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A theoretical and experimental study of multimode operation regimes in quantum cascade lasers �QCLs� is
presented. It is shown that the fast gain recovery of QCLs promotes two multimode regimes: One is spatial
hole burning �SHB� and the other one is related to the Risken-Nummedal-Graham-Haken instability predicted
in the 1960s. A model that can account for coherent phenomena, a saturable absorber, and SHB is developed
and studied in detail both analytically and numerically. A wide variety of experimental data on multimode
regimes is presented. Lasers with a narrow active region and/or with metal coating on the sides tend to develop
a splitting in the spectrum, approximately equal to twice the Rabi frequency. It is proposed that this behavior
stems from the presence of a saturable absorber, which can result from a Kerr lensing effect in the cavity.
Lasers with a wide active region, which have a weaker saturable absorber, do not exhibit a Rabi splitting and
their multimode regime is governed by SHB. This experimental phenomenology is well-explained by our
theoretical model. The temperature dependence of the multimode regime is also presented.
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I. INTRODUCTION

Many physical mechanisms can drive a laser from a
single-mode to a multimode regime. Common examples are
spatial and spectral hole burning �SHB�, saturable absorp-
tion, and self-phase modulation �1–3�. Understanding these
mechanisms is of key importance to laser science and tech-
nology, whether one is interested in single-mode behavior or
in a particular multimode operation such as mode locking.

The multimode regimes listed above are well-understood
and documented both theoretically and experimentally in
many types of lasers. However, the understanding of multi-
mode regimes in quantum cascade lasers �QCLs� is still in its
infancy, as these lasers were only demonstrated in 1994 �4�,
and studies of their multimode regimes commenced even
more recently �5–8�.

As it was shown recently �9� multimode dynamics in
QCLs is different from that of more common lasers. This is
mainly due to the unusually fast gain recovery of QCLs,
which occurs on a picosecond scale. While a saturable ab-
sorber triggers mode locking in lasers with slow gain recov-
ery �relative to the round-trip time�, in lasers with fast gain
recovery a saturable absorber triggers a mechanism �9� simi-
lar to the Risken-Nummedal-Graham-Haken �RNGH� insta-
bility �10,11�. While in standard semiconductor lasers carrier

diffusion eliminates spatial hole burning, in QCLs the gain
recovery process is faster than carrier diffusion, and spatial
hole burning is dominant, favoring multimode operation.

This paper presents a detailed study of multimode regimes
in QCLs. The results of Ref. �10,11� are substantiated and
extended. The first part of the paper is theoretical and the
second one is experimental. In the theoretical section, the
laser Maxwell-Bloch equations are introduced and analyzed
for both a ring laser cavity and a Fabry-Perot cavity. This
way one can study the interplay of coherent phenomena and
spatial hole burning. A saturable absorber is added to the
model as well. The model is studied analytically and numeri-
cally. The stability region of a continuous wave �cw� solution
is found. It is shown that in a ring cavity, the presence of a
saturable absorber lowers the threshold of the RNGH insta-
bility from about nine times above laser threshold �10,11� to
arbitrarily low above laser threshold, depending on the
strength of the absorber. However, the nature of the instabil-
ity remains the same: the population inversion begins to os-
cillate at the Rabi frequency, modulating the gain in the laser.
The result is sidebands around the original cw mode, sepa-
rated from it by roughly the Rabi frequency. A Rabi splitting
in the spectrum is the primary signature of the RNGH insta-
bility.

It is then shown that the ring-cavity Maxwell-Bloch
model with a saturable absorber can explain the Rabi split-
ting and the lowering of the threshold, but cannot explain a
key feature in the experimental spectra. The latter exhibit
two relatively equal groups of modes with a gap in between,
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whereas the ring-cavity Maxwell-Bloch model predicts a
large central mode in the spectrum with two sidebands. In
view of this discrepancy, the Maxwell-Bloch equations were
extended to include coupling between counterpropagating
modes in a Fabry-Perot cavity, which is of course a more
adequate model for QCLs. This model takes into account the
development of SHB. The inclusion of SHB generates theo-
retical spectra with a Rabi splitting and without a central
peak in the spectrum, in agreement with experiments.

After presenting the theoretical results, a thorough study
of the experimental phenomenology is presented. It is shown
that QCLs with narrower active regions tend to exhibit a
more pronounced Rabi splitting than lasers with wider active
regions. Lasers with a wider active region tend to exhibit
multimode spectra that are governed by SHB. The explana-
tion we propose to this behavior is that narrow QCLs have a
stronger saturable absorption effect than wider ones because
the optical intensity �and thus any nonlinear effect� is en-
hanced, and as a result of an enhanced Kerr-lensing effect
�3,5�. In this case a nonlinear index enhancement in the
waveguide core gives rise to an increased overlap of the
transverse laser mode with an active region and a reduced
overlap with lossy sidewalls, leading to an additional en-
hancement of the saturable absorption. The idea of saturable
absorption by Kerr lensing is further supported by the fact
that QCLs with metal coating on the sides of the ridge have
a stronger RNGH behavior than lasers without metal coating:
The metal coating enhances saturable losses that originated
from Kerr lensing.

In the last part of the paper, the temperature dependence
of the multimode behavior in QCLs is studied experimen-
tally. It is found that at higher temperature the multimode
behavior tends to be governed by the RNGH instability,
whereas at lower temperatures it is governed by SHB. This
behavior may be explained by the fact that at higher tem-
peratures hot carriers populate more states in the injector
superlattice, creating additional quasiresonant absorption
transitions between ground and excited minibands. This
leads to an additional saturable absorption of laser radiation.

This paper is organized as follows: Section II gives a brief
survey of prior work on multimode regimes in QCLs, Secs.
III–V study theoretically the Maxwell-Bloch equations in a
ring cavity and a Fabry-Perot cavity, Secs. VI–VIII summa-
rize the experimental study, and Sec. IX is a brief summary.

II. PRIOR WORK ON MULTIMODE REGIMES
IN QCLS

Multimode regimes in QCLs were observed in a series of
recent works �5–8�. In Ref. �5�, for example, it was observed
that at a certain pumping current above lasing threshold,
QCLs cease to operate in cw and develop a multimode re-
gime. This multimode regime was characterized by a broad-
band optical spectrum and a narrow �less than 100 kHz� ra-
dio frequency �rf� beat note in the power spectrum at the
cavity round-trip frequency.

The narrow beat note, whose width is 1 /105 of the central
frequency, shows that the wave form of the electric field
circulating in the laser cavity was stable over approximately

105 round-trips. In other words, the phase relationships be-
tween the longitudinal modes were stable for about 105

round-trips. The modes were therefore locked. However, in
order to characterize the wave form which is circulating in
the laser and to see if it is indeed an isolated pulse, as in
traditional mode locking, one has to apply pulse character-
ization techniques, such as second order autocorrelation.

At the time when the experiment in Ref. �5� was per-
formed, no second-order autocorrelation apparatus was avail-
able. However, second harmonic generation from QCLs �6�
provided some information for pulse characterization. This
measurement showed an increase by more than a factor of 5
in the second harmonic signal as the multimode behavior set
in. This increase indicates that the duty cycle of the pulses
was roughly 5. Since the number of modes in the spectrum is
more than 5, we conclude that not all the modes were locked
into a pulse. Without better pulse characterization data, one
can infer that the laser could have had more than one pulse
per round-trip.

