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Systems of coupled photonic cavities have been predicted to exhibit quantum phase transitions by analogy
with the Hubbard model. To this end, we have studied topologies of few �up to six� photonic cavities each
containing a single two-level system. Quantum phase space diagrams are produced for these systems, and
compared to mean-field results. We also consider finite effective temperature, and compare this to the notion of
disorder. We find the extent of the Mott lobes shrink analogously to the conventional Bose-Hubbard model.
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I. INTRODUCTION

There has recently been a convergence of several different
fields of physics: condensed matter, quantum optics, and in-
formation science. This convergence has been realized by a
staggering increase in the ability to fabricate and control
quantum systems experimentally, and an ability to attack the-
oretical problems of increasing complexity. One aspect of
this convergence of fields is the push to realize the quantum
computer. Here we discuss another aspect: that of a quantum
simulator. In particular, we explore the possibility for a quan-
tum atomic-optical system �here an interacting lattice of op-
tical cavities with embedded two-state systems� to undergo a
quantum phase transition by direct analogy with the Hubbard
model.

The Hubbard model �1� describes the hopping of interact-
ing particles around a lattice of allowed positional states. A
quantum phase transition is observed between delocalized
particles �superfluid phase� and localized particles �Mott-
insulator phase� depending on the strength of the hopping
term relative to the on-site interaction. Numerous facets of
the Hubbard model have been considered including the pre-
diction of glassy phases �2�, Hilbert-space optimization �3�,
and implementations of topological quantum computing �4�.
One of the most dramatic and beautiful examples of the
Bose-Hubbard model is the prediction �5� and recent demon-
stration �6� of the quantum phase transition in an ultracold
atomic gas. Such demonstrations are significant for applying
canonical solid-state treatments to the more controllable re-
gime of atom optics, allowing new predictions to be tested
�e.g., the supersolid phase �7��. Recent work on quantum
phase transitions in photonic band-gap lattices does the same
for the photonics-solid-state boundary �8–13�.

At first glance, the possibility for a quantum phase tran-
sition in an optical system seems surprising. This is due to
the fact that photons do not normally interact with each other
with any appreciable strength, and for this reason most non-
linear optical processes are confined to the realm of classical
optics. There are, however, many exceptions to this, but per-
haps the most dramatic is the phenomenon of photon block-
ade �14�. Photon blockade is an example of a cavity quantum
electrodynamical interaction in the strong coupling limit. An
atom is placed in a cavity, and because the energy levels of
the atom-cavity system depend on the number of photons in

the cavity, a photon-number-dependent resonance shift is ob-
served �15�. If the atom-cavity interaction is strong enough,
this shift can be sufficient to prevent more than a predeter-
mined number of photons to enter the cavity: photon block-
ade. This effect has been analyzed for four-state systems
�14,16,17� and two-state systems �18�. More recently photon
blockade has been observed �19,20�, adding substantial im-
petus to apply this effect to a range of applications.

Here we consider the properties of a lattice of cavities,
each containing a single, quasiresonant two-state system, so
as to be effectively treated by the Jaynes-Cummings interac-
tion �21�. We go beyond the earlier idealized treatment �9� by
building systems of increasing size to predict the results in
the few-cavity �up to six� limit, and also consider the ther-
modynamic implications of disorder. By directly connecting
these small scale cases �solved by direct diagonalization�
with the thermodynamic limit, our results serve as a guide to
coming proof-of-concept experiments. We are also able to
compare our finite cases with the thermodynamic limit
�9,11,22–26�.

In Sec. II we introduce the system of coupled photonic
blockade cavities that will be investigated for quantum phase
transitions, and the extended Jaynes-Cummings-Hubbard
Hamiltonians for both the exact calculation and for the
mean-field approximation. In Sec. III we present results from
the exact diagonalization techniques and compare with
mean-field solutions. Finally, we consider disorder and the
implications for effective model temperature in Sec. IV.

II. PHASE TRANSITIONS IN THE JAYNES-
CUMMINGS-HUBBARD MODEL

The system under consideration is a lattice of optical cavi-
ties, each containing a single quasiresonant two-state system.
The canonical treatment for a single atom-cavity system is
the Jaynes-Cummings model. Photon hopping between cavi-
ties �which is effected by leakage out of the cavities, and into
neighboring cavities� allows the direct comparison to Hub-
bard systems �27�, and hence we refer to this as a Jaynes-
Cummings-Hubbard �JCH� model. There are numerous ways
in which to realize such a system depending on the available
experimental configurations and desired topologies; for ex-
ample, photonic band-gap structures �9� and coupled-cavity
waveguides �10,12�, perhaps realized in microfabricated dia-
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mond �28–30�, arrays of superconducting strip-line cavities
�31,32�, or microcavities with individual cold atoms con-
nected via optical fiber interconnects �33�, or plasmonics
�34�. For concreteness, we will focus our attention on a pho-
tonic band-gap structure where a two-dimensional array of
photonic band-gap cavities constitutes the underlying lattice
and defines the nearest-neighbor topology, and the two-state
system is realized by an implanted impurity �Fig. 1�.

