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E. Fersino,l’2 G. Mussardo,l’z‘3 and A. Trombettoni'
'International School for Advanced Studies, via Beirut 2-4, 1-34014 Trieste, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
3Abdus Salam International Centre for Theoretical, Physics Strada Costiera 11, 1-34014, Trieste, Italy
(Received 23 January 2008; revised manuscript received 8 April 2008; published 15 May 2008)

We study the ground-state properties of a one-dimensional Bose gas with N-body attractive contact interac-
tions. By using the explicit form of the bright soliton solution of a generalized nonlinear Schrédinger equation,
we compute the chemical potential and the ground-state energy. For N=3, a localized soliton wave function
exists only for a critical value of the interaction strength: in this case the ground state has an infinite degeneracy
that can be parametrized by the chemical potential. The stabilization of the bright soliton solution by an
external harmonic trap is also discussed, and a comparison with the effect of N-body attractive contact inter-

actions in higher dimensions is presented.
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I. INTRODUCTION

One-dimensional quantum systems have always attracted
a lot of theoretical interest: their exact solutions give, in fact,
useful insights on the role of the interactions and other non-
perturbative features [1-4]. In this respect, the growing abil-
ity to realize and manipulate one-dimensional Bose gases
[5-13] has provided an highly controllable experimental
counterpart to these theoretical achievements.

Quasi-one-dimensional Bose gases are obtained by using
a cigar-shaped external trapping potential, elongated in a di-
rection, with the other degrees of freedom frozen due to the
presence of a tight transverse confinement. In the experi-
ments, several variants of the interacting Bose gas in one
dimension can be implemented: an optical lattice can be
added to detect the Mott-superfluid transition in one dimen-
sion [14], the effective one-dimensional (1D) interaction can
be tuned [15] to observe a Tonks-Girardeau gas of ultracold
atoms [8,9], or the effect of the temperature can be studied
[13]. Important tools that permit to further control the prop-
erties of low-dimensional Bose systems are the tuning of an
external magnetic field near a Feshbach resonance [16,17],
and, in perspective, the implementation of the recently pro-
posed schemes to engineer effective three-body interactions
[18,19].

The technique of Feshbach resonances permits us to
change the sign of the scattering length: by switching from
repulsion to attraction, i.e., from positive to negative scatter-
ing length, the homogeneous 1D Gross-Pitaevskii equation
(GPE) admits a solution corresponding to a localized wave
function, the so-called “bright soliton” [21]. Bright matter-
wave solitons were created both in Bose-Einstein conden-
sates of 'Li [6,7] and %Rb atoms [22]. Various localized
states has been also produced in quasi-one-dimensional ge-
ometries (for reviews see Ref. [23]).

With attractive two-body interactions, a crucial role is
played both by the dimension of the system and the trapping
potential. In three dimensions, for instance, homogeneous
attractive bosons are unstable against the collapse, but the
presence of an external harmonic trap can stabilize them: the
critical value of the interaction coupling that gives rise to the
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collapse can be obtained from the GPE [16,17], and the criti-
cal particle number is given by ~N7|a|/a,s., where Ny is the
total number of particles, a <0 is the scattering length and
dy 1s the harmonic oscillator length [24-27]. In the one-
dimensional case, the bright soliton solution is the ground
state of the homogeneous GPE with negative scattering
length. Furthermore, the GPE ground-state energy is in
agreement, in the thermodynamic limit, with the ground-state
energy obtained by Bethe ansatz for the attractive one-
dimensional Bose gas [28] (see more in Sec. II).