It should also be noted that traditional mode locking, with
a single pulse per round-trip, requires that the gain recovery
time be longer than the cavity round-trip �3�. In QCLs this
condition is violated, and therefore according to the existing
theory one cannot expect mode locking with a single pulse
per round-trip in QCLs. One can expect multiple pulses per
round-trip.

In view of the above, one can see that the nature of vari-
ous multimode regimes in QCLs requires further elucidation.
This is the main goal of the present work.

III. MAXWELL-BLOCH EQUATIONS IN A FABRY-PEROT
CAVITY

In this section we derive the Maxwell-Bloch equations in
a Fabry-Perot cavity. We model the gain medium of QCLs as
a two level system, described by the Bloch equations

�̇ab = i��ab + i
�E

�
� −

�ab

T2
, �1�

�̇ = − 2i
�E

�
��

ab
* − �ab� −

�p − �

T1
+ D

�2�

�z2 , �2�

where �ab is the off-diagonal element of the density matrix,
���bb−�aa is the population inversion, � and � are the
resonant frequency and the dipole matrix element of the las-
ing transition, T1 and T2 are the longitudinal and transverse
relaxation times, and �p is the steady-state inversion at E
=0, which characterizes the pumping rate. The last term in
Eq. �2� is added phenomenologically and accounts for spatial
diffusion of the inversion due to carrier diffusion. D is the
diffusion coefficient. E is the electric field, which is assumed
to satisfy the wave equation

�z
2E −

n2

c2 �t
2E =

N��

�0c2 �t
2��ab + �ab

� � . �3�

N is the number of two-level systems per unit volume, which
equals the average doping density in the active regions. � is
the overlap factor between the optical mode and the active
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region, and n is the background refractive index.
Equations �1� and �2� describe an open two-level system

�12�: The total number of electrons in the system is not con-
served, but rather can flow in and out, and vary depending on
the bias conditions. In general the two levels, the upper one
b and the lower one a, can have different relaxation times. In
this situation Eq. �2� should be replaced by two equations,
each with its own relaxation times. In QCLs indeed the upper
and lower levels have different relaxation times. However,
we neglect this difference for simplicity’s sake and assign to
them the same value T1. The generalization of the model �1�
and �2� to a model with two different relaxation times is
straightforward, as is also the generalization to a model with
more than two levels.

We now make the following set of ansatzs:

E�z,t� =
1

2
�E+

��z,t�e−�i�t−kz� + E+�z,t�ei��t−kz��

+
1

2
�E−

��z,t�e−�i�t+kz� + E−�z,t�ei��t+kz�� , �4�

�ab�z,t� = �+�z,t�ei��t−kz� + �−�z,t�ei��t+kz�, �5�

��z,t� = �0�z,t� + �2�z,t�e2ikz + �2
��z,t�e−2ikz, �6�

where k��n /c. E	, �	, �0, and �2 are assumed to vary
slowly in time and space, on the scale defined by � and k,
respectively. The quantities with a + �−� subscript represent
waves traveling to the positive �negative� z direction. Equa-
tion �6� allows taking SHB into account, �2 being the enve-
lope of the inversion grating. Note that Eq. �6� can be ex-
tended by adding terms proportional to e4ikz, e6ikz, etc.
Neglecting these terms means that higher spatial frequencies
on the inversion are neglected. Due to the nonlinearity of the
gain medium such frequencies can appear if the gain is
heavily saturated, but they are neglected in our analysis for
simplicity’s sake and since the pumping in our system is
never much higher than the laser threshold.

Substituting Eqs. �4�–�6� into Eqs. �1�–�3� and making the
slowly varying envelope approximation, we obtain the fol-
lowing set of equations:

n

c
�tE	 = 
 �zE	 − i

kN��

2�0n2 �	 −
1

2
��E+,E−�E	, �7�

�t�	 =
i�

2�
��0E	 + �2

	E
� −
�	

T2
, �8�

�t�0 =
�p − �0

T1
+

i�

�
�E+

��+ + E−
��− − c.c.� , �9�

�t�2
	 = 	 i

�

�
�E+

��− − �+
�E−� −

�2
	

T1
− 4k2D�2

	, �10�

where we have introduced the notation �2
+��2, �2

−��2
�, in

order that Eqs. �7�–�10� can be written more compactly. The
last term in Eq. �7� has been added, and represents loss. The

loss � is allowed to depend on the field to represent phenom-
ena such as optical saturation.

In QCLs the laser cavity is formed by the two cleaved
facets, one located at z=0 and the other one at z=L. At each
facet the Fresnel reflection law dictates the following rela-
tions:

E−�L,t� =
n − 1

n + 1
E+�L,t� , �11�

E+�0,t� =
n − 1

n + 1
E−�0,t� . �12�

In what follows we study analytically and numerically the
model introduced in this section. We begin with a simplified
case, namely the standard Maxwell-Bloch equation in a ring
cavity. In addition to briefly reviewing known results about
the RNGH instability, we study the effect of a saturable ab-
sorber on the latter.

IV. RING CAVITY

In this section we consider a ring cavity, where SHB does
not exist because standing waves cannot form. The aim is to
understand the interplay of coherent effects and a saturable
absorber alone, while avoiding complications due to SHB.
We shall see that without SHB, the qualitative agreement
between theory and the experiments on QCLs is not com-
plete. After introducing SHB in the next section, the agree-
ment is much more satisfactory.

A. RNGH instability with a saturable absorber

Dropping all the quantities with a “−” subscript from Eqs.
�7�–�10�, one arrives at the standard Maxwell-Bloch equa-
tions, with a saturable absorber added.

n

c
�tE = − �zE −

i��

��0�th
−

1

2
��0 − ��E�2�E , �13�

�t� =
i�

2�
�E −

�

T2
, �14�

�t� =
�p − �

T1
+

i�

�
�E�� − c.c.� . �15�

The saturable absorber is approximated to the lowest order in
E, and is characterized by �, which is often referred to as the
self-amplitude modulation coefficient �3�. �0 is the linear
loss. �th is the lasing threshold value of �p for �=0, given by
�see Appendix A�

�th
−1 =

kN�2�T2

2��0�0n2 . �16�

Linear stability analysis of Eqs. �13�–�15� is carried out in
detail in Appendix A. The gain of a perturbation at the fre-
quency � �relative to the resonance frequency �� is approxi-
mately given by
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g��� = −
c

2n
Re��0

��T1 + i��T2 − 2�p − 1�
��T1 + i���T2 + i� − �p − 1�

+
��2�p − 1�

�2T1T2

��T1 + i��3�T2 + 2i� − 4�p − 1�
��T1 + i���T2 + i� − p + 1

� .

