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When trapped atoms are illuminated by weak lasers, off-resonant transitions cause shifts in the frequencies
of the vibrational-sideband resonances. These frequency shifts may be understood in terms of Stark shifts of
the individual levels or, as proposed here, as a vibrational Bloch-Siegert shift, an effect closely related to the
usual �radio-frequency or optical� Bloch-Siegert shift and associated with rapidly oscillating terms when the
rotating wave approximation is not made. Explicit analytic expressions are derived and compared to numerical
results, and the similarities and differences between the usual and the vibrational Bloch-Siegert shifts are also
spelled out.

DOI: 10.1103/PhysRevA.77.053817 PACS number�s�: 42.50.�p, 03.75.Be, 37.10.Ty, 37.10.Vz

I. INTRODUCTION

A. Bloch-Siegert shift

The rotating wave approximation �RWA� is applied to de-
scribe atoms interacting with near-resonant fields. It consists
on neglecting the rapidly oscillating counter-rotating terms in
a Hamiltonian. In 1940 Bloch and Siegert, studying magnetic
resonances, showed that if the RWA is not applied, the
counter-rotating, fast oscillating terms give rise to a shift in
the resonance frequency of the magnetic dipoles, i.e., the
Bloch-Siegert shift �1–3�. Similar shifts exist in principle in
the optical domain, although much smaller and difficult to
detect.

In the treatment of laser driven trapped ions, apart from
an optical RWA for the driven optical transition, a second or
“vibrational RWA” is usually applied �4�. Within this ap-
proximation, the absorption spectrum of a harmonically
trapped �two-level� ion consists of a carrier band centered at
the transition frequency �0 and sidebands separated from the
carrier by multiples of the trap frequency �T. If this second
RWA is not applied and vibrational counter-rotating terms
are taken into account, the energy levels are distorted and
thus the position of the sideband resonances are shifted, an
effect that we shall call a “vibrational Bloch-Siegert shift.”
Its analysis is the objective of the present paper in which we
shall provide explicit expressions within a perturbative ap-
proach based on the resolvent method. The peculiarities of
the Hamiltonian for the trapped ion lead to differences be-
tween the ordinary �in magnetic or optical resonances� and
vibrational BS effects that we shall also discuss.

These sideband frequency shifts are important for opti-
mizing the operation of quantum gates based on laser-driven
trapped ions and can be observed and compensated experi-
mentally �5,6�. In this context they have been understood as
the result of Stark shifts of the individual levels due to off-

resonant transitions. The connection between our compact
treatment of the frequency shift �as a vibrational Bloch-
Siegert effect� and the Stark shifts will also be spelled out.
Thanks to the systematic treatment with the resolvent
method we find general expressions for the frequency shifts
of arbitrary sidebands and correction terms that had been
previously overlooked.

B. Vibrational rotating wave approximation

We consider a two-level ion with �internal� ground and
excited states �g� and �e�, and transition frequency �0 among
them, moving in an effective one-dimensional harmonic po-
tential of frequency �T in the x direction �motion in y and z
directions is unexcited and ignored throughout�; this ion is
illuminated by a �classical� laser beam with traveling wave
of wave vector in the x direction and wave number kL. The
system is described in the dipole approximation by

H�t� = HT + HA + ��R��+ + �−�cos��Lt − kLx� , �1�

with

HT = ��Ta†a , �2�

HA =
��0

2
�z, �3�

where �z= �e��e�− �g��g�, �+= �e��g�, and �−= �g��e�; �R is the
on-resonance Rabi frequency, which plays the role of an
atom-field coupling constant, and a† �a� are the creation �an-
nihilation� operators of the harmonic potential.

