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Bose-Einstein condensate as a nonlinear Ramsey interferometer operating
beyond the Heisenberg limit
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We show that a dynamically evolving two-mode Bose-Einstein condensate (TBEC) with an adiabatic,
time-varying Raman coupling maps exactly onto a Ramsey interferometer that includes a nonlinear medium.
Assuming a realistic quantum state for the TBEC that has been achieved experimentally, we find that the
measurement uncertainty of the “path-difference” phase shift scales as the standard quantum limit (1/ \N),
where N is the number of atoms, while that for the interatomic scattering strength scales as 1/N”3, overcoming

the conventional Heisenberg limit of 1/N.
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High-precision quantum interferometry is one of the most
important tools of metrology enabling one to infer certain
properties through the measurement of the phase shift ¢ of
the input quantum state. It has been shown in previous stud-
ies that when one uses the coherent state as the input state of
an idealized interferometer, it is possible to achieve measure-
ment uncertainties approaching the shot noise or the standard
quantum limit (SQL) A¢~ 1/N, where N is the number of
particles conjugate to the phase variable ¢. Much of the re-
cent work in the literature concerns schemes to overcome the
SQL to approach the Heisenberg limit A¢~ 1/N, by using
carefully chosen input states such as the squeezed state or the
Schrodinger’s cat state instead of the coherent state for light
in optical interferometry and Bose-Einstein condensates
(BECs) in matter-wave interferometry [1]. The Heisenberg
limit was found to be the ultimate limit regardless of how we
engineer the quantum state.

Such precision interferometry should be attainable with
matter waves as well as with light. Though with current ex-
perimental limitations of matter-wave systems (for multi-
component BEC ~5 X 10° atoms and a lifetime of ~20 s),
matter-wave interferometry is not yet competitive with opti-
cal interferometry, the goal of this paper is to investigate new
theoretical limits of a possible matter-wave interferometry
scheme. In this paper we shall refer to the 1/N scaling as the
“conventional” Heisenberg limit to make it clear that the
terminology originates from studies of interferometry with
linear probes.

Very recently it was shown using a more general param-
eter estimation theory that measurement uncertainty of the
order 1/N¥, where k is the number of parameter-sensitive
terms, is possible [2]. This formal result demonstrated that
the conventional Heisenberg limit is in fact the case with k
=1 and BECs with two-body collisions (k=2) may be able to
achieve up to A¢p~ 1/N? accuracy in measurements of atom-
atom interactions through a modulation of the scattering
length using a Feshbach resonance or by density variation
due to gravitational gradients. This rather surprising gain in
measurement accuracy is an inherent property of the probe
with a nonlinear generator for the phase shift, and nor a
consequence of quantum squeezing. A squeezed state, inde-
pendent of the quadrature, cannot surpass the conventional
Heisenberg limit as long as the probe is linear. This formal
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work [2], however, did not show how one may achieve such
limits in real physical systems.

A nonlinear interferometer, as opposed to a normal (lin-
ear) interferometer, includes nonlinear medium in one or
both arms. Nonlinear interferometers have been studied pre-
viously [3,4] but with the nonlinearity being used to generate
squeezing rather than as a probe. In this paper, we show that
direct temporal evolution of a TBEC such as Na atoms in the
|F=1, Mp=+1) hyperfine states trapped in an optical di-
pole trap with Raman coupling such as that already realized
experimentally [5,6] maps precisely onto a nonlinear Ramsey
interferometer with which one can realize measurement ac-
curacy better than the conventional Heisenberg limit. In par-
ticular, we consider a natural state for TBEC, the coherent
spin state (CSS), which is known to give only SQL under
usual circumstances. We find that even with CSS (i.e., no
special presqueezing) as our input, the conventional Heisen-
berg limit can be overcome in the measurement of atom-
atom interactions. It was shown very recently [7] that the
measurement of the interatomic scattering length of a system
of ultracold spin—% atoms evolving under a nonlinear Hamil-
tonian gives results which surpass the conventional Heisen-
berg limit when an optimal entangled state generated from a
separate time-dependent Hamiltonian [8] is used; in our
work, such quantum state engineering is not necessary.