Our emphasis in this work is on systems with a single
two-state system per cavity, but it is important to note that
this is not the only potential system for observing similar
quantum phase transitions. Hartmann et al. have considered
four-state systems �8,35�, in keeping with the original Ima-
moğlu proposal �14�, whereas the case of many atoms per
cavity has been considered by Na et al. �11�. The approach of
Ref. �11� is particularly useful for providing a clear path to
experiments using GaAs quantum dots.

To understand the properties of the JCH system, we first
review the properties of the individual atom-cavity �Jaynes-
Cummings� interactions. The Hamiltonian is

HJC = ��+�− + �a†a + ���+a + �−a†� , �1�

where �+ and �− �a† and a� correspond to the atomic �pho-
tonic� raising and lowering operators, respectively. The tran-
sition energy of the atomic system is �, the cavity resonance
is �, and the cavity-mediated atom-photon coupling is �.
The difference �=�−� is the detuning.

Let �g ,n� ��e ,n�� �n�Z�� represent a cavity that contains
n photons and a single two-level atom in the ground �ex-
cited� state. The energy eigenvectors of Eq. �1� are given by
�g ,0� and

�� ,n� =
��n�g,n� + �− ��/2� � ��n���e,n − 1�

�2�2�n� 	 ��n��
∀ n 
 1,

�2�

with eigenvalues

E�g,0� = 0, E��,n� = n� � ��n� − �/2, �3�

where we have used the generalized Rabi frequency

��n� = �n�2 + �2/4 ∀ n 
 1 �4�

where n is the total number of excitations. These eigenstates
correspond to the well known dressed �polaritonic� states,
and we call the basis formed by them the single-cavity
dressed basis. The eigenspectrum of a single atom-cavity
system is shown in Fig. 2. Because of the atom-photon-
induced shift of the energy levels as a function of the number
of excitations in the system, there is an effective photon-
photon repulsion �18�. It is this photon-photon repulsion
which plays the role of the on-site term in the Hubbard
model, however, it is important to note that because the re-
pulsion decreases with an increasing number of particles, the
canonical Bose-Hubbard system is not realized in our case,
and so although many qualitative similarities are predicted
between the JCH and Bose-Hubbard models, exact equiva-
lence is not guaranteed.

The nonbosonic nature of the particles in the Hamiltonian
of Eq. �1� requires further discussion. Neither the JCH sys-
tem nor the four-state system with few atoms per cavity �8�
retrieve bosonic commutation relations. The limits where we
can view the system as being comprised of interacting
bosons are many atoms per cavity �holds for both the Jaynes-
Cummings and four-state systems �8,11,36��, large detuning
�9�, and large excitation number. Arguably the most impor-
tant case is that described here, namely, one atom per cavity
with few excitations. This is because this regime maximizes
the nonlinear �photon-photon� interactions, and is therefore
the most experimentally accessible regime.

Differences between the JCH and Bose-Hubbard systems
are interesting topics for investigation, and a study of the
particle nature should prove fruitful, but goes beyond our

FIG. 1. �Color online� This schematic shows a possible imple-
mentation of the system, for three nearest neighbors. The dielectric
medium is shown in yellow. The photonic crystal is made by peri-
odic variations in refractive index, caused by drilling holes �white
disks�. The cavities are regions where holes have not been drilled—
effectively, the undrilled holes. In each cavity, a red disk represents
the two-level atom. The arrows indicate the nearest neighbors,
across which photons can tunnel with hopping rate �.
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FIG. 2. �Color online� Energy eigenvalues �Eq. �3�� for a single
cavity as a function of the detuning �. We set �=12� for illustra-
tive purposes. The blue dashed lines indicate the asymptotes of the
energies for each band, the diagonal lines represent the energy of
the cavity due to the atom, while the horizontal lines represent the
energy due to the photons only.
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present work. We may understand some of the differences by
comparing the on-site repulsion in the Bose-Hubbard and
JCH cases. In the Bose-Hubbard system, the interaction U is
a constant; however, in the JCH model this can be seen as
having a particle number dependence, i.e., U��n�= � ���n
+1�−��n��. In the large photon limit, we obtain a noninter-
acting Bose gas, as U��n�→0, and in the large detuning
limit, U��n�→ ��2 /�, which is a constant bosonic
Hubbard-type repulsion �11,36�. There is also no ideal Kerr-
type term to generate an exact quartic interaction. Nonethe-
less, as has been shown, qualitative similarity between the
phase diagrams of JCH and Bose-Hubbard systems is found,
and the analysis of these phase diagrams is a major topic of
this paper.