In an interaction picture defined by HT+HA and neglect-
ing the fast oscillating terms within the usual �optical� RWA,
the Hamiltonian becomes

HTA�t� =
��R

2
�ei��a�t�+a†�t��e−i�t�+ + H.c.� , �4�

where H.c. means “Hermitean conjugate,” a�t�=ae−i�Tt,
a†�t�=a†ei�Tt, and �=�L−�0 is the detuning between the
laser frequency and the internal atomic transition frequency.
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The parameter �=kLx0 is known as the Lamb-Dicke �LD�
parameter, where x0=�� /2m�T is the extension �square root
of the variance� of the ion’s ground state, i.e., x=x0�a+a†�.
The LD parameter is a measure of the trap width on the scale
of the laser wavelength. Let us denote by �g ,n� ��e ,n�� the
state of the ion in the ground �excited� internal state and in
the nth motional level of the harmonic oscillator. Using the
so-called BCH identity �7�

ei��a�t�+a†�t�� 	 e−�2/2ei�a†�t�ei�a�t�, �5�

and expanding the exponentials in power series of �, we end
up with a Hamiltonian with terms containing a combination
of ��, with n a† operators and n� a operators rotating with a
frequency �n−n���T �4�,

HTA�t� =
��R

2 
e−�2/2�
nn�

�i��n+n�

n ! n�!

	a†nan�ei�n−n���Tte−i�t�+ + H.c.� , �6�

which, in principle, couples all the different vibrational lev-
els via de a†n and an� operators. The combinations satisfying
the �k�T �k=n−n�� condition will be resonant, coupling
the states �g ,n�↔ �e ,n+k�, while the rest of rapidly oscillat-
ing terms are usually neglected in a second application of the
RWA, a vibrational RWA �VRWA� �4�. Within this approxi-
mation, only corotating states �g ,n�↔ �e ,n+k� are coupled
and the system becomes two-dimensional at each of these
resonances. They are classified as follows. �i� ��0: Carrier
resonance. The system is described by a Hamiltonian which
is equivalent to a two level atom in a resonant field, coupling
the states �g ,n�↔ �e ,n�. �ii� ��−k�T: kth red sideband. The
system is described by a k-photon Jaynes-Cummings–type
Hamiltonian, which couples �g ,n�↔ �e ,n−k�; �iii� ��k�T:
kth blue sideband. The system is described by a k-photon
anti Jaynes-Cummings type Hamiltonian, coupling the states
�g ,n�↔ �e ,n+k�. The differences and similarities of both ap-
proximations �RWA and VRWA� are discussed in detail in
Sec. III B.

II. VIBRATIONAL BLOCH-SIEGERT SHIFT

If the VRWA is not applied and vibrational counter-
rotating terms in the Hamiltonian �6� are taken into account,
a shift in the apparent position of each sideband resonance is
observed, an effect that may be compared to the standard
Bloch-Siegert shift in magnetic or optical resonances. This
shift is more easily visualized and calculated if one writes the
original Hamiltonian �1� in a frame rotating with the field
frequency, i.e., in a field-adapted interaction picture defined
by the zeroth order Hamiltonian �

2 �L�z. In this frame, and
after applying the usual �optical� RWA, the Hamiltonian be-
comes time independent,

HLA = ��Ta†a −
��

2
�z +

��R

2
�ei��a+a†��+ + H.c.� . �7�

The energy levels of this Hamiltonian are plotted in Fig. 1 as
a function of the detuning. The bare ��R=0� levels are given
by straight lines

Eg,n
�B� = n��T +

��

2
, �8�

Ee,n
�B� = n��T −

��

2
, �9�

which are degenerate at each of the resonances mentioned
before �dashed lines in Fig. 1�, but the degeneracies are re-
moved and become avoided crossings when the laser is
turned on �solid lines in Fig. 1�. These anticrossings are noth-
ing but the different sidebands mentioned in the previous
section and lead to transitions between the different bare
states. In this time independent approach, the VRWA corre-
sponds to restricting the theory to a subspace spanned only
by the two states involved in a given anticrossing neglecting
the rest of states, provided that the energy splitting of the
avoided crossing is well isolated �8�.