A quantum interferometer can be described in terms of the
angular momentum operators as a transformation operator

I=B_P(¢)B, =%y, (1)
The 50:50 beam splitter and the phase shifter are given by
Bizexp(iiwjx/Z) and 75(¢)=exp(i¢jz), where jx:%(‘}+
+J_), ‘Iyzzli(‘h_‘l—)’ J+(_)=aAJ{(2)ﬁ2(l), and JZ=%(ﬁIcAll—cAl§d2),
with d; and a, being the two annihilation operators for the
two input modes into interferometer. For the TBEC with a

Raman coupling like that considered here, the two annihila-
tion operators d; and d, correspond to the atoms in the two

hyperfine states. The time evolution operator U(t) for this
system defined by |¢(1)y=U(1)|¢0)) is [9]

0() = Rie ™R, 2)

where R=¢™/-~+/* and H ’=29jz—§j§. Q) is the tunneling
coupling and ¢ is the strength of the scattering interaction
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between the bosons. As shown earlier [9], the detuning of the
laser from the transition between the two species is set to be

zero to make the Hamiltonian diagonal in the jz representa-
tion. This also prevents the generation of an additional geo-
metric phase on top of the dynamical phase.

The overall action of the time evolution operator U(z), Eq.
(2), can clearly be mapped onto a nonlinear Ramsey interfer-
ometer with the transformation operator

7= BP($)8(P)B, = e HIitsli2, (3)

B_.=R'= exp(— im] ,/2) and B =R are the two 50 50 beam

splitters, while P(])= ez and S(p))= iS22 represent,
respectively, the path-difference phase shifter and the nonlin-
ear medium. The phase variables can be written as
b1 =201+ ¢, and P,=qt+ ¢,, where we have explicitly writ-
ten out external phase shift ¢; to be measured on top of the
time-dependent phase. The nonlinear phase shift ¢, can be
induced via a Feshbach resonance on the two-component
BEC. Since g=4mh*(as +agg—asp)/2m, where ay,, agp,
and a,p denote the two intraspecies scattering lengths and
the interspecies scattering length, respectively, the nonlinear
interferometry can be used to detect changes in the intraspe-
cies or interspecies scattering lengths.

As mentioned above, for our input state we shall consider
an SU(2) atomic coherent state or CSS, , which is a
reasonable quantum state representing a TBEC [9, 10] It is

noted that =i
where R/ (6 ) is deﬁned R’ (0 q‘))
=( ; er)”2 cos/*(5 #)sin/~ (5 #eili-m¢  Since the azimuthal

angle ¢ simply ShlftS the origin, we shall only consider CSS
with ¢=0 in this paper. Exotic input states such as the
NOON or the Yurke state [4] will be considered elsewhere as
they are currently not yet practical in the context of TBEC.

The simplest possible scenario is to measure the path-
difference phase shift ¢»; while applying a magnetic field to
tune ¢,=0 via the Feshbach resonance: i.e., no nonlinear
perturbations to the Hamiltonian. This is the standard Ram-
sey interferometry which has been studied extensively. The
fact that a TBEC is used instead of the thermal atoms simply
provides clean signals owing to the inherent long range co-
herence of a condensate. We will not consider this case any
further in this paper. What is more interesting is the case of
finite g. Here the presence of the nonlinear component modi-
fies the interferometric outcome ¢, and brings to the fore-
front the question of the uncertainty associated with measur-
ing the scattering length or ¢,.

First, we analyze TBEC as a nonlinear Ramsey interfer-
ometer in the idealized situation where the measurement of
the phase is carried out as a projective measurement onto a
phase state. We estimate the measurement uncertainty using
the Cramers-Rao inequality in such cases. Then a more prac-
tical scheme, measurement of the atom number difference as
a function of the phase shifts ¢, and ¢,, is considered along
with the corresponding measurement uncertainties. The fun-
damental limit to the phase shift measurements can be cal-
culated by first defining the positive valued operator measure

LA?(qb) such that the probability density of the corresponding
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FIG. 1. Probability density P(P) for the initial CSS

|0=m/4, p=0) (solid line) and |#=7/2,p=0) (dashed line) at dif-
ferent times Qr=0.757,2.57,60.257 (top, middle, and bottom
rows, respectively). Left column: ¢=0; right column: ¢ #0.