�17�

The approximations made in the derivation of Eq. �17� are
discussed in detail in Appendix A and mainly include assum-
ing that the photon lifetime in the empty cavity is much
longer than T1 and T2. This approximation is excellent for
QCLs. p is the pumping above lasing threshold �for �=0�:

p �
�p

�th
. �18�

Figure 1 shows g��� for different values of � at p=2. The
parameters used in all examples in this paper, unless speci-
fied otherwise, are given in Table I. The effect of � is to
increase g��� more or less uniformly across the frequency
domain. In particular, it can bring g��� above zero, thereby
triggering an instability, even when the laser is not pumped
as high above threshold. The reason why a saturable absorber
lowers the RNGH threshold is that a saturable absorber itself
always favors a multimode regime to a single mode one. It
introduces a frequency-independent parametric gain. The lat-
ter is added to the RNGH parametric gain from Fig. 1, bring-
ing it above threshold. Note, however, that the instability still

starts by developing Rabi sidebands around the cw lasing
frequency. In this sense, it can be interpreted as a modified
version of the original RNGH instability, rather than as a
modulation instability caused by the saturable absorber
alone.

The dependence of the threshold for instability on � is
shown in Fig. 2. For �=0 we recover the standard RNGH
instability, which occurs when pumping of slightly above 9
times the lasing threshold. For �→
, the instability thresh-
old approaches the lasing threshold.

The results in Figs. 1 and 2 were obtained from numerical
solutions of the algebraic equations involved in the stability
analysis �see Appendix A�. Since even the approximate ex-
pression of g��� �Eq. �17�� is not very simple, it is useful to
derive some approximate simple expressions for the proper-
ties of the instability. This is done in detail in Appendix A,
and here we only give the results.

g��� �e.g., in Fig. 1� has a local minimum at �=0, and
peaks at approximately

��max� = �Rabi	4 2p

p − 1
. �19�

The Rabi frequency �Rabi=�E /�, where � is the electron
charge times the matrix element of the laser transition. The
position of the peak depends weakly on � within the param-
eter range of interest to our system. Note that for �=0 one
has

�Rabi =	p − 1

T1T2
. �20�

The dependence of ��max� on p is shown in Fig. 3.
The instability threshold is approximately given by

pth = 1 + 8�4
 �2�

�2T2
2�0

�2

+ 12
�2�

�2T2
2�0

+ 1�−1

. �21�

Figure 2 shows that Eq. �21� fairly well approximates the
exact threshold condition.

−4 −2 0 2 4
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Ω/(2π) (THz)

Pa
ra

m
et

ri
c

g
ai

n
(T

H
z)

FIG. 1. �Color online� g��� for p=2 and the parameters in Table
I, apart from �. The latter is �=0 �solid�, �=10−9 cm /V2 �dashed�,
and �=2�10−9 cm /V2 �dotted�.

TABLE I. The parameters used in all calculations and simula-
tions in this paper, unless indicated otherwise.

Quantity Symbol Value

Gain recovery time T1 0.5 ps

Dephasing time T2 0.067 ps

Linear cavity loss �0 5 cm−1

Transition dipole element � 2.54 nm�e

Background refractive index n 3.3

Cavity length L 3 mm

Saturable absorber coefficient � 10−8 cm /V2
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FIG. 2. �Color online� The pumping ratio p at which the RNGH
instability sets in as a function of the saturable absorber coefficient
�. Solid line: exact result from linear stability analysis. Dashed line:
approximate result �Eq. �21��. The parameters, apart from �, are
given in Table I.
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B. Numerical results

The linear stability analysis given above can only find the
threshold condition, and does not describe the behavior of
the laser above the point of instability. Here we therefore
present the results of a numerical solution of Eqs. �13�–�15�.

According to Ref. �13�, the energy in the Rabi sidebands
can change either discontinuously or continuously at the
RNGH instability threshold. In the language of phase transi-
tions, this would be a first- or second-order phase transition,
respectively. The criterion that determines the order of the
transition involves the laser cavity length, but has not been
given explicitly in the literature known to us.

According to the numerical simulations, for the param-
eters corresponding to our QCLs, including the saturable ab-
sorber, the transition is continuous �second order�. Below the
instability threshold the lasing is cw, and as the threshold is
crossed, the Rabi sidebands around the central cw mode
grow continuously. This behavior is demonstrated in Fig. 4.
Note that standard mode locking, with a saturable absorber
and slow gain recovery, is a discontinuous �first-order� tran-
sition �14,15�.

The spectra in Fig. 4 have two groups of modes separated
by roughly twice the Rabi frequency. In this respect they
resemble the experimental spectra. However, they have a
strong cw peak in between, a feature which is not shared by
the experimental spectra. As we show in the next section, in
a Fabry-Perot cavity with SHB, the central cw peak disap-
pears.

V. FABRY-PEROT CAVITY

Spatial hole burning is associated with �2 in Eq. �10�.
Intuitively, �2 is the amplitude of the grating that couples the
two propagation directions in the laser. The parameter that
controls the strength of SHB is D: in the limit of D→
, �2
approaches zero. In order to better understand the interplay
between SHB and the RNGH instability, we present now the
results of analytical and numerical studies of Eqs. �7�–�10�.
We start with linear stability analysis. The calculation is
shown in detail in Appendix A, and here we only give the
results.

Before proceeding, from Eq. �10� we define the lifetime
of the gain grating Tg as

T g
−1 = T 1

−1 + 4k2D . �22�

Tg is the parameter that determines the strength of spatial
hole burning. Tg can therefore range from zero �no SHB� to
T1 �strongest of SHB�. The diffusion coefficient D can be
estimated from the Einstein relation. With an electron mobil-
ity of 7000 �cm2 /s� /V at room temperature, one has D
=180 cm2 /s, k=3.7�104 cm−1, which roughly corresponds
to a vacuum wavelength of 5 �m, and we obtain 4k2D
�1 THz. With T1

−1�2 THz we find that Tg�0.3 ps. Note
that the mobility used here was relatively high, and the
wavelength was on the short side of the scale. Therefore in
reality Tg is closer to T1. It therefore follows that due to the
fast gain recovery of QCLs, carrier diffusion does not elimi-
nate spatial hole burning. This is in contrast with diode lasers
�16,17�.

In single mode operation, the standing wave associated
with the lasing mode imprints a grating in the medium which
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FIG. 3. �Color online� �max as a function of the pumping. Thick
line: exact, and dotted line: Eq. �19�. The parameters are from Table
I with the only difference that �=0.
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FIG. 4. �Color online� Spectra
obtained from a numerical solu-
tion of the Maxwell-Bloch equa-
tions �Eqs. �13�–�15��. The param-
eters are given in Table I, with the
following exceptions: �=1
�10−9 cm /V2, L=6 mm �to give
the same round-trip time as in a
Fabry-Perot 3 mm long cavity�,
and �0=7 cm−1 �to account for
the mirror losses too�.
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has, to first approximation, a sinusoidal profile. This grating
causes the lasing mode to experience heavier gain saturation
than any other mode would experience. When the gain grat-
ing becomes strong enough, the single mode regime becomes
unfavorable, and additional modes are excited.

