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We present an implementation of a robust quantum random number generator based on the quantum fluc-
tuations of the collective spin of an alkali-metal vapor. The achieved bit rate is limited by the spin relaxation
rate of the alkali-metal atoms 1/7), to about 1 kbit/s. However, the same physical scheme, which is impervious
to limitations posed by single-photon detectors used in current implementations and rests solely on threshold
detection, can be extended to solid state systems with a bit rate higher than 1 Gbit/s.
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I. INTRODUCTION

Random numbers are indispensable for a wide range of
applications, from numerical simulations of complex physi-
cal systems [1] to testing Bell’s inequalities [2]. Recently,
with the advent of quantum information science, and in par-
ticular, with the development of quantum communication
and quantum cryptography protocols [3,4], random numbers
satisfying particular criteria are necessary. The basic require-
ment is obviously related to the degree of “randomness” of
the generated series of bits. It has been shown [5] that Monte
Carlo simulations using pseudorandom numbers generated
algorithmically can produce erroneous results. Physical ran-
dom number generators (RNGs) have thus emerged as reli-
able sources of randomness, the latter relying on the practi-
cally unpredictable behavior of a complex or chaotic system.
However, were adequate computational power available, the
prediction of the evolution of a classical system would be
fundamentally possible. Quantum random number generators
(QRNGS), on the other hand, take advantage of the inherent
randomness of quantum systems, thus providing a series of
random bits which is by no means predictable. Radioactive
sources have been used as QRNGs [6], but so far the most
versatile generators rely on a quantum dilemma of single
photons [7,8], i.e., the “which-way” decision a photon has to
make when crossing a beam splitter, with each of the two
possible outcomes corresponding to the bits “0” and “1.”

In this work we report on a QRNG which is limited by the
autocorrelation time of the quantum system, works with a
coherent light beam and hence is not limited by the autocor-
relation time of single-photon detectors. The physical system
used for the random bit generation is an alkali-metal vapor.
The randomness stems from the quantum fluctuations of the
collective atomic spin, known as spin noise, which is of its
own interest due to the connection with precision measure-
ments [9]. The achievable random bit rate of this generator is
limited by the transverse spin relaxation rate of the alkali-
metal vapor 1/T,, since T, determines the correlation time of
the quantum noise signal used to generate the random bits. If
not the only one, this is one among the very few cases where
a high relaxation rate is desirable. This is analogous to the
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desire for a short coherence time of the photon source in the
optical random number generators [7]. The presented spin
noise QRNG is much slower than the optical generators,
however, a similar scheme using solid state systems [10,11]
has the potential to provide for random bit rates higher by
several orders of magnitude. In the following we will de-
scribe the experimental apparatus and the method of the ran-
dom bit sequence generation. We will then focus on answer-
ing the two prevalent questions regarding every QRNG: (a)
is it quantum and (b) is it random.

II. GENERATION OF RANDOM BITS FROM SPIN NOISE

The experimental setup shown in Fig. 1 will be briefly
described as it is similar to the one used in Ref. [12]. A diode
laser provides a probe beam up to a power of 30 mW, and is
blue-detuned by 30 GHz from the rubidium D1 line. The
laser is linearly polarized before entering the rubidium cell.
The spontaneous spin noise of the rubidium vapor induces
noise in the paramagnetic Faraday rotation angle of the probe
laser, which is measured with a balanced polarimeter. The
noise spectrum is centered at the Larmor frequency w;
=28 kHz due to the presence of a transverse magnetic field
B,=60 mG. The polarimeter signal is band-pass filtered, am-
plified and registered at a personal computer with a DAQ
card. The data processing and the random bit generation are
performed by LabView®. A typical spin noise signal is
shown in Fig. 2(a). The sequence of random bits is obtained
as follows: with the magnetic field turned off we monitor the
level of background noise thus defining a positive (and a
negative) threshold. With the magnetic field turned on, the
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FIG. 1. Experimental setup. LP, linear polarizer; PBS, polarizing
beam splitter; PD, photodiode; BPF, band-pass filter.
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FIG. 2. (a) Polarimeter signal as a function of time. Filter output
noise without spins (magnetic field off) is shown in white, spin
noise signal (magnetic field on) is shown in gray. The dashed lines
are the positive and negative thresholds, which when exceeded,
produce the random bits “1” and “0,” respectively. (b) Evolution of
the ratio Ny/N with the number of acquired bits. We show two
different realizations of the spin noise QRNG, each consisting of
10° bits, along with one produced with the RNG of
MATHEMATICA®. N, is the number of 1’s among the N bits.