To generate the JCH Hamiltonian, we add hopping be-
tween cavities, and for a system of N cavities we have

H = �
i=1

N

Hi
JC − �

	i,j�
�ijai

†aj , �5�

where individual Jaynes-Cummings Hamiltonians of Eq. �1�
have identical �, �, and � �this restriction will be relaxed
later�. The intercavity hopping occurs with frequency �ij =�
for nearest neighbors, and �=0 otherwise; it is this term
which defines the topology of the network. Photon transmis-
sion through a one-dimensional chain in a similar structure
has also been considered �37�.

To divine the properties of the phase transition seen in the
thermodynamic limit, we introduce the operator that mea-

sures the total number of excitations of the system L̂

=�i=1
N L̂i, where L̂i=�i

+�i
−+ai

†ai is the number operator of
atomic and photonic excitations of the ith cavity. One can

include a term −�L̂ in the Hamiltonian. We show below,
through arguments of statistical mechanics, that � represents
the chemical potential. Section IV will continue into a dis-
cussion on effective model temperature and disorder. Let us
include this chemical potential term in the Hamiltonian di-
rectly as follows:

H� = H − �L̂ . �6�

We assume that the entire N-cavity system with l total exci-
tations exists in the ground energy eigenstate �g�, so that

H��g�=Eg�g� and L̂�g�= l�g� �i.e., these two operators
commute�.

To show that � has the general form of a chemical poten-
tial, we begin with the usual definition of free energy F=E
−TS, where E is the energy of the system H �before chemi-
cal potential has been included�, T is temperature and S is
entropy. Assuming that T=0 and using the definition of
chemical potential as the derivative of the free energy with
respect to the number of excitations,

� 
 � �F

�l
�

T,V
= � �E

�l
�

T,V
, �7�

where l is used, as excitations act like particles in this sys-
tem. We use the Hellmann-Feynman theorem �38,39� to cal-

culate the derivative of the energy with respect to number of
excitations

�E

�l
= 	g�

�H
�l

�g� = 	g�
�

�l
�H� + �l��g� = � . �8�

Hence the � of Eq. �6� represents chemical potential as re-
quired.

The N-cavity bare basis consists of state vectors of the
form �s1 ,n1� � �s2 ,n2� � ¯ � �sN ,nN�, si� g ,e�, ni� 0,
1 , . . .�. In principle, this basis is infinite in extent, because the
number of photonic excitations per cavity is unbounded. By
ordering the bare basis by the total number of excitations
�either photonic or atomic� across all cavities, one may ex-
press the Hamiltonian of Eq. �5� in block diagonal form H
=diag�H�0� ,H�1� ,H�2� , . . .�, where H�l� is the matrix corre-
sponding to l excitations. The size of each block is deter-
mined by the number of ways in which the excitations can be
shared between the atomic and photonic degrees of freedom.
We denote the number of states �equal to the size of the
matrix H�l�� as s, where

s = �
i=0

min�l,N� �N

i
�Sl−i

N . �9�

The above summation has two terms. � N
i � is the total number

of atomic excitations across the lattice �note that on each site
the number of atomic excitations can only be zero or one�.
Si

N represents the number of photonic excitations, and
is the number of ways to share the l− i photons between
the N cavities �e.g., S2

3=length��2,0 ,0� , �0,2 ,0� , �0,0 ,2� ,
�1,1 ,0� , �1,0 ,1� , �0,1 ,1��=6�.

To gain insight into the problem, we explicitly show H�0�

and H�1� for a two-cavity system in the bare basis as follows:

H�0� = �0 � ,

H�1� =�
� � − � 0

� � 0 0

− � 0 � �

0 0 � �
� , �10�

where the �two-cavity� basis for H�0� is �g ,0 ,g ,0�� and for
H�1� is �g ,1 ,g ,0� , �e ,0 ,g ,0� , �g ,0 ,g ,1� , �g ,0 ,e ,0��.

To connect the finite case with the thermodynamic limit,
we examine the phases of the N-cavity system H� �Eq. �6��
as a function of �, �, and �. In particular, we are concerned
with the expectation value of the total number of excitations

of the system 	L̂�. Note that L̂ is diagonal when represented
in either the dressed or bare basis �but has different values in

each�. From �40�, by subtracting �L̂ from our Hamiltonian

equation �5�, we determine that 	L̂�=−�Eg /��, where Eg is
the ground state energy of the extended Hamiltonian H�.
Some preliminary analytics can simplify the calculation of

	L̂� considerably; we show this now.