Nevertheless, a careful treatment of the kth sideband �an-
ticrossings� in which all bare states are included, reveals that
the frequency of the resonance does not exactly coincide
with the predicted value �=k�T, but is shifted by 
� due to
the presence of nonresonant vibrational terms, see Fig. 2. In
order to account for this effect one has to use a theory which
includes not only the two main energy levels involved in
each resonance, but also nonresonant terms. We shall use the
resolvent method here as described in Refs. �9,10�.
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FIG. 1. Bare ��R=0, dashed line� and dressed ��R /�T=0.3,
solid line� energy levels �in arbitrary units� as a function of the laser
detuning, with En=n��T being the energy levels of the trapping
potential. A not too small LD parameter �=0.4 has been intention-
ally chosen in order to highlight the higher order avoided crossings.
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A. Perturbative treatment

In the low intensity field approximation ��R��T�, the
Hamiltonian �7� describing the system may be written as a
sum of a bare �unperturbed� part HB and a �small� perturba-
tive term V,

HB = ��Ta†a −
��

2
�z, �10�

V��R� =
��R

2
�ei��a+a†��+ + H.c.� . �11�

The bare states �eigenstates of HB� of the system satisfy

HB��,n� = E�,n
�B� ��,n� , �12�

where the index �=g ,e accounts for the internal atomic state
and the bare energy levels E�,n

�B� are given in Eq. �8�.
Let us now consider the �g ,ng�↔ �e ,ne� sideband transi-

tion, which corresponds to the crossing between the bare
levels Eg,ng

�B� and Ee,ne

�B� at the point

E0 =
��T

2
�ng + ne� , �13�

�0 = �ne − ng��T �14�

of the �E ,�� plane, see Fig. 1. If these levels are close to
each other but far from other levels, the time evolution of the

system in the subspace spanned by the states �g ,ng� and
�e ,ne� may be approximately described by an approximate
Hamiltonian �9�

H̃ = �Eg,ng

�B� + Rgg�E0� Rge�E0�

Reg�E0� Ee,ne

�B� + Ree�E0� � , �15�

where R��E0�= �� ,n��R�E0�� ,n� are the matrix elements
of the level shift operator defined by

R�E0� = PVP + �
n=1

�

PV� Q

E0 − HB
V�n

P , �16�

with P= �g ,ng��g ,ng�+ �e ,ne��e ,ne� and Q=1− P. Even
though it is two-dimensional, the approximate Hamiltonian
�15� contains information about all the nonresonant states via
the operator Q, the projector onto the counter-rotating sub-

space. The eigenvalues of H̃ will then give, for weak fields,
the correct energy levels, including non-resonant effects.1 It
can be easily shown2 that the maximum �or minimum� of
these perturbed energy levels are shifted from their non-
perturbed position �0 by


� = �Ree�E0� − Rgg�E0��/� , �17�

which is the vibrational Bloch-Siegert shift of the position of
the resonances due to the effect of counter-rotating �vibra-
tional� terms, see Fig. 2.

Moreover, if the states are coupled by Rge, their corre-
sponding levels form an avoided crossing with an energy
splitting given by


� = �Rge�E0�� =
���ng,ne

�

2
, �18�

where �n,n�=�R�n�ei��a+a†��n�� are the coupling strengths be-
tween the different vibrational levels of the trap �11,12�, see
the explicit expressions in the Appendix. As we have already
pointed out, the approximate Hamiltonian �15� will only be
valid if the anticrossing is well isolated. A criterion for reso-
nance isolation is 
���T, since �T is the energy difference
between consecutive resonances. As low intensity lasers
��R��T� are being assumed, this criterion will be readily
fulfilled and all the crossings will be well isolated.

In order to give an explicit expression of 
� we need the
matrix elements Rgg and Ree of the level shift operator. To
lowest order in the perturbation, they are given by �see the
Appendix for the explicit calculation�

Rgg�E0� = �g,ng�R�g,ng� = �
k=0

k�ne

� ���ng,k/2�2

E0 − Ee,k
�B� , �19�

1The resolvent method is capable of providing the exact levels
substituting E0 by the unknown eigenvalue E in the approximate
Hamiltonian. Finding E requires iterative procedures, see e.g., Ref.
�10�. The simplest, explicit, rather than implicit, approximate treat-
ment followed here provides the correction to the energy in leading
order in the perturbation.