measurement result is P((]S):Tr[ﬁé(gb)], where p is the den-
sity matrix for the system. As in Ref. [11], we deﬁne the
normalized phase state )" ”221 e ®

2 and for an arbi-
trary input state |¢), the probability density of the measure-
ment result is P(CI))ZQ;—?IK(/I 7

With a CSS input, the phase measurement gives a prob-
ability density distribution

P(P)
1 / 2
. ) 2 . X
=—| X MR (g, p)d),  (w2)]|
277 mx,mZ:—j < X
where
m l’l’l (7T/2) <]
is the Wigner d matrix:
g mx(7T/2)=Z<]',m |e
_ (=m ) Gtm ) TV2 1y —mm ) B
o [o A>vo+nu>~] P (x=0)

for m,—m,>-1 and m,+m,>-1. P(C'B)(x) denotes the Ja-
cobi polynomials. Symmetries give df o, =(-1)" ~My )

l’ﬂ ITL

=d . We plot the probability den51ty in Fig. 1 at various

times. startlng from the initial states |#=/4) (solid line) and
|6=7r/2) (dashed line). The initial Dicke state |§=0) is not
considered as it is orthogonal to the projective measurement
on the phase. In order to highlight the effect of nonlinearity
on the measurement of ¢;, we plot in the left column the
case of g=0 for comparison with the corresponding results
with ¢ #0 in the right column. We choose ¢=3/N, which
corresponds to the Josephson regime [9]. The presence of
nonlinearity generally degrades the performance of the inter-
ferometer as evidenced by the increase in the width of the
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FIG. 2. Time evolution of logy[A®] for the initial CSS
|6=m/4,$=0) (solid line) and |#=m/2,4»=0) (dashed line). Top
row: direct calculation from the probability density P(®); Bottom
row: Cramers-Rao lower bound. Left column: ¢=0; right column
q+0.

probability distribution. It is also notable that the probability
density becomes multiple peaked after a long time. This may
be interpreted as the generation of a superposition state due
to nonlinearity as studied by Yurke and Stoler [12]. It is clear
that to use the TBEC as an effective interferometer based on
projective measurement onto phase states, g needs to be
minimized and the time of measurement must be kept rela-
tively short.

The uncertainty in phase measurement can be studied us-
ing the standard techniques of probability theory, particularly
the Cramers-Rao lower bound (CRLB). The CRLB estab-
lishes the lower bound on the phase shiﬁ estimate where the
phase uncertainty scales as A®=1/\F,, where F, is the
Fisher information defined by

ree [ | [ e,
=2 | q@ P@| P@)dP. (4)

In Fig. 2, we plot the quantity logy[ A®], where N is the total
number of atoms and A® is the uncertainty in phase. We
used the standard deviation A®d calculated directly from the
probability distribution P(®) (Fig. 1) and the CRLB, where
the CRLB effectively gives a time-averaged value of the
directly calculated uncertainty. It is noted that in all these
figures A®=1/N"2, the standard quantum limit. It is
also noted that although the uncertainty associated with the
|6=/2) state is lower than that of the |#=m/4) state for g
=0 it quickly loses this advantage with ¢ >0, indicating sen-
sitivity to dephasing due to interatomic collisions. The
|6=1/4) state is therefore a more robust state for interferom-
etry in the presence of nonlinearity.

Next, instead of projective measurement onto a phase
state, we consider projective measurement of the atom num-
ber difference. The total number of atoms measured indicates
the number of “input” atoms, while the atom number
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FIG. 3. (jz>/ N as a function of the changes in the phase shifts ¢,
(left column) and ¢, (right column) for the initial CSS |6=0, ¢
=0) (dashed line) and |#=7/4,»=0) (solid line) at different times
Qt=m/4, 7,67 (top, middle, and bottom rows, respectively).

difference, (J.(¢;, b)) =(H0)|Z' (¢}, Pp)J. (], $,)|410)),
allows us to infer the phase shift and is equivalent to
measuring the number of atoms at each of the output ports
of a typical Mach-Zehnder interferometer. An analytic

expression for (J.) is given by [9]:

N/2-1

JAepdp)y=—2 " D(O,m)tan” (552)
xcos| ¢} — s (m+1)]

where we have defined D(6,m)=Chp,, i (5+m

+ l)cos”\’(—'g_;/2 )tanN‘z’"(—(’_;ﬁz).