In this paper, motivated by the recent papers [19,20] in
which different schemes have been proposed to realize effec-
tive tunable three-body interactions, we consider an attrac-
tive three-body contact potential and, more generally, a
N-body contact interaction. We consider the limit of large
number of particles N;>1 with the constraint c/\/(TN_l)
=const (¢ being the strength of the N-body interactions) so
that the energy per particle is finite. Since no Bethe solution
is available in the general case of N-body interaction, we
employ an Hartree approximation to study the problem in the
limit mentioned above. This means that the ground-state en-
ergy is estimated by using the bright soliton solution of a
generalized mean-field GPE equation. As we will show, the
N=3 is a special case: for this value, in fact, a localized
soliton wave function exists only for a critical value of the
interaction strength and has an infinite degeneracy. The sta-
bilization of this bound state can be obtained by putting the
system in an external harmonic trap. The variational ap-
proach, that we will also employ, reveals the tendency of the
higher body interactions to become more unstable in higher
dimensions. It is worth stressing that the case we are consid-
ering does not consist of a N-body interaction added to the
two-body interaction of the Bose gas: we are interested, in
fact, to the effect of the N-body in its own, since the coeffi-
cient of the two-body interaction can be tuned to be zero
[20].

The plan of the paper is the following. In Sec. II we
introduce the Hamiltonian corresponding to N-body contact
attractive interactions and we write the (mean-field) general-
ized GPE. The familiar case N=2 is briefly recalled. In Sec.
IIT the bright soliton solution for the homogeneous limit is
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obtained by using a mechanical analogy with a fictitious par-
ticle moving in a potential, and its properties are investi-
gated. The comparison with the numerical results confirms
that for N=3 this is the ground state of the generalized GPE,
as expected. The ground-state energy by varying N is also
determined. In Sec. IV we consider the effect of an harmonic
trap: using a variational ansatz for the ground state we deter-
mine the critical value of the interaction needed to stabilize
the bound state. In Sec. V there are our conclusions.

II. N-BODY ATTRACTIVE CONTACT INTERACTIONS

The general quantum Hamiltonian for an homogeneous
one-dimensional Bose gas with N-body interactions
V(xy,...,xy) is

2

. . hr P\ .
H=fdx‘[”(x)<— E@)‘I’(J{)
1 A AL
+IFJ dxy -+ deyWi(x)) - Wi(xy)

XV(xp, ooxn)Pley) - Wiy, (1)

where W(x) is the bosonic field operator. The Lieb-Liniger
Hamiltonian for the interacting one-dimensional Bose gas
[29] has the kinetic term plus a density-density term involv-
ing pairs of particles interacting via a contact two-body po-
tential; this corresponds to N=2 and V(x;,x,)=Vyd(x;—x,):
V, positive (negative) corresponds to repulsion (attraction)
between the bosons. The low-energy properties of the Lieb-
Liniger model can be studied by the Luttinger liquid effec-
tive description [30] obtained by bosonization [31] (a general
discussion of the correlation functions is presented in Ref.
[32]).

For N-body attractive contact interactions we set
Vixg,... ,xN):—ch:llé(xi—xiH) (¢>0): the Hamiltonian (1)
then reads

. . B2 P\ . V. .
A= J dxxw(x)<- EE)W(X)—]% J AW ()P (0]V.
(2)

In the Heisenberg representation, the equation of motion for
the field operator is given by

A SR o
h—=[V,H]=— ——=V - c(¥YH ()P (3
l(?t[’]2mr9x2 c(WH(W) 3)

For N=2, the corresponding Lieb-Liniger model is integrable
and the ground-state energy E can be determined by Bethe
ansatz [33]: the final result is given by

E mc (N7-1)
Ny 24h%
where A7 is the total number of particles. For large N7, from
Eq. (4) it follows that one has to keep constant the product

cNy=const in order to have a finite ground-state energy per
particle. Using the integrability of the N=2 model, the cor-

(4)
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relation functions of the attractive one-dimensional Bose gas
at zero temperature were recently calculated in [34].

For the three-body problem (N=3), no Bethe ansatz solu-
tion is available, except for a more complicate double-6
function Bose gas which can be mapped in a one-
dimensional anyon gas [35]. Hence, to estimate the ground-
state energy E we propose here to employ a mean-field (Har-
tree) approach: in this approach, the ground-state energy is
given in terms of the ground-state energy of a generalized
GPE. The same procedure will be employed for other values
of N.

