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We show that a longitudinal �Goos-Hänchen� and a transverse �Imbert-Fedorov� beam displacement can be
observed upon total internal reflection at two-dimensional photonic crystal slabs. By inspecting only the
dispersion relation of the photonic crystal we derive qualitative criteria for the direction of the beam shift.
Furthermore, it will be shown that the beam shift can be strongly enhanced at particular angles of incidence
where Fabry-Pérot resonances of the slab are excited. The Renard model, which predicts the strength of the
shifts based on the Poynting vector in the totally reflecting medium, has been adapted to quantitatively analyze
the beam shift.

DOI: 10.1103/PhysRevA.77.053802 PACS number�s�: 42.25.Bs, 42.25.Gy, 42.70.Qs

I. INTRODUCTION

If light is totally reflected at an interface separating two
homogeneous media, a small displacement can be observed
between the beam center of the reflected and the incident
beam. The Goos-Hänchen shift �GHS� �1� is usually related
to a beam displacement in a plane given by the surface nor-
mal and the wave vector of the incident light, whereas the
Imbert-Fedorov shift �IFS� �2,3� is usually related to a trans-
verse beam displacement relative to this plane. The modulus
of both shifts depends strongly on the parameters of the sys-
tem, such as, e.g., the state of polarization, the angle of in-
cidence, or the wavelength. For most cases both shifts appear
simultaneously; with the exception that due to symmetry re-
quirements for a pure TE or TM polarized illumination beam
an IFS cannot be observed �4�. The magnitude of the GHS at
a single interface is usually of the order of a wavelength. The
IFS is typically an order of magnitude smaller �5�. If the
single interface is replaced by a thin dielectric film a signifi-
cant enhancement of the GHS can potentially be achieved if
leaky thin film modes supported in this layer are excited.
This occurs, as expected, only for well defined system pa-
rameters �6,7�.

For a quantitative evaluation of the beam shifts at single
interfaces or at multilayered structures, two different models
exist. The first one is usually referred to as the Artmann
model �8�. It derives explicit expressions for the beam shifts
in terms of the gradient of the reflected beam’s phase in the
reciprocal space. The second one is usually referred to as the
Renard model �9�. It is based on considerations of the energy
transport provided by evanescent waves in the totally reflect-
ing medium parallel to the interface or by leaky thin film
modes excited in the thin film, respectively. In the latter
model the GHS and the IFS are given by

LGHS =
1

Sz
R�

0

�

S��z�dz , �1�

LIFS =
1

Sz
R�

0

�

S��z�dz . �2�

Sz
R denotes the z component �defined here as normal to the

surface� of the Poynting vector of the reflected beam at the
interface z=0. S� �S�� denotes the Poynting vector compo-
nent parallel �perpendicular� to the plane of incidence for z
�0. In case of reflection at a single interface the integration
in Eqs. �1� and �2� will be performed over the evanescent
field in the totally reflecting medium. For the homogeneous
thin film setup the integration extends over the film and the
adjacent region in which the transmitted field will decay eva-
nescently �see Ref. �6��.