A. Linear stability analysis

Linear stability analysis of Eqs. �7�–�10� gives two fami-
lies of unstable modes. One is associated with the RNGH
instability, and the other one with spatial hole burning. The
first family is very similar to the case of a ring cavity studied
earlier, with small differences that are discussed in Appendix
A. The second one is derived in Appendix A, and the result is
shown in Fig. 5.

Figure 5 shows the gain of a perturbation around a cw
solution. The shorter is Tg and the smaller is the pumping,
the smaller is the gain of the instability. For parameters typi-
cal to our QCLs, the SHB instability occurs a few percents
above lasing threshold.

The gain curve in Fig. 5 exhibits two peaks and a dip at
�=0. For T2�T1 and p−1�1, the location of the peaks is
given by �see Appendix A�

�max
2 �

1

T1
	 p − 1

3T1T2
. �23�

Note that Eq. �23� gives a smaller frequency than Eq. �19�. In
addition, the splitting in Fig. 5 scales like the square root of
the Rabi frequency. The cw solution is destabilized when the
cavity admits a mode for which g��� in Fig. 5 is positive.

B. Numerical results

The moment the cw solution is destabilized, studying Eqs.
�7�–�10� requires a numerical simulation. The results of such
a simulation are shown in Fig. 6. The parameters are given in
Table I, with the only difference that �=0 was used.

Figure 6 shows a clear pattern in the spectrum. This pat-
tern appears only after very long averaging �order of a mi-
crosecond� of the spectrum. Such averaging is appropriate,

since similar averaging occurs when the spectra are mea-
sured. The pattern depends on T2 and �0, but very weakly
depends on T1. A similar pattern occurs in the experimental
spectra. However, we were not able to trace its origin.

The combined effect of SHB and a saturable absorber is
demonstrated in Fig. 7. One can observe two effects. First is
spectral broadening due to SHB, similarly to Fig. 6. Second,
however, is the appearance of a splitting in the spectrum.
This splitting is roughly equal to twice the Rabi frequency.
Note, however, that in contrast to a ring laser, in a Fabry-
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Perot laser “the Rabi frequency” is not a perfectly well-
defined quantity. Since a standing wave is formed in the
cavity, the electric field and thus the Rabi frequency depend
on the position in the cavity. This dependence is even stron-
ger when the mirrors have a relatively low reflection coeffi-
cient, since the field amplitude even more strongly depends
on position.

In the previous section we saw that a saturable absorber
lowers the threshold of the RNGH instability. Here we see
that SHB suppresses the central peak seen in Fig. 4 and
replaces it by a minimum in the spectrum. In the next sec-
tions we see that Fig. 7 agrees well with experimentally mea-
sured spectra, at least for devices where the RNGH behavior
was dominant.

VI. EXPERIMENTAL RESULTS: RIDGE LASERS

We first study the multimode regimes in standard ridge
QCLs, in which the sidewalls of the laser ridges are covered
by a thick layer of electrically plated gold contact, see Fig. 8
for a typical laser cross section. The active region of the
samples tested is based on a three-quantum-well design emit-
ting at a wavelength �
8 �m �18�. The wafer was grown
by metalorganic vapor phase epitaxy �MOVPE�. Figure 9�a�
shows the voltage-current �V-I� and light-current �L-I� char-
acteristics of a 10 �m wide laser operated in cw at 200 K,
and Fig. 9�b� shows the corresponding optical spectra. The
laser was cleaved into a 2 mm long bar and soldered with
indium onto a copper heat sink. The optical power was mea-
sured by an thermal head power meter with a collection ef-
ficiency of nearly 100%. The spectra were measured by a
Nicolet Fourier transform infrared spectrometer �FTIR�
equipped with a deuterated triglycine sulfate �DTGS� detec-
tor.

As shown in Fig. 9�b�, the laser spectrum is single mode
close to laser threshold. It broadens and splits into two sepa-
rated humps as the pumping current increases. The separa-
tion between the two peaks of the two humps increases lin-
early with the square root of the collected output power from
one facet, as shown in Fig. 9�c�. The Rabi angular frequency
can be calculated from the collected output power, using the
formula �Rabi��E /�=�	2nIave / �c�� /�, where � is the
electron charge times the matrix element of the laser transi-
tion �=1.9 nm for this particular device�. Iave is the average
intracavity intensity in the gain region, which can be derived

from the measured output power �19�. For all values of in-
tensity corresponding to the spectra reported in Fig. 9�b�,
�Rabi /2� was calculated, multiplied by a factor of 2 and then
added to Fig. 9�c� �solid line�. Reasonably good agreement is
found between the experimental splitting and twice the esti-
mated Rabi frequency. The error bars of the spectrum split-
tings come from the uncertainty in determining the exact
position of the peaks, which is the full width at half maxi-
mum �FWHM� of the humps. As mentioned previously in the
theoretical section, the RNGH instability predicts that large
intracavity intensity will result in parametric gain at frequen-
cies detuned from the maximum of the gain curve by the
Rabi frequency. The measured spectra thus show clear indi-
cation of the RNGH instability in ridge QCLs.

The lowering of the RNGH instability threshold in our
QCLs is due to the presence of a saturable absorber. This
phenomenon is demonstrated analytically in the theoretical
section. Such a saturable absorption mechanism in our ex-
periments is likely to come from Kerr lensing, caused by a
nonlinear �i.e., intensity dependent� refractive index n2I in
the active region �5�. As the light intensity increases, the
mode becomes more confined in the plane transverse to the
propagation direction, and the corresponding net modal gain
also increases. The reason is twofold: First, the mode over-
laps more with the active region, leading to a larger modal
gain �this mechanism is often called “soft Kerr-lensing”�.
Second, the overlap with the metal contacts is reduced, lead-
ing to smaller losses. Thus the metal acts like a saturable
absorber. A detailed analysis is given in Appendix C.

The same RNGH splitting in spectra is observed in many
different devices, from wafers grown by both molecular
beam epitaxy �MBE� and MOVPE. Figure 10 shows the
spectra of a laser fabricated from a MBE-grown wafer with
the same active region design as in Fig. 9, taken in continu-
ous wave at 77 K. The spectrum starts from single mode
close to the laser threshold, and the mode hops at a pumping
ratio of j / jth�1.66, where there is a corresponding kink in
the �L-I� curve at 330 mA. At 590 mA, there is another kink
in the �L-I� curve, and a corresponding abrupt shift in the
spectrum associated with mode hopping. Mode hopping and
its relationship to kinks in the �L-I� curves are common phe-
nomena in semiconductor lasers �20–22�, but its cause in QC
lasers has not yet been studied and is beyond the focus of
this paper. After the spectrum broadens, it forms two sepa-
rated humps whose peaks shift apart with increased optical
power, similar to the MOVPE-grown lasers.