Before we start the discussion of the general N-body case,
let us briefly remind the reader how this task can be success-
fully done for N=2 [28]. First of all, in the mean-field ap-
proximation the ground-state wave function is written as

Nr
Yas(rrs - x,) o L (), ()
i=1

where the function i(x) is the ground state of the time-

independent homogeneous GPE, i.e., the nonlinear
Schrodinger equation (NLSE), given by
7 o el = ©
a0 ClWp| ¥ = L,

where u is the chemical potential and the normalization is
given by [dx|¢|*=N7. The energy is expressed as

h? &

Egp= J dx‘/’;(x){— ol §|'J/0(X)|2 ().  (7)

The static bright soliton solution of Eq. (6) is given by

Yo(x) = VN7 8)

cosh(kx)’

with k=mcN7/2h? and N=(1/2)\ymcN7/H>. Substituting
this expression in Eq. (7) one gets

Egp  mcNG
2452

N, T ©)

i.e., the exact result (4) apart from terms o<1/ ./VQT A comment
is in order: in the homogeneous one-dimensional interacting
case there is, strictly speaking, no condensate. However, the
condition cA/p=const implies that, for large N7, the coupling
constant should scale to zero, c — 0: hence, we are in a weak-
coupling regime where the mean-field GPE is expected to
give reasonable results. In a similar way, for ¢ <0 (repulsive
interaction) the comparison between the exact and the GPE
ground state energy shows that the latter gives the correct
behavior for ¢—0 while the Bogoliubov approximation
gives the exact first-order corrections for small |c| [29].
Based on the analysis above, for general N and in the limit
c—0 we expect that a reasonable description of both the
ground-state properties and the low-energy dynamics is
given by the mean-field generalized homogeneous GPE
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where the nonlinearity degree a of the “power-law” (PL)
nonlinear Schrodinger equation (NLSE) (10) is related to N
by

N

DR

+1. (11)

The mean-field ground state is
independent PL-NLSE equation

given by the time-

1 &
(‘ 2mox® C'Wx)l‘“) Yoo = pihp(x),  (12)

where, as before, w is chemical potential and  is normal-
ized to the total number of particles N7, i.e., [dx|iy(x)[?
=N7. Equation (10) is a particular case of the following gen-
eralized NLSE:

d
& Pt _
ot

2
(‘ ﬁ_ﬁz - f(|¢(x,t)|))¢(x,t), (13)
2m dx
where F(|#]) is a general function (see more references in
the reviews [36,37]). Equation (10) corresponds to a power-
law dependence F~ || and it is used in several physical
contexts, including semiconductors [38] and nonlinear optics
[39-41], where it describes pulse propagation in optical ma-
terials having a power law dependence of the refractive in-
dex on intensity. In the present context of ultracold bosonic
gases, the nonlinearity degree « depends through Eq. (11) on
the number of bodies which interacts between themselves.
With N=2 integer, « is an even integer; however, in Eq.
(12) @ can take any real positive value and, in the following,
we will consider this general case. In this respect let us com-
ment that the axial dynamics of a Bose-Einstein condensate
induced by an external potential with cylindrical symmetry
in the transverse directions can be studied by introducing an
effective one-dimensional GPE equation with a=1 [42] and
that for Bose-Einstein condensates in one-dimensional opti-
cal lattices the effective equation has a value of « that de-
pends on the details of the trapping potentials and it is, in
general, a noninteger value [43].

III. GROUND STATE OF THE GENERALIZED
NONLINEAR SCHRODINGER EQUATION

In the following we will study the attractive N-body prob-
lem in the thermodynamic limit, defined by N;— o, with the
product Gch'}/ % kept fixed. This will ensure the energy per
particle of the PL-NLSE bright soliton to be finite. In dimen-
sionless units, rescaling the wave function ¢p— \/WT%, Eq.
(12) reads

1 & _
(_ __2—g|¢o(x)|“)¢0(x)=,u,(/10(x), (14)

2 ox
where ¢ and & are the dimensionless versions of ¢ and wu,
respectively (by choosing [ as unit length, one has i
=uml*/h? and g=GmI*>~%?/%?). For the ground state of this

PHYSICAL REVIEW A 77, 053608 (2008)

v

Yo

FIG. 1. Typical shape of the potential V(¢) for negative values
of . £A are the inversion points of the motion.

equation we look for a real solution, with the normalization
condition

f Po(x)dx = 1. (15)