The pertinent setup of the present study is shown in Fig.
1. There, two homogeneous isotropic media having refrac-
tive indices n1 and n3 �with n1�n3� are separated by a 2D
photonic crystal �PC� slab. The surface normal is chosen to
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FIG. 1. General setup showing the reflection of a beam incident
from a homogenous medium n1 onto a 2D PC slab structure which
is followed by the medium n3. In the present example the values for
the refractive indices are n1=3.5 �silicon @1.5�m� and n3=1.0
�air�. The PC slab consists of a square lattice of air holes in the
silicon having a radius of r=0.3a �with a being the lattice constant�.
The height of the slab is subject to modifications within our con-
siderations. The arrows indicate the directions of the expected beam
shifts relative to the plane of incidence. The thick black arrow rep-
resents the GHS and the thick white arrow represents the IFS. The
inset shows the definition of an arbitrary wave vector k in the un-
derlying coordinate system that is attached to the PC structure.
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be parallel to the z direction. The structure is illuminated
with a focused inclined beam which penetrates into the PC
slab and which is totally reflected on the interface at z=h.
The incident beam has a Gaussian shape in the plane of the
interface at z=0. One comment has to be given concerning a
potential realization of such a setup, as in all realistic experi-
ments the light beam will incident generally from free space.
Therefore, it has to be coupled appropriately to the incident
medium. To achieve total internal reflection at the interface
to the medium with refractive index n3 one has to use, e.g., a
devoted prism setup to couple light into the optical thicker
medium n1. This strategy is used for instance in Refs. �6� and
�10�. Similar setups are also regularly used to excite surface
plasmon polaritons, e.g., in the Otto or in the Kretschmann
configuration. The ratio between the lattice period and the
wavelength �inside the medium n1� is slightly greater than
1/2 �about 0.6�. Thus only the zeroth reflection order appears,
except for large incidence angles near the edge of the first
Brillouin zone. Recent work addressed similar problems
�11,12�. There, the generalized Artmann model was applied
for the calculation of the beam shifts. The longitudinal and
transverse beam displacements have been calculated by
evaluating the dependency of the reflection coefficient on the
incident angle. The disadvantage of this approach is the evi-
dent lack of physical insight because the grating geometry
and the reflection coefficients are cumbersome, if not to say
impossible, to relate if the feature size of the structure is
comparable to the wavelength. This holds for the present
case.

By resorting to Renard’s model �Eqs. �1� and �2��, a sim-
pler association based on physical grounds of the expected
GHS and IFS can be drawn by considering the Poynting
vector of the field inside the PC slab. This assumes that the
contribution of the evanescent field in medium n3 to the shift
is negligible as compared to the contribution of the PC slab.

Representing the incident beam only by its central plane
wave component k0 the excited field inside the PC slab can
be described by a superposition of forward and backward
propagating Bloch modes with respect to the z coordinate
such that a standing wave establishes—in analogy to the su-
perposition of plane waves in a homogeneous thin film. This
consideration holds for a sufficiently small spectrum of the
input beam, so that the variation of the optical response is
negligible.

Therefore, by merely analyzing the Bloch modes and the
dispersion relation of the underlying 2D PC it is possible to
predict the direction of the beam displacement. This holds
because the Poynting vector of a particular Bloch mode with
a wave vector k0 is given by the normal derivative of the
isofrequency surface S��� /�k0 at that point. The strength
of the shift �or the modulus of the Poynting vector�, however,
depends on the coupling to the external field; but this infor-
mation is inaccessible by using eigenmode calculations only.
For the computation of the dispersion relation we used the
well-established solver for the corresponding eigenvalue
problem �13,14�.

In this paper we shall analyze both the transverse and
longitudinal beam shift upon reflection at a PC slab. Quali-
tative predictions of the beam shifts can be derived by using
the Renard model and analyzing the Bloch modes of the

two-dimensional PC. To prove the versatility of this ap-
proach, we outline at two examples how to identify domains
in the dispersion relation where either a pure GHS or the
combination of GHS and IFS occur simultaneously. Based
on symmetry considerations it will be argued that a pure IFS
cannot be observed for a two-dimensionally confined inci-
dent beam. To complete our study, we verify the quantitative
validity of Renard’s model for these examples. Results are
compared with rigorous computations of the beam displace-
ment in real space.

II. GEOMETRY AND DISPERSION RELATION OF THE
PERTINENT STRUCTURE

In the following the refractive index for the incident me-
dium of the structure under investigation is assumed to be
n1=3.5. It corresponds in good approximation to the refrac-
tive index of silicon at a wavelength of 1.5 �m. The me-
dium in the transmitted region is air �n3=1.0�. The PC slab is
assumed to be made of air holes with a radius of r=0.3a
arranged in a square lattice with lattice constant a. The slab
background medium is silicon with a refractive index of n
=n1=3.5. The height of the slab and the operational fre-
quency are subject to variations in the analysis.