Characterization of the pulse emission was done using the
method of second-harmonic interferometric autocorrelation.
It is based on a Michelson interferometer in which the input
beam is split into two and one of them is delayed by �. In the
standard setup, once recombined, the two pulses are sent
collinearly first into a nonlinear crystal, and then a filter,
which allows only the second-harmonic generation �SHG�
component to be detected. One can test if it originates from a
stationary isolated pulse train from the ratio between the in-
terference maximum and the background �see Appendix B�.
The pulse duration can also be determined. However, due to
the extremely low SHG conversion efficiency of nonlinear
crystals in the mid-IR, the conventional setup is not feasible.
To overcome this problem, we used a two-photon quantum

Active Material

Gold

Gold Gold

FIG. 8. �Color online� Scanning electron microscope �SEM� im-
age of the cross section of a 10 �m wide ridge QC laser.
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well infrared photodetector �QWIP� �23,24� instead of using
a nonlinear crystal plus a linear detector. The energy diagram
of one period of the multiquantum well detector under bias is
shown in the inset of Fig. 11. The first three electronic states
are nearly equidistant in energy. When electrons in the doped
quantum wells absorb two photons simultaneously and the
detector is biased �1–3 V�, a photocurrent is generated and
the signal can be detected by use of a preamplifier and a
lock-in amplifier. This experimental setup is shown in Fig.
11. The second-order interferometric autocorrelation trace of
the MBE-grown device mentioned above is shown in Fig.
12. Interference fringes are observed when the delay time
from one arm of the autocorrelator is equal to multiples of
the cavity round-trip time. The ratio between the maximum
of the interference fringes and the background is smaller than
8, and the autocorrelation trace has some features between
the cavity round-trip times, indicating that the multimode
regime observed in this device is not stable mode locking

with a single pulse per round-trip. The meaning of the auto-
correlation traces is discussed in Appendix B, and simulated
traces are given therein.

In addition to second-order autocorrelation, the micro-
wave spectrum of the laser output was also measured with an
ultrafast QWIP �25� whose bandwidth is 52 GHz. The laser
output is sent directly to the ultrafast QWIP, and the resulting
photocurrent is displayed in a spectrum analyzer. Figure 12
shows the beat note signal of the MOVPE-grown sample at
pump current 800 mA at 77 K. A steady peak with a FWHM
of 13 MHz at 22.01 GHz, which corresponds to the cavity
round-trip frequency of the 2 mm long laser �background
refractive index n=3.3�, is observed on the spectrum ana-
lyzer. It indicates a modulation of the laser output at the
cavity round-trip frequency, and thus at least partial phase
locking between the longitudinal modes: The phase relation-
ships between the modes are stable for about 103 round-trips,
as inferred from the peak frequency-to-FWHM ratio.
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FIG. 9. �Color online� �a� V-I and L-I curves and �b� optical spectra vs pumping ratio �j / jth� above threshold obtained in cw at 200 K of
a 10 �m wide ridge laser emitting at 8 �m �wafer No. 2721�. �c� Spectral splitting and twice the Rabi frequency �Rabi / �2�� vs square root
of output power collected from a single laser facet. The different quantities reported on the graph were deduced from the experimental data
shown in �b�. The dashed line is a least-squares linear fit of the data.
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As the ridge width is increased, the RNGH instability and
the Rabi splitting in the spectrum are suppressed. Figure 13
shows the spectra of a device processed from the same wafer
as the one in Fig. 9, with the difference of its ridge width
being increased to 15 �m. The spectra do not broaden much
even at very high pumping currents, and do not show the
Rabi splitting. As discussed in Appendix C, the effect of Kerr
lensing decreases significantly when the active region width
is increased. Thus this is strong evidence that the saturable
absorption needed for lowering the RNGH threshold is pro-
vided by the Kerr-lensing mechanism.

VII. EXPERIMENTAL RESULTS: BURIED
HETEROSTRUCTURE LASERS

The second type of lasers we have tested are the so-called
buried heterostructure lasers, in which an insulating Fe-
doped InP layer is regrown after etching of the ridges. A

thick layer of electrically plated gold is deposited on top of
the ridges as the top contact layer after the InP regrowth.
Figure 14 shows the cross section of such a device.

The active region of the buried heterostructure lasers
tested is based on a four-quantum-well design, which relies
on a double phonon resonance to achieve population inver-
sion �26�. Figure 15�a� shows the V-I and L-I characteristics
of a laser with an active region width of 3 �m and wave-
length 8.38 �m operated in cw at room temperature, and
Fig. 15�b� shows its optical spectra. The spectra show Rabi
splitting similar to the ridge laser case, indicating the RNGH
instability in this narrow buried heterostructure laser. The
spectral splitting and twice the Rabi frequency are plotted
against the square root of the collected output power in Fig.
15�b�. Good agreement is found between the experimental
splitting and twice the calculated Rabi frequency.

The second-order interferometric autocorrelation trace of
the device when it is pumped five times above threshold at
80 K is shown in Fig. 16. The ratio between the maximum of
the interference fringes and the background is close to 8 to 3,
similar to the ridge laser case. In addition, there are smaller
interference fringes within one cavity round-trip period. Both
features indicate no stable pulsation from the laser �see Ap-
pendix B�. The microwave spectrum of the laser output
shows a steady peak with FWHM of 700 kHz at 15.018
GHz. This is shown in the inset of Fig. 16. This indicates that
the phase relationship between the modes are maintained for
about 104 cavity round-trips.

As in the ridge laser case, the lowering of the threshold of
RNGH instability can also be attributed to the Kerr-lens type
saturable absorption. In order to better support this idea ex-
perimentally, the spectra of another device processed from
the same wafer as in Fig. 15 but with a wider active region
�7.5 �m� are measured. Two-dimensional waveguide simu-
lations indicate a much weaker Kerr-lensing effect in these
QCLs, due to the much larger ratio of active region width to
wavelength �see Appendix C�. The measured optical spectra
obtained at 300 K in cw mode are shown in Fig. 17�a�. The
envelopes of the spectra consist of multiple peaks whose
separation is independent of the pumping current. The spec-
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FIG. 10. �Color online� �a� V-I and L-I curves and �b� the optical spectra vs pumping ratio �j / jth� above threshold obtained from a 10 �m
wide ridge QCL operated in cw at 77 K emitting at 8 �m �wafer No. 2743�. Note that mode hopping occurs while there is a jump in the L-I
curve.
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FIG. 11. �Color online� The experimental setup of a two-photon
autocorrelation measurement. �Inset� Conduction band diagram of
the two-photon QWIP showing three equidistant energy levels.
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tral signatures qualitatively agree with the numerical simula-
tions in a Fabry-Perot cavity without a saturable absorber
��=0� �Fig. 6�.

Further increasing the active region width tends to sup-
press both the instabilities caused by RNGH and spatial hole
burning. Figure 17�b� shows the spectra of a device also
processed from the same wafer but with an even wider active
region �10 �m� at 77 K. The spectra do not broaden much
even at very high pumping currents, as in the ridge laser
case. Since both RNGH instability and SHB stem from non-
linear effects, they are suppressed when the intensity of the
field in the cavity is lower. Moreover, when the active region
width increases, higher transverse modes are excited. Differ-
ent transverse modes have different propagation constants �,
and thus form different gain gratings which tend to wash out
the effect of spatial hole burning.

VIII. TEMPERATURE EFFECTS

Temperature also plays an important role in the shape of
the spectrum. To illustrate this point, we now present the
spectra at different temperatures for the �=8.38 �m buried
heterostructure laser with 3 �m active region width �the
same as in Fig. 15�.