2Solve dE�,n�
/d�=0, where E�,n�

are the eigenvalues of H̃.
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FIG. 2. Detail of the energy level diagram at the first blue side-
band between states �g ,0� and �e ,1�. The bare ��R=0� energy levels
cross each other since the involved states are not coupled by the
laser �thin-dashed lines�. When the laser is turned on ��R /�T

=0.3� and the VRWA applied, the dressed energy levels form an
avoided crossing, but the position of the resonance remains un-
changed at �0=�T �thin-solid line�. If the VRWA is not made and
counter rotating terms are kept, the position of the resonance is
shifted to �=�0+
� �thick solid line�. In these cases a LD param-
eter of �=0.1 has been used. If the laser is kept turned on but �
=0 �the energy levels of the harmonic potential do not couple�, the
states �g ,0� and �e ,1� are decoupled to all orders in the perturbation.
In this case, the energy levels cross each other while still being
shifted by the off-resonant carrier transition �thick-dashed line�.
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Ree�E0� = �e,ne�R�e,ne� = �
k=0

k�ng

� ���ne,k/2�2

E0 − Eg,k
�B� .

Then, using the expressions of the bare energies �8� and the
crossing point of these bare levels �13� one has from Eq. �17�
that the position of the �g ,ng�↔ �e ,ne� resonance is given by
�=�0+
�, where


� =
1

4�T� �
k=0

k�ng

� ��ne,k�2

ng − k
− �

k=0

k�ne

� ��ng,k�2

ne − k � , �20�

which is in principle valid for all values of � provided low
intensity fields are assumed. We have verified the validity of
this expression by comparing with the frequency shifts that
result from diagonalizing the time-independent Hamiltonian
�7� with a large basis of bare states �n�1� and numerically
finding the maximum or minimum of a given energy level,
see Fig. 3 �solid lines�. Note that Eq. �20� can also be under-
stood as the sum of the Stark shifts for the excited state
minus the Stark shifts for the ground state due to all non-
resonant transitions, which provides a connection with pre-
vious treatments �5,6�.

B. LD regime: �™1

A particularly interesting and common regime is the so-
called LD regime, in which the recoil frequency of the ion is
much smaller than the trapping frequency, i.e., ��1. Up to
quadratic terms in �, only the same or consecutive vibra-
tional levels are coupled, reducing the infinite sum in Eq.
�20� to one where only “off-resonant carrier terms” �k=ne in
Ree and k=ng in Rgg� or coupling between adjacent vibra-
tional levels is considered. Thus, we find that, see Fig. 3
�dashed lines�


� =
�R

2

2�ng − ne��T
�1 − �2�ng + ne + 1��

+
�2�R

2

4�T
�

k=�1

ng−ne+k�0

ng + ne + 1

ng − ne + k
+ O��4� , �21�

which is valid for ng�ne, since it follows directly from Eq.
�20� that the position of the central �carrier, ng=ne� reso-
nances are not shifted to any order in �: the shifts from both
sides �positive and negative� detunings are compensated and
canceled. �Contrast this with Ref. �14�, where a different type
of shift of the carrier was studied, defined by the excitation
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FIG. 3. Vibrational Bloch-Siegert shift in units of the trap frequency as a function of the LD parameter � for different �g ,ng�↔ �e ,ne�
transitions and a ratio �R /�T=0.01. The solid line is a virtually exact result obtained by diagonalizing the full Hamiltonian �with a large
basis of bare states� and numerically finding the maximum or minimum of the corresponding energy level. This line is indistinguishable from
the one obtained by computing expression �20� to all orders in �. The dashed lines correspond to the simplified expression in the LD regime,
Eq. �21�. The dotted line in �b� corresponds to the shift derived in Refs. �5� and �13�.
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peak position rather than by the level structure.�
The first line in Eq. �21� is nothing but the �off-resonant�

carrier contribution to the vibrational Bloch-Siegert shift,
while the second line is the contribution of the adjacent side-
band transitions. It is remarkable that in the LD regime the
main contribution to any sideband frequency shift is always
given by the coupling to off-resonant carrier transitions, no
matter how far the sideband is from the carrier.