Obviously, once a static solution (x) of Eq. (14) has been
found, the corresponding soliton wave solution with velocity
v is given by

Po(x,1) = hy(x — ve)e BRI (16)

The solution of Eq. (14) can be found by using a mechanical
analogy. In fact, interpreting x as the time variable and (x)
as the coordinate of a fictitious particle, Eq. (14) formally
corresponds to the Newton’s equation of motion of this par-
ticle (of mass M=1/2), subjected to the force

F=— iy - gyfy". (17)

This force can be derived by the potential

Vi) = S+ — 0. (18)

As any motion of a particle in a potential, this is accompa-
nied by the integral of motion that corresponds to its me-
chanical energy

2

H=M<%> + V(i) = const. (19)
2\ dx

Following this mechanical analogy, it is easy to see that a
nontrivial motion can take place only if ©<<0, where the
typical shape of the potential is similar to the one drawn in
Fig. 1.

Notice that a solution is always given by the equilibrium
configuration of the potential (18), i.e.,

o~ 1a
'ﬁo(x):(_’u ) . (20)
8

This solution can be normalized only on a finite volume L,
with the dependence of the chemical potential on the volume
determined by the normalization condition (15), i.e., &
=—gL~%?: given this dependence of the chemical potential,
the constant solution is simply

053608-3



FERSINO, MUSSARDO, AND TROMBETTONI

1
¢0=T~ (21)

To determine the ground state, we have to compare the GPE
energy of this constant solution with the one of a localized

wave function. For this solution, both ,(x) and %(x)
should vanish when x— *oo. This condition fixes the con-
stant value of H to be zero (notice that this value is not the
GPE energy). In this case, the fictitious particle takes off
from the origin at x=—°, moving to the right [or, equiva-
lently to the left, since the original equation is invariant un-
der t(x) — —ip(x)], until it reaches the inversion point A at
the time x=0. Once the particle arrives in A, it inverts its
motion and comes back to the origin with a vanishing veloc-
ity. It is clear from this analogy that A will be the maximum
of the bright soliton solution.

What we said, however, is not the end of the story. In fact,
the kind of motion we have just described occurs for any
potential with the shape shown in Fig. 1. But we are looking
for that particular motion that satisfies the additional con-
straint (15) and this condition can be fulfilled only for a
particular shape of the potential, i.e., for a particular combi-
nation of the parameters & and g: it is as if the solution is
looking for its proper potential.

In the following, it is convenient to introduce the quanti-

ties
wla+2 | 4 2
azE—M>O, b= _g’ y=—. (22)
2g a+?2 o

Using the integral of motion H, for generic values of u, g,
and « (with <0, g>0, and a>0) the solution is given by
a quadrature

X

Ji//()(x) dgq
——==b| dr, (23)
" \,azqz _ qa+2 0

where A=a” is the inversion point reached by the particle at

the “time” x=0. Using the exact expression of the integral of
the left-hand side

[ W dg 1 [aﬂ/az—wg(z)} 24)

A N@G =g aa | a—\a® - Y1)
one gets
A
ho(x) = ———F——+. (25)
’ cosh’/(%v— 2,&x)

It remains now to impose the normalization Eq. (15) to the
solution (25): this fixes the shape of the potential, i.e., the
relation between & and g

2 \Y*al'2/a+1/2
) al’(2/a+1/2) (26)

(_ ~)(4—a)/2a: 2/oz< )
# ¢ 2al(2/a)

a+?2

When a#4, we can use this equation to express i as a
function of g and, in particular, to write the normalization A
as
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FIG. 2. Ground-state wave functions of the PL-NLSE (14) for
a=1,2,2.5,3 (dimensionless units are used with g=1).

([ 2 F(y+1/2)>2’(4‘“>
A_< ay(y+1)  T(y) ' @7)

In Fig. 2 we plot the soliton solution (25) for different values
of aat g=1.