Figure 2�a� shows the isofrequency curves of the infinitely
extended PC for the first band of the two independent polar-
izations TM �electric field in the z direction� and TE �mag-
netic field in the z direction�. The TE �TM� band covers a
frequency range from �=0. . .0.2194 �0. . .0.2045�, where
the normalized frequency is given in units of 2�c /a. The
second TE �TM� band commences at �=0.2153 �0.1791�,
indicating a small overlap with the first band. However, this
is of no importance because all studies are undertaken for
lower frequencies. By calculating the entire 3D dispersion
relation �=��kx ,ky ,kz� the strict separation in TE and TM
polarization is no longer valid and the first two lowest bands
strongly overlap. Nonetheless, in case of an incident field
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FIG. 2. �Color online� �a� Isofrequency curves of the first band
of the infinite 2D photonic crystal for TE �red, dashed� and TM
�green, solid� polarized light �shown is the first quadrant of the
Brillouin zone�. The wave vector component normal to the PC
plane kz is kept zero. �b� Isofrequency surfaces �TM-like� for two
different frequencies ��=0.13 �dark gray�, �=0.17 �light gray��.
Here the dependence on the kz component is accounted for. The
frequency values for negative kz are identical.
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along high symmetry directions these two polarization states
can be excited independently. By choosing an adequate po-
larization for the incident field it is possible to excite Bloch
modes of a single photonic band only, so that cross-coupling
effects can be avoided. We will take advantage of this fact
later in looking at the pure GHS where light is incident along
the �M direction. In what follows bands of the 3D dispersion
relation converging for kz=0 toward the original TM �TE�
polarization states will be called “TM�TE�-like.”

Figure 2�b� shows two isofrequency surfaces �TM-like
only� for the frequencies �=0.13 and �=0.17. The isofre-
quency surface at �=0.13 exhibits an almost spherical shape
comparable to that of a homogeneous medium. However, if
an isofrequency surface �for instance, at �=0.17� approaches
the boundary of the Brillouin zone at kx/y = 	0.5 2� /a the
sphere experiences deformations and the edges become de-
formed. The derivative of the frequency with respect to at
least one wave vector component always vanishes. This is an
effect of the inversion symmetry �x↔y� of the pertinent pho-
tonic crystal which leaves ��� /�kx�0.5= ��� /�kx�−0.5
= ��� /�ky�0.5= ��� /�ky�−0.5=0 to be the only solution.
Throughout the remaining article all wave vector quantities
are dimensionless due to the normalization in units of 2� /a.

To estimate the beam shift upon reflection at the PC slab,
the coupling of the illuminating field to the eigenmodes of
the PC has to be considered. Under illumination by a plane
wave or a paraxial beam �that is a beam which is a solution
to the paraxial wave equation� being characterized by a prin-
cipal wave vector k�1�= �kx

�1� ,ky
�1� ,kz

�1�� coupling requires con-
tinuity of the transverse components of the wave vectors at
the interface. Coupling can also be accomplished by adding
an integer multiple of the reciprocal lattice vector to the
wave vector component of the incident beam, as

�kx
�2�,ky

�2�� = �kx
�1�,ky

�1�� + �mxRx,myRy� , �3�

where k�2�= �kx
�2� ,ky

�2� , 	kz
�2�� denotes the Bloch vector of the

potentially excited modes �see also Fig. 2�b�� in the PC slab.
By restricting the operational frequencies to values less than
�=0.1791 where only the first two bands �TM-like and TE-
like� are accessible, coupling takes place to only one pair of
forward and backward propagating Bloch modes in each po-
larization.

III. THE GOOS-HÄNCHEN SHIFT

In this section a setup is analyzed that allows for the ob-
servation of a pure GH shift. As mentioned above, only fre-
quencies smaller than �=0.1791 are considered. By inspect-
ing the isofrequency curves �Fig. 2� it can be seen that

��� kx,ky
��kx,ky,kz���M � �M . �4�

This directly implies that the transverse component of the
Poynting vector �Sx ,Sy� is parallel to the transverse wave
vector component for all modes in �M direction where the
high symmetry points � and M themselves must be excluded
because the group velocity and hence the derivative will van-
ish. Again, Eq. �4� is a consequence of the inversion symme-
try of the chosen structure along the x-y axis, which corre-

sponds to the �M direction in reciprocal space. Therefore, an
IFS is not observable. No energy is transported normal to the
plane given by the incident vector and surface normal. More-
over, by varying the incident angle and keeping all other
parameters �such as the frequency and the slab thickness�
fixed Fabry-Pérot �FP� resonances will occur. The strength of
the expected beam shift will be influenced by such reso-
nances due to the field enhancement inside the slab.