Note that in the strict LD ��=0� limit, the states �g ,ng�
and �e ,ne� are not connected by the perturbation V, and Rge
will be zero to all orders. The energy levels will cross while
being shifted due to the effect of the carrier transitions,
which are the only surviving contributions if �=0. The two
levels are Stark shifted in opposite directions by Rgg=−Ree

=��R
2 /4�0, shifting the position of the resonance by −

�R
2

2�0

�see Fig. 2 �thick dashed line��.
The vibrational Bloch-Siegert shifts can be seen experi-

mentally and are indeed quite relevant. In experiments with
single trapped ions to implement quantum gates �5,6,15�,
ground state sideband cooling �16� or quantum state engi-
neering �4,17,18�, the laser has to be tuned precisely to a
given sideband, so the shift has to be taken into account. For
recent experiments with 40Ca+ ions �19� ��T=2�
	1.36 MHz, �R=2�	53 kHz, and �=0.083�, the dis-
placement of the resonant frequency at the first blue sideband
is as high as one kHz, which corresponds to a relative dis-
placement of about 10−3, see Fig. 4.

III. DISCUSSION

A. Comparison with previous works

We have shown that the effect of the vibrational counter-
rotating terms is to shift the position of the sidebands, an

effect that may be related to the ordinary Bloch-Siegert shift.
Compared to previous results in Refs. �5,13�, our formulation
is more general and applies to arbitrary sidebands. In Ref.
�5�, Steane et al. describe the shift on the first red sideband as
the result of the light shifts of the levels because of off-
resonant transitions. Aniello et al. �13�, after a series of uni-
tary transformations of the Hamiltonian end up with a reso-
nance condition which gives a shift also for the first red
sideband. In both cases the calculated shift is given by


� =
�R

2

2�T
+

�2�R
2

4�T
�22�

�ng=1,ne=0�, which differs from our result in Eq. �21� by
the �2 correction from off-resonant carrier transitions. This
correction is indeed easy to miss �in particular, it is over-
looked if �n�ei��a+a†��n� is approximated by keeping only
terms up to linear order in ��, but it becomes quite signifi-
cant at moderate values of �, as shown by the numerical
comparison of the exact result �from diagonalization of the
Hamiltonian with a large basis�, and the shifts given by Eqs.
�21� and �22� in Fig. 3�b�.

B. RWA vs vibrational RWA

In order to highlight the differences between the usual
RWA and the VRWA �and thus the differences between the
usual Bloch-Siegert shift and its vibrational version�, we
shall now compare our trapped ion system with the interac-
tion of a two-level atom and a quantized field mode of fre-
quency �. These two systems are in many ways similar if the
ion is assumed to be trapped within the LD regime �20,21�.
Since the RWA has to do with corotating and counter-
rotating terms in a time-dependent Hamiltonian, the different
nature of both RWA’s is more clearly understood if the
Hamiltonians describing both systems are written in an inter-
action picture where the free evolution of the amplitudes is
removed, i. e.,

HF�t� =
��R

2
��ae−i�t + a†ei�t�ei�0t�+ + H.c.� ,

HTA,LD�t� =
��R

2
��1 + i�ae−i�Tt + i�a†ei�Tt�e−i�t�+ + H.c.� ,

�23�

where the subscript F refers to the atom-quantized field case,
and TA ,LD to the trapping case, see Eq. �6�, in the Lamb-
Dicke regime.3 The creation and annihilation operators have
different meaning depending on the system: they increase or
decrease the number of photons of a given Fock state in the
first case or they add or remove a vibrational quantum in the
trapped ion case. Despite these conceptual differences, both
systems look formally very similar.

3The simplified Hamiltonian HTA,LD�t� would not give the correct
�2 correction to the vibrational Bloch-Siegert shift from off-
resonant carrier transitions, see Eq. �21�, but for the qualitative
comparison of both systems this approximation is enough.

