Ar,c
Ar,c+1 and Ar,c=A1,c
A2,r+c−2, for r�2,
where the sums are modulo 31. This table contains 30 non-
factorized bases among which there are three types corre-
sponding to different graphs: 6 of type B, 18 of type C, and
6 of type D �graphs 6, 7, and 8 in Fig. 4 of Ref. �22��. It
results that 4 CNOT gates are required to generate bases of
type B and C; nevertheless, the minimum number of CNOT

gates to obtain the type D graphs is 5. This means that one
needs 126 nonlocal operations to generate the whole set of
MUBs, with the corresponding complexity C	126. The op-
timum set has the structure �0,0 ,1 ,3 ,10,2 ,17� correspond-
ing to a complexity C	112, and contains one nonfactorized
basis of type B and 16 bases of type C. In this case the set of
operators needed for generating the whole table is

σ̂xσ̂zσ̂zσ̂xσ̂z σ̂xσ̂z 1̂σ̂yσ̂y σ̂zσ̂z 1̂1̂σ̂x σ̂yσ̂zσ̂zσ̂yσ̂z σ̂x1̂σ̂zσ̂xσ̂z

1̂σ̂yσ̂yσ̂xσ̂z σ̂zσ̂yσ̂yσ̂zσ̂x σ̂zσ̂z 1̂σ̂zσ̂z σ̂z 1̂σ̂xσ̂xσ̂x 1̂σ̂zσ̂x1̂1̂
.

TABLE II. The decompositions on single logic gates and
controlled-NOT gates for the optimal set of MUBs �0,0 ,12,2 ,3� in
case of 4 qubits.

Basis Gate operations

1 Rx
�4�CNOT

�14� CNOT
�12� Rx

�1�

2 Rx
�2�CNOT

�31� Rx
�3�CNOT

�41� Rx
�4�

3 Ry
�2�Rx

�1�CNOT
�13� CNOT

�14� Ry
�1�

4 Rx
�4�Ry

�2�CNOT
�12� Rx

�1�CNOT
�13� Ry

�1�

5 Ry
�1�Rx

�2�CNOT
�34� Rx

�3�CNOT
�24� Rx

�2�

6 Ry
�4�Rx

�3�CNOT
�23� Rx

�2�CNOT
�31� Rx

�3�

7 Ry
�1�CNOT

�13� CNOT
�12� Rx

�1�

8 Ry
�3�Ry

�1�CNOT
�14� Rx

�1�CNOT
�12� Ry

�1�

9 Rx
�1�Rx

�2�Rx
�4�CNOT

�23� CNOT
�24� Ry

�2�

10 Rx
�1�CNOT

�34� Ry
�3�CNOT

�14� Rx
�1�

11 Rx
�3�CNOT

�24� Ry
�2�CNOT

�14� Rx
�1�

12 Ry
�2�Ry

�3�CNOT
�23� CNOT

�24� Ry
�2�

13 CNOT
�13� Ry

�1�CNOT
�24� Rx

�2�

14 Ry
�2�CNOT

�14� Ry
�1�CNOT

�23� Ry
�2�

15 Ry
�4�Rx

�1�CNOT
�34� Rx

�3�CNOT
�32� CNOT

�31� Rx
�3�

16 Rx
�3�CNOT

�13� Rx
�1�CNOT

�34� Rx
�3�CNOT

�12� Ry
�1�

17 Rx
�2�Rx

�3�CNOT
�12� Ry

�1�CNOT
�23� CNOT

�24� Rx
�2�
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The rule for generating the other projectors is the same as in
the standard table. For this table the decompositions on
single logic gates and CNOT gates can be obtained in the
same way as for the above discussed cases.

We have studied the problem of optimal tomographic re-
construction of a density operator of systems of N cold
trapped ions. The optimality of a given set of MUBs is es-
sentially defined in terms of the minimum number of re-
quired conditional operations. We have given an explicit
form of operations to generate the optimal set of MUBs for
the case of 3 and 4 qubits, and the factorization operations
for the 5 qubit case can be obtained in the same way. In the
case of larger numbers of qubits, a generic procedure allow-
ing generation of the whole set of MUBs is also available. It
basically consists in finding all the possible strings of 2N

−1 commuting operators �using explicit geometrical con-
struction� with a subsequent separation onto the 2N+1 dis-

joint sets �23�. Eigenstates of such commuting operators in
each disjoint set generate one of the corresponding MUBs
�17�. This reconstruction scheme is valid for any physical
setup, where nonlocal operations between neighboring qubits
have the same fidelity as between distant qubits. This is sat-
isfied in the case of trapped ions because a CNOT gate, be-
tween any pair of ions, is implemented by using the center of
mass motion as a data bus. If the physical implementation
does not meet this requirement, the optimal MUBs to be used
for reconstructing the state must be determined by consider-
ing the fidelities between non-neighboring qubits.
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