To prove these predictions we applied the following com-
putational strategy: First, the transmission coefficients of a
single plane wave as a function of the angle of incidence
were investigated in order to identify FP resonances. Sec-
ondly, a finite input beam �simulated by a superposition of a
set of plane waves� was used to calculate the reflected field
distribution at the interface z=0. From these simulations the
beam shift can be exactly evaluated by calculating the center
of gravity of the amplitude profile of the reflected beam.
Subsequently, the principle angle of incidence is varied to
determine the beam displacement as a function of this angle.
In all situations analyzed herein the scattering problem of a
single plane wave at a PC slab has to be solved rigorously.
This is done by using the Fourier modal method �FMM�
�15,16�. It is a rigorous diffraction theory that makes use of a
Fourier decomposition of all quantities in the biperiodic sys-
tem, namely, the electric and the magnetic field components
and the dielectric structure. A sufficiently large number of
Fourier orders �here, 21
21� was retained in the simulation
to ensure convergence of all derived quantities. Alternatively
to the evaluation of the reflected beam’s center of gravity,
Renard’s model is employed for a quantitative analysis of the
beam shifts using Eqs. �1� and �2�. The Poynting vector of
the field inside the PC slab is provided again by FMM cal-
culations. Comparing these results allows us to assess the
accuracy of Renard’s model applied to the case of a PC slab.

To get started the dependence of the transmitted ampli-
tude on the incident angle and the polarization is investi-
gated. The illuminating plane wave is characterized by a
wave vector

k0
�1� =

2�

�0
n1�sin � cos ,sin � sin ,cos �� . �5�

For the �M direction =45° �see the inset of Fig. 1�. The
frequency is chosen to be �=0.17. By fixing the PC period
to a=0.255 �m the frequency corresponds to a free space
wavelength of �0=1.5 �m. Furthermore the thickness of the
slab is h=5.5a=1.4 �m. This value constitutes a compro-
mise between, on the one hand, well-pronounced FP reso-
nances and, on the other hand, manufacturing feasibility.

The calculations have been performed for the two inde-
pendent polarizations TEinc �E�k0� ẑ� and TMinc

�H�k0� ẑ�. The superscript “inc” refers to the polarization
states inside the substrate. Comparing them to the TE-like
and TM-like polarization states of the photonic crystal they
have the same dominant field components in each case.

Figure 3�a� shows the calculated modulus of the zeroth
order amplitude transmission coefficient T00
=��T00,x�2+ �T00,y�2+ �T00,z�2 depending on the polarization at
the exit surface of the PC slab at z=h. In the parameter range
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depicted for the incident angle �or kx and ky, respectively� the
light is always totally reflected at the interface between the
PC slab and the air region. This causes all transmitted orders
to be evanescent, including the zeroth one. Consequently,
there is no energy transfer into the air but the peaks of the
amplitude transmission coefficient allow to probe the pres-
ence of Fabry-Pérot resonances. Two clearly distinguishable
cutoff values exist for the amplitude transmission coefficient
at kx,y

TE cut	0.335 and kx,y
TM cut	0.38. This is a hint that there

is no cross coupling between the two incident polarizations.
For larger values of the wave vector total internal reflection
appears already at the interface between silicon and the PC
slab. In fact, by calculating the overlap integral between the
incident plane wave and the corresponding Bloch modes, it
turns out that for incident TEinc polarization a coupling oc-
curs only to the TE-like Bloch modes and vice versa. No
cross coupling among the polarizations could be identified.
Furthermore it can be seen that the transmission contrast �it
will be understood here as the ratio of the peak value to the
nearest minimum value� of the resonances for TEinc polariza-
tion is much larger compared to TMinc. Hence it can be an-
ticipated that in the TE case the beam shift is much more
sensitive to variations in the angle of incidence, so that the
following calculations are exclusively performed for TEinc

illumination.
For the investigation of the beam displacement a paraxial

finite input beam, constructed by a superposition of
plane waves, is used. In the following example we consider
an angular distribution with a Gaussian shape propor-
tional to exp
−��kx−k0,x�2+ �ky −k0,y�2� /�k