From the spectra in Fig. 18, it is clear that at lower tem-
peratures the spectra are dominated by spatial hole burning,
showing multiple peaks independent of pumping and no sig-
nificant Rabi splitting. As the temperature increases, the Rabi
splitting becomes more evident and finally the RNGH insta-
bility takes over.

The effect of temperature on the nature of the multimode
regime in QCLs can be explained in part by carrier diffusion,
however, this effect alone seems to be too weak to provide a
complete explanation. The lifetime of the gain grating Tg is
defined as Tg

−1=T1
−1+4k2D. The diffusion coefficient D of the

gain grating is proportional to the temperature, D=�kBT /q,
where � here is the carrier mobility, kB is the Boltzmann’s
constant, T is the temperature, and q is the carrier charge.
Therefore at higher temperature carrier diffusion would re-
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FIG. 13. Optical spectra vs pumping ratio �j / jth� above thresh-
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duce spatial hole burning and thus reveal the RNGH insta-
bility. However, with an upper limit for the mobility of
7000 �cm2 /s� /V and k=2.25�104 cm−1 �which corre-
sponds to a wavelength in vacuum of 8.38 �m�, 4k2D
�0.09 THz at 77 K and 4k2D�0.4 THz at 300 K, both
significantly smaller than T1

−1�0.6 THz at 77 K and T1
−1

�2 THz at 300 K. Thus carrier diffusion is unlikely to be
the reason for the temperature dependence. Although the
temperature effect is not entirely understood to us at this
point, one possibility is temperature-dependent saturable ab-
sorption. The QCL injector consists of many energy levels
which can be thermally populated. It is not surprising that if
any two higher levels in the injector are nearly resonant with
the laser transition, they will form a two-level saturable ab-
sorber. Therefore in this case saturable absorption is stronger
at higher temperature and makes the RNGH instability more
easily observable.

IX. CONCLUSION

This paper provides a thorough account of different mul-
timode regimes in QCLs. It was found that two key mecha-

nisms which govern the multimode regimes in QCLs are a
coherent instability similar to the RNGH instability and spa-
tial hole burning. The former is enhanced due to the large
dipole moment � of the laser transition, which results in a
large Rabi frequency compared to the relaxation rates. Thus
the Rabi splitting can be resolved by the comb of modes
supported by the cavity. SHB is enhanced because carrier
diffusion is slower than the gain recovery, and thus leaves
the gain grating intact. Note that in conventional semicon-
ductor lasers the RNGH instability is not observed because
typical Rabi frequencies are much smaller than the phase
relaxation rate 1 /T2. SHB in diode lasers is not so readily
observable because diffusion occurs on a time scale compa-
rable to the recombination time, i.e., the second term on the
right-hand side of Eq. �22� is of the same order or greater
than the first term 1 /T1�109 s−1

Due to the fast gain recovery, conventional mode locking,
with one pulse per round-trip, is suppressed. In order to
achieve conventional mode locking in QCLs, one needs to
design a QCL with a slower gain recovery, such that T1 be-
comes longer than or comparable to the cavity round-trip.
Efforts in this direction are currently underway.
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FIG. 15. �Color online� �a� V-I and L-I curves and �b� optical spectra vs pumping ratio �j / jth� above threshold obtained in cw at 300 K
with a 3 �m wide ridge laser emitting at 8.38 �m �wafer No. 3251�. �c� Spectral splitting and twice the Rabi frequency �Rabi / �2�� vs
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APPENDIX A: LINEAR STABILITY ANALYSIS

This appendix elaborates on the linear stability analysis of
the Maxwell-Bloch equations in a ring cavity �Eqs.
�13�–�15�� and in the Fabry-Perot cavity �Eqs. �7�–�10��.

1. Ring cavity

We begin with a linear stability analysis of Eqs. �13�–�15�,
with ��E�=�0−��E�2. In order to keep the expressions from
becoming too cluttered we define

Ẽ �
E�

�
,

�̃ � �2�/�2,

�̃ �
�0�

�thT2
,

�̃ �
�0�

�thT2
. �A1�

Equations �13�–�15� are then rewritten as

n

c
�tẼ = − �zẼ − i�̃ −

1

2
��0 − �̃�Ẽ�2�Ẽ , �A2�
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FIG. 16. �Color online� A
second-order interferometric auto-
correlation trace of a 8 �m wave-
length buried heterostructure QC
laser �wafer No. 3251� under the
condition of RNGH instability.
�Inset� Microwave spectrum of the
photocurrent generated by the
same laser �measured with a 68
kHz resolution bandwidth�.
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FIG. 17. Optical spectra vs
pumping ratio �j / jth� above
threshold obtained in cw at 300 K
with �a� a 7.5 �m wide and �b� a
10 �m buried heterostructure la-
ser emitting at 8 �m �wafer No.
3251�.
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�t�̃ =
i�̃

2
Ẽ −

�̃

T2
, �A3�

�t�̃ =
p�0

T1T2
−

�̃

T1
+ i�Ẽ��̃ − c.c.� . �A4�

Setting the left-hand sides of Eqs. �A2�–�A4� to zero we find

that they admit a steady state solution of the form Ẽ= Ē , �̃

= �̄ , �̃= �̄. Ē , �̄ , �̄ are constants in time and space satisfying

�̄ =
�0

T2
−

�̃Ē2

T2
, �A5�

�̄ =
i

2
��0 − �̃Ē2�Ē , �A6�

p + 1 = 
1 −
�̃Ē2

�0
��1 + Ē2T1T2� . �A7�

Ē was assumed real, since it can be always chosen so without
loss of generality.

Adding perturbations �Ẽ , ��̃ , ��̃ to the steady state so-
lution, and linearizing Eqs. �A2�–�A4� with respect to the
perturbations, one obtains a set of linear equations:

�t��̃I =
1

2
��̄�ẼR + ��̃Ē� −

��̃I

T2
, �A8�

�t��̃ = − T2�̄Ē�ẼR − 2Ē��̃I −
��̃

T1
, �A9�

n

c
�t�ẼR = − �z�ẼR + ��̃I − ��0 − 3�̃Ē2�

�ẼR

2
�A10�

and

�t��̃R = −
1

2
�̄�ẼI −

��̃R

T2
, �A11�

n

c
�t�ẼI = − �z�ẼI − ��̃R − ��0 − �̃Ē2�

�ẼI

2
. �A12�

The two sets of equations, �A8�–�A10� and �A11� and �A12�,
are decoupled, and can be thus studied independently. Since
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FIG. 18. Optical spectra vs pumping ratio �j / jth� above threshold obtained in cw of a buried heterostructure laser emitting at 8.38 �m
at different temperatures: �a� 80 K, �b� 150 K, �c� 200 K, and �d� 300 K.
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both sets of equations are translationally invariant, plane
waves are their eigenfunctions. For Eqs. �A8�–�A10� we

therefore choose ��̃I�z , t�=��̃I�t�eikz, and similarly for ��̃

and �ẼR. The stability of the cw solution is thus determined
by the eigenvalues of the matrix

M =�− T2
−1 1

2T2
��0 − �̃Ē2�

1

2
Ē

c

n

c

n

−

1

2
�0 +

3

2
�̃Ē2 − ik� 0

− 2Ē �̃Ē3 − �0Ē − T1
−1
� .