We begin by noting that the part of L̂ corresponding to

exactly l excitations, represented as L̂�l�, has the very simple
form
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L̂�l� = lI . �11�

Again employing the Hellmann-Feynman theorem,

�Eg
�l�

��
= 	g�

�

��
�H�l� − �lI��g� , �12�

where Eg
�l� is the ground state energy, and �g� is the corre-

sponding eigenstate, of H�l�−�L̂�l�. This reduces to

�Eg
�l�

��
= − l . �13�

So, if

M = min�eigenvalues�H�0� − �L̂�0���,

min�eigenvalues�H�1� − �L̂�1���, . . .� , �14�

and

f:0,1, . . .� → M , �15�

then

	L̂� = f−1�min�M�� . �16�

In short, to find 	L̂�, one simply needs to locate which block

the minimum eigenvalue of �H−�L̂� corresponds to. Obvi-

ously, 	L̂� can only have non-negative integer values. This is
illustrated further in Fig. 3. In this figure, the smallest eigen-
value of H�0� ,H�1� , . . . is plotted as a function of ��−�� /�

for � /�=0. For each value, 	L̂� is given by the negative
slope of the smallest eigenvalue at that point.

We now introduce the mean-field Hamiltonian. The mean-
field approximation focuses attention on one particular cav-

ity, and assumes that its z nearest neighbors �that is, the
coordination number is z� all behave like it. To invoke the
mean field, we use the decoupling approximation ai

†aj
= 	ai

†�aj + 	aj�ai
†− 	ai

†�	aj�, and introduce the superfluid order
parameter = 	ai�= 	ai

†� �which we assume real�, so that the
Hamiltonian of Eqs. �5� and �6� becomes

HMF = HJC − z��a† + a� + z�2 − �L̂ . �17�

The basis uses just one cavity, but the system �approxi-
mately� describes an infinite number. Note that the number
of nearest neighbors z effectively “renormalizes” the mean-
field coupling, i.e., �→z�.

We have also considered using a larger unit cell—for ex-
ample, using two cavities, each with z nearest neighbors. We
found that while this is more difficult to calculate �finding
eigenvalues of larger matrices� this exactly replicates the re-
sults of the original mean field—which is not surprising.
However, this technique could be used to include disorder in
the infinite cavity limit. Note that while Eq. �16� informs that
the total number of excitations is integer, the mean-field
Hamiltonian of Eq. �17� informs of the number of excitations
per cavity. Accordingly, we will find equivalence when the
number of excitations is a multiple of the number of cavities.

III. RESULTS

In this section we analyze the quantum phase diagram of
the Hamiltonian of Eq. �5� for various topologies. Our analy-
sis is based on exact diagonalization for up to six cavities.
Topology is implemented through the �ij terms of Eq. �5�.
We then compare these topologies with the mean-field ap-
proximation.

We begin by considering the quantum phase diagrams of
the exact systems. We display the phase diagrams corre-
sponding to two, three, four, and five cavities arranged in one
dimension with periodic boundary conditions in Fig. 4. Each
color corresponds to a different plateau, a constant state in
excitation space—these are Mott insulating phases. It is
worth pointing out that in our discrete model, no superfluid
phase exists. However, for significantly large �, the plateaus
get closer together, approximating the superfluid phase dia-
gram, as in the mean-field case.

In total, 11 topologies were examined. These are listed in
the first column of Table I. The topologies of a square, tri-
angle, and six cavities with z=3 could be considered special,
as they can represent infinite square, triangular, and hexago-
nal lattices, respectively. However, no significant differences
�with respect to matching of phase diagrams to mean field�
are found between these topologies and the rest.

For all topologies, a “pinch” effect is noted as �→0 be-

tween 	L̂�=N and 	L̂�=2N, between 	L̂�=2N and 	L̂�=3N,
etc. That is, all fractional occupations �plateaus correspond-
ing to heights that are not integer multiples of the number of
cavities N� disappear as �→0; this compares nicely with the
mean-field solution. The point at which this pinching occurs
is called the critical chemical potential �c. We find
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FIG. 3. �Color online� Ground state energies for each block of
the Hamiltonian, Eq. �5�, as a function of ��−�� /�, with �=0.

Recall that 	L̂� is equal to the negative of the slope �with respect to
�� of the smallest energy eigenvalue of the whole Hamiltonian, and
that this slope is always an integer. This figure therefore shows
explicitly how the phase diagrams are constructed—the black points
indicate the boundaries between plateaus.
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�c�n� = � + ��n� − ��n + 1� , �18�

where ��n� is defined in Eq. �4�, and ��0�=−� /2. This is
independent of the number or arrangement of cavities, and
independent of whether or not the mean-field approximation
is used, as expected from the �→0 limit.