bit “1” (“0”) is registered when the spin noise signal exceeds
the positive (negative) threshold. That this is a random event
can be first seen with a basic randomness test, namely, the
ratio of “1’s” (or “0’s”) to the total number of acquired bits.
As expected and shown in Fig. 2(b) this ratio tends to 1/2 for
large enough number of acquired bits. More elaborate ran-
domness tests will be presented in Sec. IV. Since spin noise
is [12] an Ornstein-Uhlenbeck stochastic process, its autocor-
relation is [15] 772, where 1/T, is the half-width of the
spin noise resonance (see inset of Fig. 3). In our operating
conditions 1/7,~10 kHz, so that with the chosen threshold
and the resulting bit rate of 1 kbit/s, the autocorrelation is
e~ i.e., one out of 22 000 bits is correlated with its neigh-
bor. This figure can obviously be increased at the expense of
the bit rate by choosing a higher threshold. We have also
verified that the distributions of both the noise (electronic
+photon shot noise) and the signal (spin noise) amplitudes N
and Sg,, are Gaussian, with respective widths o, and oy,
=20,. The probability P for a wrong bit assignment is the
probability that the polarimeter signal exceeds the positive
(negative) threshold when the spin noise signal is negative

(positive). If p(S,,N) is the joint probability density and S
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FIG. 3. Signal to noise ratio vs probe laser power, showing the
saturating behavior expected from a spin noise signal. What is plot-
ted is the square root of Eq. (1). Inset: part of the set of spin noise
spectra used for the curve.

the threshold value, it is P:fgmdSspf?o_S dNp(Sp,N). For a
threshold Sy=50, that we use, P= 10‘? proving that this
QRNG is highly robust.

Furthermore, the magnetic resonance broadening is solely
due to the irreversible dephasing of the spins brought about
by atomic collisions and by light broadening [13]. Dephasing
due to magnetic gradients, which in our case are less than 0.3
mG/cm, results [14] in a broadening of less than 20 Hz out of
10 kHz total width. Reversible spin relaxation which could
lead to bit correlations is thus negligible. Since the atoms
reside in a magnetic shield and have zero average spin po-
larization, there is no way that a coherent external manipu-
lation can induce any correlations in the spin noise signal.

II1. IS SPIN NOISE QUANTUM NOISE?

We will first show that the acquired signal is indeed a
noise signal and not a coherent signal due to, e.g., optical
pumping. This is usually proved [12] by the fact that the
signal integrated power is proportional to the atom number
N,. Here we use a new method, namely, the scaling of the
signal-to-noise ratio with the probe beam power. If b is the
broadening due to atomic collisions and transit time effects,
then the spin noise power spectrum, centered at w;, will have
a power-broadened half-width 1/T,=al+b, where a is a con-
stant and / the incident probe laser intensity. The polarimeter
signal is equal to 2d, I, where O, ~(S,) is the Faraday ro-
tation angle, proportional to the expectation value of the en-
semble spin projection along the laser propagation axis. Spin
noise fluctuations of (S,), and hence ®,, are independent of
laser power. Thus the power spectral density has a peak
height S proportional to ®21?/(al+b). The background N,
dominated by photon shot-noise, will be proportional to I,
therefore