However, when a=4, Eq. (26) leaves & undetermined:
this means that the corresponding wave function

\J’— 3[2/g 1/2
) 28
o) (cosh(2\/— 2p:x)> 28)

is the solution of the nonlinear Schrodinger Eq. (14) for ev-
ery . In this case, however, only a particular value of g,
given by

3w
=5

*

g (29)
guarantees its correct normalization (15). Expressed in more
physical terms, the attractive three-body interaction has the
peculiarity that one can arbitrarily vary the chemical poten-
tial provided that the coupling constant be fine-tuned to the
critical value g*: increasing or decreasing (in modulus) the
chemical potential simply results, in this case, in shrinking or
enlarging the shape of the soliton. This is shown in Fig. 3
where the wave function (28) is plotted for two different
values of u: in the inset we plot the corresponding potential
(18), showing a larger (smaller) inversion point correspond-
ing to the smaller (larger) width.

FIG. 3. Wave function (28) for N=3 and g=g* plotted for
a=-1 (solid line) and m=-5 (dot-dashed line). Inset: correspond-
ing potential (18) for g=-1 (solid line) and g=-5 (dot-dashed
line).
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(a)

FIG. 4. (a)-(c) Chemical potential and energy (in dimensionless
units) of the bright soliton solution (25) for g=3<g" (solid line)
and g=4>g* (dashed line) for <4 (b)—(d) chemical potential and
energy for g=3 (solid line) and g=4 (dashed line) for a>4.

The fact that & is undetermined and the soliton can arbi-
trarily change its shape does not imply that the GPE energy
is undetermined: in fact, the explicit computation of the next
subsection shows that, in this case, the energy does not de-
pend on the value of . Then, for N=3 and g=g", an infinite
degeneracy parametrized by the chemical potential 7 <<0 oc-
curs.

In Figs. 4(a) and 4(b) we plot the chemical potential & for
two different values of g, one smaller than g* and the other
larger: it is seen that for g<g* (g>g"), then x—0 (&
— —) for «—4~ while g— (x—0) for «—4*. The sin-
gular nature of the three-body interaction can then be recov-
ered by studying the limit @—4 of the formulas (25)-(27)
given above: for a— 47, if g=g" the normalization A goes to
1, while if g<g*, A—0 and Z—0 (i.e., we have a non-
localized solution) whereas if g>g*, both A and & diverge,
i.e., the wave function collapses to the origin. It is worth
mentioning that a singular behavior of the nonlinear
Schrodinger equation, corresponding to a self-focusing sin-
gularity present at the value @=4 [1], has also been observed
in the dynamical blowing up of the moving wave-packets of
this equation: the interested reader is referred to the math-
ematical literature for a detailed discussion of this issue [44].
In the present application, this instability means that the local
three-body attractive interactions cannot sustain a bound
state unless there is a fine tuning of the interaction. In the
next Section we will show how an external trap can help to
stabilize the bound state for a generic value of the coupling.

To understand better the behavior of the solution (x) as
a function of «, let us define the width o, as
=[dxx*(x). One gets

Ty +172) fly+ 1)
T al(y) 24 T

where Z,=[dXX?/cosh®(X). One finds o5(g)="/3g
~3.28/g and o7(g)=(m-6)/(12¢)"*~1.69/g"". For large
« one has a'i—> g/2, while, of course, a'i—wo for a—0 (no
localized soliton without interaction). For g<<g*, from Eq.
(30) one sees that for «—4~, o,— %, while for a—4", o,
—0. In Fig. 5 we plot o7, for g=1<g* from Eq. (30) and, for
completeness, also the widths for some values of « obtained
from the numerical PL-NLSE. A divergence is observed for

a

(30)
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40+
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bo— 1 2z a 3 = 4

FIG. 5. o‘i versus the nonlinearity degree «. Solid line: Eq. (30);
open circles: (x?) from the numerical determination of the ground
state of the PL-NLSE (14). The value g=1<g* and dimensionless
units are used.

a—4~, corresponding to the three-body attraction: the bright
soliton becomes larger and larger getting close to a=4, while
for « slightly larger than 4 the soliton becomes extremely
narrow. This means that there is a collapse of the solution
(25) going to @=4 from large values of a. At variance, for
g>g", then for «—4~, o0,—0, while for a— 4", o,— . It
should be stressed that, for a>4, although Eq. (25) is a
solution of the PL-NLSE (14), it is no longer its ground
state: the divergence of o, for «—4"~ is signaling the disap-
pearance of the bound state due to the three-body interaction.