FIG. 4. Bloch-Siegert shift for the first few sidebands, with ex-
perimental data taken from Ref. �19� �see text�. The gray scale
indicates the different vibrational levels involved in a particular
sideband. Black, dark gray, light gray, and white correspond, re-
spectively, to n=0,1 ,2 ,3. n=ng for blue sidebands and n=ne for
red sidebands. Note the symmetry between blue and red sidebands.
The shift is zero for the carrier.
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If near resonant processes are considered ����0� in HF,
counter-rotating terms such as �−a and �+a† can be ne-
glected since they oscillate with a frequency �2�, much
faster than the corotating terms, whose frequency of oscilla-
tion is 
=�−�0. Counter-rotating terms can never be reso-
nant since both the mode frequency � and the transition
frequency �0 are positive quantities. The main effect of
keeping these counter-rotating terms is a shift on the appar-
ent resonant frequency of the atom �0, i.e., the ordinary
Bloch-Siegert shift �10�.

In the trapped ion case, the role of �0 is played by the
frequency difference or detuning �=�L−�0, which may
happen to be positive �blued detuned� or negative �red de-
tuned�. Terms such as �+a will be resonant if the laser is
tuned to the first red sideband. This is similar to the atom-
field coupling case, since after all the interaction is described
by a Jaynes-Cummings–type Hamiltonian. However terms
such as �+a†, which would be counter-rotating in the atom-
field coupling case, are resonant in the trapped ion system
when the laser is tuned to the first blue sideband and the
system is approximately described by an anti–Jaynes-
Cummings Hamiltonian.

Another important difference between these systems is
that for the atom in the quantized field, transitions where
only the internal state of the atom changes �with no photon
absorption or emission� do not happen, while in the trapped
ion case these carrier-type transitions give in fact the main
contribution of the LD expansion, i.e., the zeroth order in �
contribution in Eq. �4�. When the laser is tuned to a given
blue or red sideband, these carrier terms become counter-
rotating and are responsible for the leading order contribu-
tion in � of the vibrational Bloch-Siegert shift, Eq. �21�,
associated with the Stark shift of the energy levels as we
have previously pointed out. This also explains a factor of
two discrepancy in the expressions of the dominant terms

�BS=�R

2 /4� for the standard Bloch-Siegert shift �2�,
whereas �
��=�R

2 /2�T for the vibrational Bloch-Siegert
shift of the first red or blue sidebands. At variance with the
vibrational effect the ordinary Bloch-Siegert shift is too
small to have been observed for optical transitions because
of the large frequency in the denominator, whereas it is rela-
tively easy to observe in the radio-frequency domain �22�.
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APPENDIX: CALCULATION OF MATRIX ELEMENTS OF
THE LEVEL SHIFT OPERATOR

In this appendix the matrix elements of the levels shift
operator are explicitly calculated to leading order in the per-
turbation V, see Eq. �11�. We will consider the crossing be-
tween the �g ,ng� and �e ,ne� bare states, with P
= �g ,ng��g ,ng�+ �e ,ne��e ,ne� and Q=1− P. The first order
term �g ,ng�V�g ,ng� vanishes, since the perturbation does not
connect states with the same internal atomic state. The next
order will be given by

Rgg�E0� = �g,ng�V
Q

E0 − HB
V�g,ng�

=
��R

2
�g,ng�V

Q

E0 − HB
ei��a+a†��e,ng�

=
��R

2 �
k�ne

�ng,k

E0 − Ee,k
�B� �g,ng�V�e,k�

= ���R

2
�2

�
k�ne

��ng,k�2

E0 − Ee,k
�B� = �

k�ne

���ng,k/2�2

E0 − Ee,k
�B� ,

�A1�

where

�nn� = �n�ei��a+a†��n�� = e−�2/2�i���n−n���n�!

n�!
Ln�

�n−n����2� ,

�A2�

n� �n�� being the lesser �greater� of n and n� and Ln
� the

generalized Laguerre functions

Ln
��X� = �

k=0

n

�− 1�k�n + �

n − k
�Xk

k!
. �A3�

In an analogous way, Ree is obtained:

Ree�E0� = �
k�ng

���ne,k/2�2

E0 − Eg,k
�B� . �A4�
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