Although in general, one cannot analytically determine
the positions of all the boundaries, we find that for all topolo-

gies, the first boundary �between 	L̂�=0 and 	L̂�=1� is de-
scribed by the analytic equation

� − �

�
= −

1

2
�� + z�

�
+��� − z�

�
�2

+ 4� , �19�

where z is the number of nearest neighbors �the third column
in Table I�. Equation �19� was determined by equating the
smallest eigenvalue of H�1� with zero �the only eigenvalue of
H�0��. This has been compared numerically for z
=1,2 ,3 ,4 ,6 and is in excellent agreement. One cannot ex-

pect generic z analytic boundaries between 	L̂�=1 and 	L̂�
=2 or higher to exist; indeed, none were determined. This is
because they are truly in the realm of many-body physics
�unlike the lower boundary�. A higher boundary would be the
solution of a commensurately higher order polynomial. In
the simplest case, N=2 and l=2, from Eq. �9�, s=8, so an
eighth order polynomial must be solved to determine the
boundaries.

For each plateau, the ground eigenstate can be calculated
�hence below we use “ground eigenstates” to refer to the
different ground states for the different plateaus�. These
ground eigenstates are represented in the dressed state basis,
even though many of the calculations above were done in the
bare basis.

To easily represent this information, it is useful to define

two operators: the translation operator T̂ �which shifts states
to the right and moves the last state back to the beginning�
and the permutation operator P̂m �which is the sum over T̂i

applied to the state m times�,

T̂��s1,n1� � ¯ � �sN−1,nN−1� � �sN,nN��

= �sN,nN� � �s1,n1� � ¯ � �sN−1,nN−1� , �20�

P̂m��s1,n1� � ¯ � �sN,nN�� = �
i=0

m−1

�T̂�i��s1,n1� � ¯

� �sN,nN�� . �21�

The ground eigenstates for all 11 topologies, up to 	L̂�=N,
i.e., total number of excitations equal to number of cavities,
are displayed in Table I. See Fig. 5 for a diagrammatical
example of how, for two cavities, the information from the
table matches a phase diagram.

Consider bands labeled by m, where

mN � 	L̂� � �m + 1�N − 1 ∀ m = 0,1, . . . . �22�

One finds that the physics of each band has some striking
similarities, hence the introduction of this parameter.

In Table I only results for m=0 are displayed. While
higher bands include many more possible states �e.g., �−,1�
� �+,1� � �−,2��, we find higher bands have a surprisingly
simple structure. To obtain the general states for some other
band m, one needs to simply replace �−,1� by �−,m+1�, and
�g ,0� by �−,m�, in every instance.

The differences between topologies are apparent when

comparing, for example, the band m=0, for 2� 	L̂��N−1,
two excitations in a square topology compared with two ex-
citations in a tetrahedron topology. In the square case, there
is a different coefficient for excitations adjacent as to excita-
tions separated, compared with the tetrahedron case, where
all terms have the same coefficient.

Three different topologies �pentagon, six cavities with z
=3, and six cavities with z=4� have some coefficients dis-
played to three decimal places; these have been calculated to
12 decimal places. An exact form is not derived; as these
numbers represent solutions of polynomials of order 
50 no
exact form is necessarily expected.

We also examine the expectation value of the number of

excitations of each cavity, 	L̂i� and 	L̂i
2�, and find that, inde-

pendent of topology,

	L̂i� =
	L̂�
N

,

	L̂i
2� = �m + 1�2� 	L̂� − mN

N
� + m2�1 −

	L̂� − mN

N
� ,

�23�
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FIG. 4. �Color online� These plots show the expectation value of

the total number of excitations 	L̂� as a function of ��−�� /� and
� /�, for two, three, four, and five cavities in periodic boundary
conditions, with �=0. Note that the top boundary in each plot is the
limit of calculations. The Hamiltonian matrix used to create each
plot is truncated at l=12, 9, 8, and 5, respectively.
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so that the variance of L̂i is

var�L̂i� = �	L̂i
2� − 	L̂i�2 =�	L̂� − mN

N
− � 	L̂� − mN

N
�2

,

�24�

where the band m is defined by Eq. �22�, and both Eqs. �23�
and �24� are valid for i=1, . . . ,N. From this, one can deter-

mine that if 	L̂� is an integer multiple of N, var�L̂i�=0, as
expected. Also, if we consider the thermodynamic limit,
where both the number of cavities and the number of exci-

tations approach infinity �N→� , 	L̂�→��, while the excita-

TABLE I. Summary of information about the number of cavities N, and nearest neighbors z, excitation state 	L̂�, and associated ground
eigenstate for 11 topologies up to N=6 for the band m=0. Eigenstates for higher bands m are determined by replacing �g ,0� by �−,m� and
�−,1� by �−,m+1� in every instance. The first four rows are valid for any topology.