To conclude this section, one may wonder how robust is
the infinitely degenerate ground state found for the three-
body interaction at g=g*, in particular it is important to see if
and how this degeneracy may be lifted by the quantum fluc-
tuations. We point out that this highly degenerate ground
state is quite peculiar, because the standard linear stability
analysis of the (Hartree) mean-field solutions does not di-
rectly apply to this case. Indeed, we remind that the results of
the standard linear stability analysis of stationary spatially
localized solutions of the generalized NLSE (13) can be
summarized by the Vakhitov-Kolokolov criterion [45-47].
Shortly, the criterion consists of the following: for the gen-
eralized NLSE % =—%%§ —F(|4) 4, one writes the station-
ary solutions in the form u(x,)=®(x;i@)e ™ [where
®(x; fx) vanishes for |x| — ] and then computes the quantity
ny(x)=J"|®(x; @)|*dx. The Vakhitov-Kolokolov criterion
for the onset of the soliton instability results in dn(x)/dix
=0, the stability (instability) region corresponding to
dn(x)/dx<0(dnym)/dx>0). When this criterion is ap-
plied to the PL-NLSE (10) for a=4, i.e., F=g|{* one ob-
tains  D(x;x)=[A/cosh(x)]"?, where ﬂ:—m and
AX(K)=3K?/8g. It follows n(ix)=mA(K)/K=\g*/g, then
giving dny(x)/dx=0 identically for every i <<0. This result
makes evidence of the peculiarity of the three-body degen-
erate ground state and the study of its stability with respect to
quantum fluctuations is therefore an interesting problem re-
quiring an investigation going beyond the standard linear
stability analysis.

A. Ground state energy

Using the bright soliton solution (25) we can now esti-
mate the energy per particle. Going back to the physical
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FIG. 6. Ground-state energy vs a. Solid line (dashed line): Eq.
(32) for a<4 (a>4); open circles: energy of the numerical ground
state of the PL-NLSE (14). Dimensionless units (with N7=1) and
g=1<g", as well as different scales of the energy for a<<4 (left
part) and a>4 (right), are used.

dimensions of all quantities and normalizing now %, to N7,
for a# 4 the chemical potential is given by

vy (o yen
2mf§/a/(4—a) ﬁZ,y(,y_'_ 1) ’

M=

where
Al
YT (y+1/2)

The energy per particle is then obtained from the PL-NLSE
energy functional

N n: P 2c
EGP=de‘/’o(x) -

g ara t/fo(X)l‘”] o).
(32)
Using Eq. (25) we obtain

Egp  #*(2mG\"*
N T\ 2 ) E

(33)

where

1 4/(4-a) s a
Ela)= m {yzfy—mv(ﬂl)f,fm}
(34)

For N=2, it is u=—mc?N3/8h* and the previous energy (9)
is recovered. From Eq. (33) it follows that in order to main-
tain finite the energy per particle for large A7 one has to keep
G fixed. By a numerical determination of the ground state of
the PL-NLSE, we have verified that Eq. (25) indeed coin-
cides with the ground state for @ <4 both for g<<g* and g
>g*. In Fig. 6 we compare for g=1<g* the ground-state
energy per particle from Eq. (33) with the ground-state en-
ergy obtained for some values of « obtained from the nu-
merical PL-NLSE. For ¢>g" and <4, a similar agreement
is obtained.

For a=4, as discussed in the previous section, the chemi-
cal potential is undetermined. However, a direct substitution
of Eq. (28) in Eq. (32) reveals that Egp=0 for g=g*. Since
(28) is a solution of the PL-NLSE (14) for arbitrary u <0,
and then with arbitrary width, we conclude that an infinite
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degeneracy-parametrized by a negative chemical potential
occurs.

Using the energy (32) we can also estimate the energy of
the constant solution in the finite interval [-L/2,L/2]: it is
Eonat/! Ny==2cp“?/ (a+2), where p=N7/L is the density. To
compare this energy with the previous result (33) for the
bright soliton solution we have to choose how to perform the
thermodynamic limit: if we choose to keep fixed the quantity

=cj\/’}‘/2, with large but finite value of N7, sending L to
infinite the energy of the constant solution vanishes. This
means that for >4 the constant solution is the ground state
of the system; a=4 and g=g" is the case in which both the
solutions have zero energy.