2�, with �k=0.8

10−3 2� /a. All plane waves of the spectrum are TEinc po-
larized. The vector k0 denotes the principle beam direction.
Detailed information on the definition of the input beam by
its spectrum of plane waves is given in the Appendix. The
chosen spectral parameters correspond to an oblique inci-

dent, almost linear polarized beam with a Gaussian ampli-
tude profile along the interface characterized by exp�−�x2

+y2� /�2�. The waist diameter is 2�= �2�2 /�k	800a. The
amplitude distribution of the incident beam straight at the
surface of the PC slab �z=0� is shown in Fig. 4�a�. It has to
be mentioned that the concrete choice of the incident beam
will not influence the principle observations. The only reason
for its choice was to match its angular width with that of the
FP resonances. It permits one to avoid amplitude distortions
in the reflected field due to the sharp FP resonances.

In the relevant range of parameters it can be noticed that
only the zeroth order reflected wave is propagating. All
higher reflected orders are evanescent due to the small PC
period. For an incident angle of �=51.66° �kx=ky =0.33� the
propagating reflected field at the interface z=0 is shown in
Fig. 4�b�. This incident angle corresponds to the angle for
which the sharpest FP resonance in TE-like polarization is
excited.

From the figure a displacement of the center of the re-
flected beam �indicated by the intersection of the solid white
lines� as compared to the incident beam �dashed white lines�
can be clearly seen. In this particular example the displace-
ment of the beam is Lx=Ly =200.5a=51.1 �m. The overall
pure GHS amounts therefore to LGHS=72.3 �m. The center
of the beam was determined by calculating the center of
gravity of the beam’s amplitude distribution g�x ,y�
=��Ex�x ,y��2+ �Ey�x ,y��2+ �Ez�x ,y��2, with vector E corre-
sponding to the electrical field of the particular beam under
consideration. The center of gravity is given by Lx
=�xg�x ,y�dxdy /�g�x ,y�dxdy and analogous for Ly. Al-
though not visible from the figure but deducible by analyzing
higher order momenta, it is noticed that the beam profile is
slightly distorted as compared to the incident Gaussian pro-
file. This can be attributed to the fact that the width of the
resonance in the reciprocal space �FWHM2
10−3 2� /a
gets comparable to the width of the incident beam given by
2�k=1.6
10−3 2� /a. The change in the magnitude of the
reflection coefficient across the spectra causes such distor-
tions. Furthermore the GHS was calculated at the maxima
and minima of the amplitude transmission spectra, as shown
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FIG. 3. �Color online� �a� Modulus of the zeroth order amplitude
transmission coefficient �T00� as a function of the transverse wave
vector. The wave vector is oriented along the �M direction. The
solid line represents the values for TEinc polarization and the dashed
line for TMinc polarization. �b� GHS as a function of the angle of
incidence at illumination along the �M direction in TEinc polariza-
tion. The thick black circles show the GHS calculated by analyzing
the center of gravity of the propagating reflected beam. The crosses
indicate results obtained by employing the generalized Renard
model. The green dashed line shows the modulus of the amplitude
transmission coefficient �T00� and illustrates the angular positions of
the FP resonances inside the PC slab.
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FIG. 4. �Color online� �a� Amplitude profile of the incident and
�b� the propagating reflected beam at the interface z=0. The princi-
pal beam direction is characterized by =45° ��M� and �
=51.66°. It is indicated by the white arrow in �b�. This allows for
the excitation of the lowest order FP resonance in the PC slab. The
width of the depicted section in both transverse dimensions is
2500a=637.5 �m.
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in Fig. 3�a�. The maxima correspond to higher order FP reso-
nances. The results are shown in Fig. 3�b� by the black
circles. No IFS is observed for all analyzed cases as ex-
pected.