Topology N z �L̂� Associated ground eigenstate �dressed basis�

Arbitrary n N/A 0 �g ,0��n

Arbitrary n N/A 1 1
�n

P̂n��g ,0���n−1� � �−,1��

Arbitrary n N/A n−1 1
�n

P̂n��g ,0� � �−,1���n−1��

Arbitrary n N/A n �−,1��n

2 1 1 1
�2

P̂2��g ,0� � �−,1��

4 2 2 1
�8

P̂4��g ,0��2 � �−,1��2�+ 1
2 P̂2���g ,0� � �−,1���2�

4 3 2 1
2 	P̂4��g ,0��2 � �−,1��2�+ P̂2���g ,0� � �−,1���2�


5 2
0.235P̂5��g ,0��3 � �−,1��2�+0.380P̂5��g ,0��2 � �−,1� � �g ,0� � �−,1��

3 0.235P̂5��g ,0��2 � �−,1��3�+0.380P̂5��g ,0� � �−,1� � �g ,0� � �−,1��2�

5 4
1
�5

�P̂5��g ,0��3 � �−,1��2�+ P̂5��g ,0��2 � �−,1� � �g ,0� � �−,1���

3 1
�5

�P̂5��g ,0��2 � �−,1��3�+ P̂5��g ,0� � �−,1� � �g ,0� � �−,1��2��

2
1
6 P̂6��g ,0��4 � �−,1��2�+ 1

�12
P̂6��g ,0��3 � �−,1� � �g ,0� � �−,1��+ 1

3 P̂3���g ,0��2 � �−,1���2�

3
1

�72
P̂6��g ,0��3 � �−,1��3�+ 1

�18
P̂6��g ,0��2 � �−,1� � �g ,0� � �−,1��2+ �g ,0��2 � �−,1��2 � �g ,0�
� �−,1��+ 1

�8
P̂2���g ,0� � �−,1���3�

4 1
6 P̂6��g ,0��2 � �−,1��4�+ 1

�12
P̂6��g ,0� � �−,1� � �g ,0� � �−,1��3�+ 1

3 P̂3���g ,0� � �−,1��2��2�

2
1

�18
	P̂6��g ,0��4 � �−,1��2�+ P̂3��g ,0��2 � �−,1���2
+ 1

�12
P̂6��g ,0��3 � �−,1� � �g ,0� � �−,1��

3
0.208P̂6��g ,0��3 � �−,1��3+ �g ,0��2 � �−,1� � �g ,0� � �−,1��2+ �g ,0��2 � �−,1��2 � �g ,0� � �−,1��

+0.334P̂2���g ,0� � �−,1���3�

4 1
�18

	P̂6��g ,0��2 � �−,1��4�+ P̂3��g ,0� � �−,1��2��2
+ 1
�12

P̂6��g ,0� � �−,1� � �g ,0� � �−,1��3�

2 0.246P̂6��g ,0��4 � �−,1��2+ �g ,0��3 � �−,1� � �g ,0� � �−,1��+0.304P̂3���g ,0��2 � �−,1���2�

3 0.197	P̂6��g ,0��3 � �−,1��3�+ P̂2���g ,0� � �−,1���3�
+0.240P̂6��g ,0��2 � �−,1� � �g ,0� � �−,1��2

+ �g ,0��2 � �−,1��2 � �g ,0� � �−,1��

4 0.246P̂6��g ,0��2 � �−,1��4+ �g ,0� � �−,1� � �g ,0� � �−,1��3�+0.304P̂3���g ,0� � �−,1��2��2�

2
1

�15
	P̂6��g ,0��4 � �−,1��2+ �g ,0��3 � �−,1� � �g ,0� � �−,1��+ P̂3���g ,0��2 � �−,1���2�


3
1

�20
	P̂6��g ,0��3 � �−,1��3+ �g ,0��2 � �−,1� � �g ,0� � �−,1��2+ �g ,0��2 � �−,1��2 � �g ,0� � �−,1��

+ P̂2����g ,0� � �−,1���3��


4 1
�15

	P̂6��g ,0��2 � �−,1��4�+ P̂3���g ,0� � �−,1��2��2�+ P̂6��g ,0� � �−,1� � �g ,0� � �−,1��3�


2

2

6 2

6 3

6 4

6 5
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tion density remains constant at �= 	L̂� /N, we find that

var�L̂i�→0.
While this paper primarily focuses on phase changes as a

function of �, one can also examine phase changes as a func-
tion of detuning � �12�. Indeed, experimentally shifts in �
may prove to be more accessible �via the Stark shift�, as �
cannot be changed postfabrication in many systems. In Fig.