IV. EFFECT OF AN HARMONIC TRAP

In three dimensions, the presence of an external harmonic
trap (with frequency w) can help to stabilize the attractive
two-body interaction: the critical value Ay of the particle
number that induces the collapse, obtained from the GPE, is
given by 0.57N7|al/a, [24]. This critical value can be esti-
mated by a variational method [25,16]: a Gaussian trial wave
function, with the width variational parameter, is introduced
and the corresponding energy computed [26]. Without exter-
nal trap (w=0), the energy does not have a minimum. How-
ever, with w # 0, two situations are possible: for a number of
particle N7<AJ a metastable minimum appears, while for
N> N there is no minimum.

In this section we consider the corresponding problem in
one dimension with a three-body interaction, and more gen-
erally, a N-body contact interaction, showing that there is a
critical value ¢* of the interaction, such that for ¢ <c*, the
bound state is stable. To this aim, we use the variational
wave function

Y(x) = C exp(-x*/d?), (35)

normalized to N7. The energy to be minimized is obtained
by inserting the variational wave function (35) in the gener-
alized GPE functional

fdxw (x)[

To better illustrate the peculiarities of the one-dimensional
case, it is useful to perform the analysis also in higher di-
mensions (correspondingly choosing the variational wave
function as ¢(x;, -, xp) <exp[—(x1+- - +x5)/0>], where
D is the spatial dimension). The energy in D=1,2,3 is then
given by

L
2 x>

|zp(x)|“+ —w’x? | (x).
(36)

a+2

N mato?
+D g

L
NT 2]’)’10’2 G QDUDQ/Z

(37

where
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UNSTABLE |

FIG. 7. Stability region according to Eq. (39): D=1,2,3 corre-
sponds, respectively, to a=4,2,4/3, i.e., N=3,2,5/3.
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Let us consider initially the homogeneous case: for w=0 the
energy (38) has a minimum only when Da<4. The critical
condition is then

Da=4. (39)

For D=1, the critical value corresponds to a=4: this is in
agreement with the result of the previous section, which is
now obtained by a variational approach. We observe that,
without the harmonic trap, the criterion (39) can be obtained
without choosing a particular variational form for the ¢, and
studying the boundedness of the Hamiltonian [36]. The con-
dition (39) is plotted in Fig. 7, which shows that the higher
N-body interactions tend to be more unstable in higher di-
mensions.

Let us now examine for w=0 the critical point Da=4.
The energy (37) reads

E 1

—— = — (" = o) NVY?, 40
Nifan o’ ( Wi (0
where we defined the critical value
Dh?
L — 41
2mf o p N> “
a plot of the energy (40) is drawn in Fig. 8. It is clear that for
0 t-_--_-r:-_-__':': =
0

FIG. 8. Plot of the variational energy (37) vs o at the critical
point Da=4 for w=0: the dashed, dot-dashed and solid lines cor-
respond, respectively, to ¢<c*, ¢>c", and ¢=0, with ¢* given by
Eq. (41).
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o

FIG. 9. Critical value g* vs a for >4, with D=1. Dimension-
less units (with g=A;=1) are used, with w=1 (dashed line) and
w=4 (solid line).

¢ <c" the energy is positive and the minimum corresponds to
o—; at variance, for ¢>c¢* the energy is negative and the
minimum corresponds to o—0, signaling the collapse.
When c=c", the energy is zero for every width: this is how
the variational approach mimics the infinite degeneracy of
the ground state, which was discussed in the previous sec-
tion. Notice that for D=1 and a=4 the critical value (in
dimensionless units) is g*=3\3m/4~4.08, in good agree-
ment with the analytical value g*=37°/8~3.70.