Additionally we calculated the beam shift using a gener-
alized Renard-type model �see Eqs. �1� and �2��. These re-
sults are shown in Fig. 3�b� as gray crosses. For this purpose
the spatial average of the Poynting vector over a single unit
cell was used for evaluating the appropriate integrals. The
Poynting vector was numerically calculated by using the
electromagnetic fields computed with the FMM. Only the
zeroth reflected order was taken into account in calculating
the normal component Sz

R of the Poynting vector used in Eqs.
�1� and �2�, respectively. It can be noticed that both methods
are in excellent agreement. The observed GHS increases dra-
matically at FP resonances. Accordingly, the strongest GHS
is observed if the first FP resonance is employed. It amounts
to LGHS=72.3 �m as already mentioned. The GHS in the
adjacent minimum is only as small as LGHS=2.8 �m.

IV. THE COMBINED IMBERT-FEDOROV AND
GOOS-HÄNCHEN SHIFT

Now we consider an example that allows the simulta-
neous observation of the GHS and the IFS. To this end we
illuminate the PC film along the XM direction which means
that the transverse wave vector is restricted to kx=0.5 and
0�ky �0.5. As the square lattice PC slab is obviously sym-
metric against inversion in the x direction it can be con-
cluded that the kx derivative of the dispersion relation van-
ishes at the Brillouin zone boundaries kx= 	0.5. Therefore
the transverse gradient writes as

��kx,ky
��kx,ky,kz��XM = �0,��/�ky �T �6�

provided that the separate bands do not degenerate. This is
indeed true in the frequency range of interest. Analogous
considerations can be performed for the ky = 	0.5 boundary
of the Brillouin zone. In the limit of �kx ,ky�= �	0.5,0�=X
the derivative in Eq. �6� must approach to zero because the
group velocity vanishes at that point. Consequently, a pure
IFS cannot be observed. Moreover, there will be no beam
displacement observable at all at �kx ,ky�=X because the isof-
requency surfaces take extreme values at that point. We veri-
fied this thesis by rigorous calculations �keeping kx/y fixed
and varying �� but the results are not explicitly shown here.
For further considerations we again analyze the beam shifts
at a frequency of �=0.17. The geometry of the PC remained
unaltered but the slab thickness was taken to be h=13.5a.
The only purpose in doing so was to obtain sharper FP reso-
nances for varying angle of incidence. All qualitative consid-
erations hold for thinner films too.

As the structure is now operated at the boundary of the
Brillouin zone two propagating reflected orders �R00 and
R−10� exist. This may lead to some complications in the cal-
culation of the beam displacement as will be shown later.
Figure 5�a� shows the amplitude for the zeroth transmitted
order T00 at z=0 as a function of the angle of incidence.
Evidently, the corresponding wave is evanescent.

In contrast to the previous case the cutoff values ky
TE cut

and ky
TM cut for transmission are identical in the present con-

figuration amounting to ky 0.27. For larger values the field
is already totally internal reflected at the interface between
the silicon cladding and the PC slab.

The determined cutoff value coincides with the band edge
of the TM-like Bloch modes in the XM direction of the 2D
PC. This can be seen from Fig. 2�a�.

Furthermore the band edge for TE-like polarization is lo-
cated at ky =0.19. Consequently, only TM-like modes can be
excited in that parameter range as shown in Fig. 5�a�, so that
a cross coupling between TEinc and TM-like polarized Bloch
waves takes place. Only one pair of forward and backward
propagating Bloch modes is excited inside the PC slab simul-
taneously, similar to the previously discussed case in Sec. III.

By calculating the reflection of the same illuminating
Gaussian beam as in Sec. III, but now with TMinc polariza-
tion �it was chosen because the FP resonances are more pro-
nounced�, a remarkable beam displacement, exclusively in
the y direction, is observed. The values for the beam shift in
the x direction fluctuate around zero within a range of one
lattice constant. This is attributed to a finite numerical preci-
sion and is of no importance to the present study. Figure 5�b�
shows results of the beam displacement converted into its
Goos-Hänchen �parallel to the transverse wave vector� and
Imbert-Fedorov �perpendicular to the transverse wave vec-
tor� portions. The calculation of the shift was done first by
analyzing the center of gravity of the reflected field as com-
pared to the incident field and second by employing the gen-
eralized Renard model as was done before.