6�a� we plot 	L̂� as a function of � /� and ��−�� /� for �
=0, and in Fig. 6�b� we do the same for �=10−1/2�. There
are fewer plateaus in �a� than there are in �b� because there
are fewer plateaus �due to the pinching effect, discussed
above� at � /�=0. Note the symmetry around �=0, in the

second and subsequent boundaries of Fig. 6�a� �cf. Fig. 3 of
�9��, and the corresponding asymmetry in the third and sub-
sequent boundaries of Fig. 6�b�. This symmetry is perfect at
�=0, and the asymmetry increases with increasing �.

A mean-field phase diagram that is comparable with the
phase diagrams of the previous section can be made �9�. An
accurate comparison between the exact results of the previ-
ous section, with mean field, is made when we consider to-
pologies with z nearest neighbors with mean-field results for
z nearest neighbors. In all 11 distinct topologies tested, a
very accurate match is seen. One such result is displayed in
Fig. 7. We find that the boundaries from Eq. �18� are pre-
served in the mean-field solutions.

FIG. 5. �Color online� The expectation value of the total number

of excitations 	L̂� of two cavities with periodic boundary conditions
in the ground state. The eigenstates of the four lowest plateaus are
marked �see Table I�. The upper boundary marks the limit of
calculations.
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(a) κ/β = 0 (b) κ/β = 10−1/2

FIG. 6. �Color online� These plots show 	L̂� as a function of ��−�� /� and � /� for two cavities in periodic boundary conditions with �a�
�=0 and �b� �=10−1/2�. The upper boundary in both cases marks the limit of calculations. Note that only even plateaus are present in �a�.
This is because of the pinching effect as �→0—in this limit, plateaus corresponding to fractional occupation do not exist. The white dashed
line marks � /�=0, and aids the eye in seeing that the boundaries above the first �second� are symmetric �asymmetric� in plot �a� ��b��.

FIG. 7. �Color online� This plot shows the mean-field result for
z=1, overlaid with the exact cavity results for two cavities with one
connection �white dashed lines�, as in the fifth row of Table I. Note
the excellent agreement between exact results and mean-field
approximation.
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In mean field, the region with =0 corresponds to the
various Mott insulating lobes �e.g., �g ,0�, �−,1�, �−,2�, etc.�,
while �0 is the superfluid state. The bottom lobe is de-
scribed as the zeroth lobe ��g ,0��, the next lobe up as the first
lobe ��−,1��, and so on. In Fig. 8�a�, we examine the under-
side of the first lobe in mean field with z=2, and overlay the

boundary between 	L̂�=N−1 and 	L̂�=N for N=2, 3, 4, 5,
and 6 cavities in periodic boundary conditions. In Fig. 8�b�,
we examine the underside of the second lobe in mean field

with z=2, and plot the boundary between 	L̂�=2N−1 and

	L̂�=2N for N=2,3 ,4 ,5 cavities, also in periodic boundary

conditions. One can clearly see how as the number of cavi-
ties increases, the boundaries approach the boundary of mean
field, and eventually may pinch off for each lobe entirely �so

that plateaus of height 	L̂� /N=1,2 , . . . do not continue as �
→�, but rather have finite size in this direction�. These
boundaries accord well with the structures observed by Ro-
sario and Fazio �Fig. 3 of Ref. �10�� which were obtained
independently by the density matrix renormalization group
procedure, which lends weight to both quantum treatments.
Furthermore, as N→�, our exact results approach that of the
mean field, which have a more rounded cutoff for the Mott
lobes than these finite cavity results.

IV. DISORDER AND EFFECTIVE MODEL TEMPERATURE

In this section, we first consider the modification of the
chemical potential with small temperature increase �less than
the scale for photon generation, kT���� and hence this
modifies the phase diagrams above. We then examine fabri-
cation disorder in the form of a normal distribution of photon
energies for each cavity. We show that this fabrication disor-
der is qualitatively similar to effective temperature, provid-
ing a connection between disorder and an effective tempera-
ture in this analog system.