When the harmonic trap is present (w # 0), there is still a
minimum when a<<4/D. When Da >4, we can identify the
critical value ¢* as indicated in Ref. [25] for the D=3 and
a=2 case: since E— —o for 0— 0 and E— o0 for o— 0, the

critical value is obtained by the conditions JE/do
=#E/do*=0. In this way we arrive at the result
*/Vu/Z ~ (Da _ 4>(Da—4)/8< 16ﬁ2 )(Da+4)/8
<Nt = 4maw? m(Da+4)
a+2/ a+?2 D/2 T D(a+2)/4
X — - . (42)
2a T 2

For ¢ <c¢" there is a minimum and the system is stable, while
for ¢>¢* the energy does not have ever a minimum: hence,
irrespectively of how large w may be, the system always
collapses. Of course, for Da=4, Eq. (42) reduces to the criti-
cal value (41).

The instability curve (42) depends on D: with dimension-
less units (and AV7=1), in one dimension as a— o the critical
value g* goes to zero for o= 7 and to infinity otherwise; in
two dimensions the behavior is similar except that g*
— 77/ e when w=7r; while in three dimensions critical value
goes to infinity for 7= w and to zero otherwise. A plot of g*
in D=1 for a>4 is presented in Fig. 9.

V. CONCLUSIONS

In this paper we have analyzed the one-dimensional Bose
gases with N-body local attractive interactions: by using a
mean-field approach, we found that N=3 (i.e., a=4) is a
critical point, and that the localized solution is possible only
for a critical value ¢ of the interaction strength. For this
critical value, an infinite degeneracy occurs: this degeneracy
is parametrized by the chemical potential (i.e., eigenfunc-
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tions with the same negative w have the same energy). For
a<<4, the bright soliton coincides with the ground state of
the Gross-Pitaevskii equation: when ¢ <c* (¢>c"), then «
—4~ gives a width going to diverge (vanish). The behavior
of the excitations above the infinitely degenerate ground
state for =4 is an interesting issue, whose understanding, as
we discussed, goes beyond the standard linear stability
analysis.

We have also studied how an harmonic trap can make
stable this bound state, pointing out that for N=3 there exist
a critical value of the three-body interaction strength, and
below such critical value the localized state occurs. Above
this critical value, the collapse is not prevented even for very
large trap frequency. A brief discussion of the role played by
the dimension for N-body local attractive interactions has
been also presented, showing that higher body interactions
are more unstable in higher dimensions. We also mention
that two-body nonlocal attractive interactions has been stud-
ied, showing different ranges of stability with respect to the
local ones [27]: we could then expect that for three- and
N-body interactions this effect could become even more rel-
evant.

Several proposals have recently addressed the issue of
inducing and controlling three-body terms. In Ref. [20] it has
been proposed to use cold polar molecules driven by micro-
wave fields to obtain strong three-body interactions, control-
lable in a separate way from the two-body interactions,
which in turn can be switched off [20]. Three-body interac-
tions can be effectively induced in mixtures of bosonic par-
ticles and molecules: in [18] the ground state of rotating
Bose gases close to a Feshbach resonance has been studied,

PHYSICAL REVIEW A 77, 053608 (2008)

showing that for suitable parameters they are fractional quan-
tum Hall states, whose excitations obey non-Abelian ex-
change statistics. In Ref. [19] it was shown that a system of
atoms and molecules in a one-dimensional lattice can be ef-
fectively modeled by a three-body local (i.e., contact) inter-
action, characterized by a strength U and in the limit U
— oo (without a two-body interaction) the ground state prop-
erties were investigated by a Pfaffian-like ansatz. The
strength U of the three-body interaction can be made also
negative by using Feshbach resonances.

One of the main reasons of interest of these proposals
relies on the fact that exotic quantum phases, such as topo-
logical phases, appear to be ground states of Hamiltonian
with three- or more-body interaction terms, an example be-
ing the fractional quantum Hall states described by the Pfaft-
ian wave functions [48]. The excitations of Pfaffian states are
non-Abelian anyons, on which schemes of fault-tolerant to-
pological quantum computation are based [49]. We think
that, in perspective, the possibility to induce and tune effec-
tive three-body interactions could become an important tool
to control the nonlinear dynamical properties of localized
wave packets and to induce new exotic strongly correlated
phases in ultracold atoms.
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