�A13�

If all eigenvalues have a negative real part, the cw solution is
stable.

The eigenvalues of M can be easily found numerically.
However, it is always more enlightening to have an analyti-
cal expression. To this aim we observe that of the three fre-

quency parameters in M �T1
−1, T2

−1, and c
n ��0+ �̃Ē2��, the lat-

ter, which is the inverse cavity photon lifetime, is often the
slowest one in QCLs. According to Table I, c

n�0=0.05 THz,
T1

−1=2 THz, and T2
−1=15 THz. We thus derive expressions

for the eigenvalues which are correct to first order in �0 and
�̃.

For �0=0 and �̃=0, the eigenvalue with the greatest real
part is �0�k�=−ick /n. Putting ��k�=�0�k�+�1�k� into the
characteristic polynomial of M and equating the parts which
are first order in �0, �̃, and �1, one arrives at

�max = − i� −
�0c

2n

��T1 + i��T2 − 2�p − 1�
��T1 + i���T2 + i� − �p − 1�

+
�p − 1��̃c

2nT1T2

��T1 + i��3�T2 + 2i� − 4�p − 1�
��T1 + i���T2 + i� − �p − 1�

,

�A14�

where p=�p /�th−1 and �=kc /n. Taking the real part of Eq.
�A14� one obtains Eq. �17�.

The position of the maximum of the gain curve is inde-
pendent of �̃, and to first order in T2 /T1 is given by Eq. �19�.
The gain at that frequency is given by

g„��max�… =
�0c

2n

T2

T1
�3�p − 1� − 2	2p�p − 1�� +

c�̃�p − 1�
T1T2

.

�A15�

The threshold for the instability is found, to leading order in
T2 /T1, by equating Eq. �A15� to zero. This yields Eq. �21�.

2. Fabry-Perot cavity

Employing the same transformation as in Eq. �A1�, Eqs.
�7�–�10� take the form

n

c
�tẼ	 = 
 �zẼ	 − i�̃	 −

1

2
�0Ẽ	, �A16�

�t�	 =
i

2
��̃0Ẽ	 + �̃2

	Ẽ
� −
�̃	

T2
, �A17�

�t�̃0 =
�̃p − �̃0

T1
+ i�Ẽ+

��̃+ + Ẽ−
��̃− − c.c.� , �A18�

�t�̃2
	 = 	 i�Ẽ+

��̃− − �̃+
�Ẽ−� −

�̃2
	

Tg
. �A19�

Splitting the variables with the tilde into their real and imagi-
nary parts, Eqs. �A16�–�A19� can be rewritten as

�t��̃+
I + �t��̃−

I =
1

2
��̄0 + �̄2���Ẽ−

R + �Ẽ+
R� + Ē���̃0 + ��̃R�

−
��̃+

I + ��̃−
I

T2
, �A20�

n

c
��t�Ẽ+

R + �t�Ẽ−
R� = − �z��Ẽ+

R − �Ẽ−
R� + ���̃+

I + ��̃−
I �

−
�0

2
��Ẽ+

R + �Ẽ−
R� , �A21�

�t��̃0 = 2i�̄��Ẽ+
R + �Ẽ−

R� − 2Ē���̃+
I + ��̃−

I � −
��̃0

T1
,

�A22�

�t��̃2
R = i�̄��Ẽ+

R + �Ẽ−
R� − Ē���̃+

I + ��̃−
I � −

��̃2
R

Tg
,

�A23�

�t��̃+
R − �t��̃−

R = −
1

2
��̄0 − �̄2���Ẽ+

I − �Ẽ−
I � + ��̃2

I Ē

−
��̃+

R − ��̃−
R

T2
, �A24�

n

c
��t�Ẽ+

I − �t�Ẽ−
I � = − �z��Ẽ+

I + �Ẽ−
I � − ���̃+

R − ��̃−
R�

−
�0

2
��Ẽ+

I − �Ẽ+
I � , �A25�

�t��̃2
I = − i�̄��Ẽ+

I − �Ẽ−
I � − Ē���̃+

R − ��̃−
R� −

��̃2
I

Tg
.

�A26�

We now define the generalized parity operator P, which re-
flects the space around the center of the cavity and swaps all
+ and − quantities:

PX	�z,t� = X
�L − z,t� ,

where X is any of the quantities �̃, Ẽ, or �̃, with an R or I
superscript. Equations �A20�–�A26� commute with P, and
therefore their eigenmodes can be chosen to be eigenstates of
P as well. Since P2 is the unity operator, P can have only
“even” or “odd” eigenstates, with +1 and −1 eigenvalues,
respectively.
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We now observe that Eqs. �A20�–�A23� are decoupled
from Eqs. �A24�–�A26�. For Eqs. �A20�–�A23�, odd solu-
tions are trivial, whereas for Eqs. �A24�–�A26�, even solu-
tions are trivial. Assuming an even solution for Eqs.
�A20�–�A23� and an odd solution to Eqs. �A24�–�A26�, Eqs.
�A20�–�A23� are reduced to

�t��̃+
I =

�̄0 + �̄2

2
�Ẽ+

R +
Ē

2
���̃0 + ��̃R� −

��̃+
I

T2
, �A27�

n

c
�t�Ẽ+

R = − �z�Ẽ+
R + ��̃+

I −
�0

2
�Ẽ+

R, �A28�

�t��̃0 = 4i�̄�Ẽ+
R − 4Ē��̃+

I −
��̃0

T1
, �A29�

�t��̃2
R = 2i�̄�Ẽ+

R − 2Ē��̃+
I −

��̃2
R

Tg
, �A30�

�t��̃+
R = −

�̄0 − �̄2

2
�Ẽ+

I +
1

2
��̃2

I Ē −
��̃+

R

T2
, �A31�

n

c
�t�Ẽ+

I = − �z�Ẽ+
I − ��̃+

R −
�0

2
�Ẽ+

I , �A32�

�t��̃2
I = − 2i�̄�Ẽ+

I − 2Ē��̃+
R −

��̃2
I

Tg
. �A33�

Similarly to the discussion around Eq. �A13�, the stability
of Eqs. �A27�–�A33� is studied by finding the eigenvalues of
the matrix

�
− T2

−1 �0

2T2

Ē

2

Ē

2

c

n

c

n

−

1

2
�0 − ik� 0 0

− 4Ē − 2�0Ē − T1
−1 0

− 2Ē − �0Ē 0 − Tg
−1

� �A34�

for Eqs. �A27�–�A30�, and

�− T2
−1 �0

2T2

Ē

2

−
c

n

c

n

−

1

2
�0 − ik� 0

− 2Ē �0Ē − Tg
−1
� �A35�

for Eqs. �A31�–�A33�. Ē is now related to p via

Ē2 =
p − 1

2T1T2 + T2Tg
.