Note that we set Boltzmann’s constant kB=1. We begin by
differentiating the free energy F=E−TS with respect to the
total number of excitations l,

�F

�l
=

�E

�l
− T

�S

�l
− S

�T

�l
, �25�

recalling the definition of chemical potential in Eq. �7�, and
assuming that temperature does not depend on the number of
excitations �i.e., �T /�l=0, assuming that the temperature
scale is too low to generate a photon, i.e., kT����, we get

� =
�E

�l
+ T

�S

�l
. �26�

This then gives an effective chemical potential

�� = � + T
�S

�l
. �27�

We calculate the entropy S in the �→0 limit in the following
manner. Assume that the photon blockade is complete, i.e.,
�−,2 ,g ,0�y �−,1 ,− ,1�, then we can consider each band �re-
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FIG. 9. �a� shows how the boundaries between plateaus change �when �=0� for 10, 100, and 1000 cavities with increasing temperature
in natural units. �b� shows how the boundaries between plateaus change �when �=0� for two, three, and four cavities with increasing
disorder, measured in units of standard deviation �. Note that when �=0.4, the difference between the top line of the bottom “pinch,” and the
bottom line of the top pinch, is ��−�� /�=0.434, 0.361, and 0.320 for two, three, and four cavities, respectively. This gives some indication
of a threshold of tolerance.
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mean-field lobe. This indicates qualitatively that as N→�, the exact
calculations should approach the mean-field �N=�� limit.
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call Eq. �22�� separately. More specifically, each band acts
like a paramagnet �41�. Recall that a one-dimensional para-
magnet is a line of spin states, where each spin can point up
or down. Compare with our system, where each cavity can
have either �g ,0�, or �−,1� �for band m=0�. Strictly speaking,
each state �as in Table I� is a pure state, and as such the
entropy is zero. However, if we assume that the number of
cavities N is very large, then the superposition states acts like
a mixed state, and we can define entropy as for a paramagnet
�essentially the logarithm of the number of microstates� by

S�l� = ln� N

l − mN
� . �28�

Note that this solution is only valid within each band, and as
such we can ignore the infinities that arise in �S /�l when l is
an integer multiple of N, as at these points the paramagnetic
approximation does not apply. Recall that the phase diagram

of 	L̂� is concerned with finding the slope of the smallest
energy eigenvalue with respect to �, and that this slope is
always an integer. The Hamiltonian of Eq. �5� is block diag-
onal. We know from earlier analysis that the ground state
energy of each block H�l� has constant slope with respect to
� of −l. Consider Fig. 3: when temperature is included, each
line will move, with respect to ��−�� /� by some amount to
the left or to the right. For each �, we choose the smallest
energy eigenvalue at that point, and take the negative slope
at that point. For small finite temperatures, this is manifest as
a “splitting” of the pinches, as seen in �2�. We plot this split-
ting between the zeroth and first lobes, and the first and
second lobe, for N=10,100,1000 in Fig. 9�a�.

Fabrication of a system of photonic cavities will undoubt-
edly be subject to certain errors. Here we model uncertainty
in the cavity frequency �. We assume that each cavity may
be tuned individually to �i=0 ∀ i=1, . . . ,N �probably via
the Stark shift�, and as such model the Hamiltonian by

H = �
j=1

N

���i + �i���i
+�i

− + ai
†ai� + �i��i

+ai + �i
−ai

†��

− ��
	i,j�

ai
†aj , �29�

where the set �1 ,�2 , . . . ,�N� are chosen from a normal dis-
tribution with zero mean and standard deviation �. For a
fixed number of cavities and fixed �, we calculate 1000 sets
each of boundaries above l=0 to below l=2N, and take the
mean of the results. Results are shown in Fig. 9�b�.

One can see by comparing Figs. 9�a� and 9�b� that disor-
der and temperature produce qualitatively the same results.
However, these disorder effects can only be calculated up to
four cavities due to the limitations of computing resources,
and the temperature analysis is only valid for large numbers
of cavities. Hence the two techniques cannot be compared
directly. If the exact diagonalization technique could be ex-
tended to a larger number of cavities, it could be compared
quantitatively with disorder, matching properly the standard
deviation with the effective temperature T.

If one envisions Fig. 9�a� as temperature increases even
further, there will be some temperature T� such that the top
line from the bottom group �corresponding to l=N−2� will
meet the bottom line of the top group �corresponding to l
=N+1�. We examine T� as a function of the number of cavi-
ties, and find that this is given by

T� = �2 − �2����N − 2� + ��N + 2� − ��N − 1� − ��N + 1��−1,

�30�

where ��l��= l�� �S
�l �l=l�. This function is plotted in Fig. 10. T�

appears to converge to a constant, nonzero temperature as
N→�.

V. CONCLUSIONS

In this paper we present an intensive analysis of the
Jaynes-Cummings-Hubbard model using the exact diagonal-
ization technique—studying the phase diagrams via the ex-
pectation value of the total number of excitations. We exam-
ine various topologies of small networks of cavities, and
compare this work with the infinite cavity mean-field ap-
proximation. We find good agreement in all topologies. We
study the effective model temperature, and compare this
qualitatively with disorder in the photon energy of the exact
JCH, and also find good agreement.
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