S 1

N al+b’

(1)

Thus the ratio S/N saturates at high intensities, as shown in
Fig. 3. On the contrary, in the hypothetical presence of a
nonzero circular polarization of the probe laser, the angle ®,
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would be proportional to I, and the ratio S/N would not
saturate. We now turn to the question of whether spin noise
is quantum noise. This is directly related to sensitive atomic
magnetometers employing spin-polarized alkali-metal vapors
[16], where spin noise fundamentally limits the achievable
sensitivity. An unpolarized ensemble of N, spin-1/2 atoms is
described by the maximally mixed density matrix p=1/2.
The ensemble uncertainty of the total spin S, is AS,
=N,,/4. This would produce a coherent signal (S,)~ AS, at
the Larmor frequency w; were it not for the atomic colli-
sions, which relax any nonzero value of (S,) while at the
same time driving fluctuations of (S.) around the mean value
of zero. Indeed, if we consider two atoms colliding along a
given collision trajectory being initially in the translational
angular momentum state |m) (the Z axis of the magnetic field
is the quantization axis) and their spin state being described
by the mixed state p,=1/4, the total state will be p=p;
® |m)(m|. This will evolve after the action of the spin-spin
interaction Hamiltonian [17] H, to a new state p’=p
® [m)(m[+2 0 = 1¢;p; ;® [m+j)(m+]]|. Tracing out the unob-
served translational degrees of freedom, which play the
analogous role of the environment g-bits in the quantum tra-
jectories description of relevant phenomena [18], leads to a
change of the spin density matrix 5pS:Ej=0,i1cjpS’,j. The j
=0 term is responsible for fluctuations, whereas the j= %1
terms cause dissipation. Thus spin noise is caused by the
quantum mechanical uncertainty of the spin degrees of free-
dom combined with measurement-induced noise, where
measurement in this case is due to the atomic collisions.
Hence spin noise is quantum noise, i.e., it fully bears a fun-
damental unpredictability.

IV. TESTING RANDOMNESS

The sequences of random bits produced by our setup were
put through a large number of tests, most of which are de-
fined in [19]. In all cases sets of 10° to 10° bits were tested.
Although such a number of bits is relatively small for some
tests, no discrepancies from a truly random behavior were
observed. For completeness, the results of some illustrative
tests are presented. In Fig. 4(a) the number of occurrences of
n-bit length blocks of consecutive zeros and ones is shown.
As expected from a random sequence, both scale as 27" with
almost equal proportionality factors. In Fig. 4(b) the bit-
autocorrelation I', between bits at distance n is depicted. As
defined in Ref. [8],
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FIG. 4. (a) Occurrence of blocks of zeros (solid line) and ones

(dashed line). (b) Bit autocorrelation as a function of bit distance n.
| N-1

Fn = ]T/E X; @ X(i+n)mod N (2)

i=1

For uncorrelated binary random variables A and B, Var(A
@B):}T. Using the well-known statistical relations Var(X
+Y)=Var(X)+Var(Y) and Var(aX+b)=a*Var(X) leads to

1

Var(I',) = 7, which predicts a variance of 2.5 X 1077 for our

sample size, close to the measured value ~2.9 X 1077.

V. CONCLUSIONS

We have demonstrated a method for robust generation of
a random bit sequence based on the quantum fluctuations of
the collective spin of an alkali-metal vapor. This method only
requires fast threshold detection and does not rely on effi-
cient single photon detectors. To increase the bit rate, the
same scheme could be applied to solid state systems. For
example, conduction band spin fluctuations of donor elec-
trons in bulk GaAs [10], with a spin noise resonance width
on the order of 10 MHz, can lead to bit rates on the order of
10 Mbit/s or higher, depending on donor concentration.
Similarly, in thin GaAs quantum well structures [11], the
relevant dephasing rates are higher than 1 GHz, potentially
leading to equally fast random bit rates.
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