The matrix �A34� is related to the RNGH instability, whereas
matrix �A35� is related to spatial hole burning. In the limit of

Tg→0, as well as in the case Tg=T1, g��� is identical to the
expression �17� without a saturable absorber ��=0�:

g��� = −
�0c

2n
Re� ��T1 + i��T2 − 2�p − 1�

��T1 + i���T2 + i� − �p − 1�� .

�A36�

The RNGH instability threshold is therefore again around
p=9. Note, however, that the cw solution destabilizes for
much smaller p due to spatial hole burning. Indeed, g���
obtained from Eq. �A35� is given by

g��� = −
�0c

2n
Re�1 +

3i�i + �T1� − �p − 1�
3�i + �T2��i + �T2� − �p − 1��

�A37�

for Tg=T1. The peak of the gain curve is obtained at

�max
2 �

1

T1
	 p − 1

3T1T2

for T2�T1 and p−1�1. For Tg=0 spatial hole burning does
not exists, and g��� obtained from Eq. �A35� is given by

g��� = −
�0c

2n
Re�2i + �T2

i + �T2
� , �A38�

which is never positive.

APPENDIX B: INTERFEROMETRIC AUTOCORRELATION

If we write the electric field as a function of time as
E�t�ei�t, the two-photon interferometric autocorrelation is
given by

I��� = �
−





�E�t + ��ei�� + E�t��4dt

= �
−





��E�t + ���4 + �E�t��4 + 4�E�t + ��E�t��2�dt

+ 2��
−





dt�E�t��2E��t�E�t + ��ei�� + c.c.�
+ 2��

−





dt�E�t + ���2E��t�E�t + ��ei�� + c.c.�
+ ��

−





dt�E�t + ��E��t�e2i���2 + c.c.� . �B1�

We define the background as

Ib = 2�
−





�E�t��4dt . �B2�

From Eq. �B1� one can see that I�0�=8Ib. We now assume
that E�t� is an isolated pulse, and for simplicity’s sake we
assume that E�t� is nonzero only over an interval T. Then for
��T all terms in Eq. �B1� which include both t and t+�
vanish. Therefore I���T�= Ib. In other words, for a pulse
one has
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I�0�
I�� � T�

= 8. �B3�

Now let us assume that E�t� is a complex stationary random
process whose phase at each point in time is uniformly dis-
tributed over the interval �0,2��. Let us assume for simplic-
ity that there is T such that for ��T E�t� and E�t+�� are
statistically independent. One can see that the mean value of
the third, the fourth, and the fifth line of Eq. �B1� vanish. The
second line of Eq. �B1� equals 3Ib. We therefore obtain that
for a random process

I�0�
I�� � T�

=
8

3
. �B4�

The ratio between the peak and the background in the auto-
correlation function is therefore 8:1 for an isolated pulse, that
is when the phases of all modes are all zero, and 8:3 for
modes with completely random phases.

Figure 19 shows simulated interferometric autocorrelation
traces for the same parameters as in Fig. 7. For p=1 the
phases of the modes are random, and the peak-to-background
ratio is 8:3. When the saturable absorber is absent, �=0, the
ratio in the autocorrelation is also 8:3. When the pumping is
higher �Fig. 19 below�, the saturable absorber induces some
phase relationships between the modes, and the peak-to-
background ratio is about 8:2. Note that in the autocorrela-
tion in Fig. 12, the ratio is slightly greater than 8:3. The
autocorrelation also has a nontrivial structure, with a peak at
half the cavity round-trip time. We were not able to repro-
duce this structure in the simulations.

APPENDIX C: KERR LENSING IN QCLs

This section elaborates on the analysis of the Kerr lensing
effect �including soft Kerr lensing� in QCLs. The mechanism
of Kerr lensing can be understood as follows: above lasing
threshold, there is net gain in the active region which com-
pensates the mirror losses. Assuming a nonlinear refractive
index �nNL=n2I in the active region, it causes self-focusing
of the transverse mode, which results in a net increase in the
modal gain due to an increased overlap with the active re-
gion and a decreased overlap with lossy waveguide cladding.
A stronger intensity leads to stronger Kerr lensing, thus
forming an intensity-dependent saturable absorber.

The active region width is expected to play an important
role in the Kerr lensing effect. The narrower the active re-
gion, the less confined is the transverse mode, which results
in a bigger increase of the modal gain due to Kerr lensing.
Therefore the saturable absorber coefficient � is expected to
be larger in lasers with a narrower active region.

We performed FDTD waveguide simulations using the
commercial software BeamPROP. We simulated buried het-
erostructure QCLs �wafer No. 3251� with various active re-
gion widths. The software allows us to assign complex re-
fractive indices to each layer, and the effective modal index
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FIG. 19. �Color online� Simulated interferometric autocorrela-
tion, corresponding to the same parameters as in Fig. 7. The value
of p is denoted at each plot.
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is calculated by the software. The detailed steps of our Kerr-
lensing simulation are as follows.

�1� We first assign a net gain �i.e., a negative imaginary
part of nactive� in the active region, making the total modal
gain equal to the total mirror loss. In our case, given the
reflectivity r=0.27 at our laser facets, a 3 mm long laser has
a total mirror loss of 4 cm−1.

�2� We assign different values of �nNL=n2I to the real
part of nactive. After running the simulation, we get the net
modal gain for each �nNL.

�3� We plot the modal gain versus �nNL. For example,
Fig. 20 shows the plots for 3 �m wide and 5 �m wide
active regions.

�4� In order to relate to our theoretical model, the change
in modal gain is attributed entirely to change in modal losses.

�5� The change in modal loss equals ��E�2, which is also
proportional to the intensity I. Thus from the slope of the
plot of modal gain vs �nNL=n2I, we can extract the ratio of
� /n2.

�6� For a given active region width, we choose the value
of � that brings the threshold of RNGH instability down
close to our experimental data. Then we can determine the
value of n2 from the ratio of � /n2.

�7� With the fixed value of n2, we repeat the waveguide
simulation with different active region widths and plot � vs
the active region width.

For an active region width of 3 �m, the RNGH threshold
is dramatically lowered from nine times the lasing threshold
to less than twice the lasing threshold �see Fig. 15�. From
Fig. 2, the required � is about 2�10−9 cm /V2, from which
we obtain that n2 is about 2�10−8 cm2 /W. The estimated �
vs active region width is plotted in Fig. 21. As the active
region width increases, � decreases, and when the active
region is as wide as 7.5 �m, � decreases to 1
�10−9 cm /V2. This pushes the RNGH instability threshold
to above twice the lasing threshold. This may explain why

we see only instabilities resulting from spatial hole burning
in wider buried heterostructure lasers �see Fig. 17�.

For ridge lasers, the lossy gold contact on the sidewalls of
the laser ridges will make the saturable absorber even stron-
ger. This may explain the absence of spatial hole burning in
ridge lasers.

There are several possibilities which might explain the
origin of n2 in the active region. The complex states in the
injector can all contribute to both real and imaginary parts of
��3� at the laser wavelength, which results in both n2 and �.
The laser transition itself can contribute an n2 as big as
10−9 cm2 /W �5�. � should be enhanced with increasing tem-
perature since electrons at higher temperatures populate a
larger number of excited states, from which absorption can
take place; and although not very significant, there is always
bulk n2 of the material.
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