For the specific input conditions chosen the simultaneous
appearance of IFS and GHS is observed. The IFS is, contrary
to what is usually observed, even stronger than the GHS. The
IFS takes a maximum value of 45 �m in the first FP reso-
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FIG. 5. �Color online� �a� Modulus of the zeroth order transmit-
ted amplitude �T00� as a function of the incidence angle. The direc-
tion of incidence in the transverse direction is XM. The solid and
dashed lines indicate TEinc and TMinc polarization, respectively. kx

has a fixed value of 0.5. �b� The black circles show the GHS upon
analyzing the profile of the propagating reflected beam �zeroth R00

and minus first order R−10� and determining the displacement of the
center of gravity relative to the incident beam. The red circles show
the IFS. Crosses with the same color indicate the same quantities
but determined using the generalized Renard model. The underlying
green dashed curve shows the transmission spectrum �T00� and il-
lustrates the location of the FP resonances in the PC slab. The
polarization is TMinc.
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nance. Compared to other values known from homogeneous
media interfaces �5,6� we designate the present value as a
giant IFS. Furthermore it can be seen that a certain difference
exists concerning the predicted strength of the beam dis-
placement employing the two different methods. The differ-
ence is strongest for the beam displacement at an angle of
incidence corresponding to the first FP resonance. The dif-
ferences amount to �IFS=17 �m and �GHS=9 �m.

We attribute this discrepancy to the appearance of two
propagating orders in reflection. An implicit assumption of
Renard’s model according to Eqs. �1� and �2� is that the two
propagating orders will experience the same amount of beam
displacement. For this particular case the beam displacement
can be separately shown for both propagating reflection or-
ders. Figure 6 shows the displacement for an angle of inci-
dence corresponding to the first FP resonance. The white
lines indicate the coordinate axis.

From the figure it can be clearly seen that the two propa-
gating orders experience different beam displacements. Fur-
thermore both beams are distorted. The distortion is more
pronounced for the minus first diffraction order. In this case
the effective displacement of the center of gravity is prima-
rily caused by the distortion of the beam rather than by the
shift of the maximum of the amplitude profile.

Moreover, by using Renard’s model we have neglected all
possible vectorial effects in the sense that each field compo-
nent may experience a different shift. Indeed, by evaluating
the displacement of the beam for each vectorial component
separately strong differences are observable. Nevertheless,
these effects do not chance the principal observations, that, at
least qualitatively, the expected beam shift can be predicted
by the generalized Renard model that employs the vectorial
Poynting vector field.

V. CONCLUSION

In this article we identified the peculiarities of beam dis-
placements occurring upon total internal reflection on a pho-
tonic crystal slab. This is accomplished by generalizing the
classical Renard model. Basically the generalization allows
to link the expected shift of the beam to the dispersion rela-

tion of the underlying 2D PC. Based on symmetry consider-
ations it could be exemplified that there are configurations
where either a pure GHS or the combination of a GHS and
an IFS occurs. In addition, Fabry-Pérot resonances of the PC
slab were exploited to dramatically enhance the beam dis-
placements, leading to the observation of a giant GHS and
IFS. GHSs and IFSs over 48� �72 �m� and 30� �45 �m�
were observed using a PC slab with a thickness of only
1.4 �m and about 3.45 �m in the respective examples. The
strength of the GHS compares well with values known from
literature for homogeneous dielectric slabs with a magnitude
of about 50� �6�. More important, the IFS largely exceeds
previously reported values, which did not exceed one wave-
length for homogeneous media interfaces �5,6�.

For the future it is expected, that also a negative GHS is
observable on 2D-photonic crystal slab interfaces. Within the
presented model this implies the need to find propagation
directions in which the angle between the wave vector and
the Poynting vector exceeds 90°. This can be achieved, for
example, for incident angles which are located within a
higher Brillouin zone or by working within higher order
bands which exhibit negative refraction. In general it is ex-
pected that the beam displacement in special directions can
be forecasted using general symmetry properties of the un-
derlying crystal and therewith of the associated dispersion
relation.