Figure 3 shows (jz>/N as a function of the changes in
the phase shifts ¢, and ¢, for the initial states |6=0, ¢
=0) and |#=/4) at different times Q¢t=1/4, 7,67 In con-
trast to the earlier phase state projection method, the initial
CSS |#=m/2) is known as a “self-trapping” state in the new
context of projective number measurement, and gives trivial
results. Since the interferometry is carried out at fixed times,
we see in Fig. 3 clear sinusoidal fringes, without the “col-
lapses and revivals” typical of temporal evolution. Even
when measuring ¢, we see clear fringes for a range of values
around -3¢, ...,3q for the initial state |0= 7/4). This is pos-
sible because, for this choice of 6, the factor D(6
=/4, m) is narrow enough to limit the interfering effect of
summing up the cosine terms. On the other hand, D(6
=0, m) is wider and the resulting interference fringes do not
allow for a sensitive detection of small variations in ¢;.

Finally, we consider the phase resolution for this scheme,

which is given by [A¢P=[AJJ/|KI )/ agl> k=1.2,
where, as found in Ref. [9], the variance is [A}ZP:(}?)
—(J.)? with
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NI2-1

e DX 6,m)tan"2(6/2 — 1/4)(N/2 — m)

J@)y=1
+D(0,m)(NI2+m+1)

+ 22 [L1D(6,m)tan"(612 - 7/4)

m=-—N/2
X(N/2=m = 1) |cos[2¢] — 25 (m + 1)].

Since the denominator involves a function of the form
sin[ ¢p; — ¢é(m+%)], the quantity [A¢,]* is minimized for the
values of ¢| —¢3(m+3)= = m/2. This indicates that the mea-
surement accuracy is dependent on the measurement values,
where results such as ¢;==* /2 and ¢;=0 give optimum
results. In particular, for a large number of atoms N one can
approximate the coefficient D(0,m) by N/ are(2n=Nsin 0N
and replace the sums by integrals [D(#,x)dx~N and
[xD(6,x)dx ~ N?. This leads to

AP~ oy (5)

BN + 8, ¥YN*)*

where k=1,2, and v, 8, 7 are constants and ¢, is the Kro-
necker delta function. For k=1 one has A¢,~1/N"?, ie.,
the standard quantum limit in accuracy for the measurement
of ¢,. On the other hand, it is remarkable that with k=2, i.e.,
measurement of the phase shift due to the interatomic inter-
actions, A¢g,~1/N¥?><1/N, implying that, although not
reaching the theoretical limit of 1/N? [2], such measurement
for this CSS input state has uncertainty below the conven-
tional Heisenberg limit. We have verified this estimate nu-
merically; the quantity logy A¢, calculated as a function of
the initial angle of the CSS, 6 at the optimal values of ¢, and
¢, is plotted in Fig. 4. The solid and the dashed line repre-
sent the uncertainty in the measurement of ¢; and ¢,, re-
spectively. It is clear that the best result is obtained for 6
=0 for the measurement of ¢; and #=m/4 for the measure-
ment of ¢,. In the bottom panel, we plot the result as a
function of atom numbers for these chosen values of 6. It
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FIG. 4. Top: logy{ Ay ] plotted as a function of the angle 6 of
the initial CSS with N=1000. Solid line: k=1. Dashed line: k=2.
Bottom: same quantity plotted as a function of the number of atoms
N. Solid line: k=1 with #=0. Dashed line: k=2 with 0=m/4.

shows that the result is independent of the number of atoms
and, on average, A¢, ~1/N"? and A¢,~ 1/N"", which is
indeed very close to the above estimate.

In summary, we have shown that a TBEC with a
Josephson-type coupling directly maps onto a nonlinear
Ramsey interferometer. The system is already experimentally
available and the state we consider is the realistic coherent
spin state rather than some exotic quantum state. It was
found that projective phase measurement reaches the stan-
dard quantum limit in accuracy while projective number
measurement of the phase shifts due to interatomic interac-
tions was found able to overcome the conventional Heisen-
berg limit, suggesting new implications for quantum metrol-
ogy.

Note added. Recently, a closely related result was found
independently in Ref. [13].
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