On the other side the model has certain limitations if the
reflected field is composed of more than a single diffraction
order as argued in the previous section. Strictly speaking,
this will restrict the applicability of the method to PCs with a
period sufficiently small as compared to the wavelength.
Nevertheless, we believe that at least the principal beam shift
direction �according to the measured center of gravity� goes
along with the presented model.

APPENDIX: COMPUTATIONAL DETAILS

To provide a concise picture of the applied computational
procedure, we will give in the following section a detailed
outline of the employed approach. Emphasis is put on the
definition of the incident wave field. A time dependency of
exp�−i�t� for any electromagnetic field is assumed. For the
rigorous solution of the scattering problem of a beam inci-
dent on a photonic crystal slab, the Fourier modal method
�FMM� was used �15,16�. The FMM provides the rigorous
solution for the scattering of a plane wave of arbitrary angle
of incidence and polarization at an arbitrary biperiodic struc-
ture. To apply this method to a finite sized monochromatic
illuminating wave field, this beam has to be decomposed into
an angular spectrum of plane waves. The functional depen-
dence of the angular spectrum

E�k� = �
−�

�

d3rE�r�exp�− ik · r� �A1�

is simply given by a Fourier transformation of the field dis-
tribution in the real space. On the other hand, every super-
position of an arbitrary set of plane waves E�k� will lead to
a spatial field distribution E�r� �applying the inverse trans-

(a) (b)
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FIG. 6. �Color online� Amplitude profile of the �a� zeroth order
and the �b� minus first order reflected beam on the interface z=0.
The main beam direction characterized by kx=0.5 and ky =0.2675
�first FP resonance� is indicated by the white arrows. The width of
the depicted section is 2500a=637.5 �m.
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formation of Eq. �A1�� that rigorously obeys Maxwell’s
equations. In the present manuscript the incident beam is
constructed out of an angular spectrum of plane waves with
a Gaussian amplitude distribution in k space centered around
the principle beam direction k0. Furthermore, all plane waves
of the spectrum have the same polarization, either TE or TM.
Therefore, the angular distribution can be written as

E�k� = e�k�E0 exp�−
�kx − k0,x�2 + �ky − k0,y�2

�k
2 � . �A2�

Hereby, e�k� is the electrical field vector of a single plane
wave with wave vector k, which is normalized to unity. �k is
a measure for the spectral width of the beam and E0 repre-
sents the maximal amplitude value. Assuming that the wave
vector k=2�n /�0�sin � cos  , sin � sin  , cos ��T is given
in spherical coordinates with the azimuthal and the polar
angle being  and �, the normalized electrical field vector of
the associated plane wave is given by

e�k� = e�,�,�� = �cos � cos � cos  − sin � sin 

cos � cos � sin  + sin � cos 

− cos � sin �
� .

�A3�

� is the polarization angle which can take values in the in-
terval �0,2��. In all calculations performed in this work the

polarization was chosen to be only pure TE ��=� /2� or pure
TM ��=0�, respectively. For a sufficiently small width �k of
the spectrum the associated beam in the spatial domain has a
Gaussian distribution with a dominating field vector either in
TE or TM polarization. Nevertheless, by virtue of this rigor-
ous description there are also field components which cause
a distortion of the beam from the purely linear polarized
Gaussian state. Their strength tends to zero the smaller the
spectral width gets. In the present work the spectral width
was chosen to be sufficiently small such that the amplitude
distribution of the complete incident beam on the interface is
perfectly Gaussian with no measurable deviations. More in-
formation about the peculiarities on the representation of a
finite input beam by its spectrum of plane waves is given,
e.g., in Ref. �4�.

Equations �A1� and �A2� are also valid for the associated
magnetic field, provided that E and e are replaced by the
magnetic quantities H and h. The linkage between the field
components e�k�, E0 and h�k�, H0 is directly given by Max-
well’s curl equation �
Ei��0H which gives

h�k� = h�,�,�� = �− sin � cos � cos  − cos � sin 

− sin � cos � sin  + cos � cos 

sin � sin �
�,

H0 =� �0

�0
nE0. �A4�
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