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We study the ground-state properties of a Bose-Einstein condensate with short-range repulsion and gravity-
like 1 /r interatomic attraction in two-dimensions �2D�. Using the variational approach we obtain the ground-
state energy and analyze the stability of the condensate for a range of interaction strengths in 2D. We also
determine the collective excitations at zero temperature using the time-dependent variational method. We
analyze the properties of the Thomas-Fermi-gravity and gravity regimes, and we examine the vortex states,
finding the coherence length and monopole mode frequency for these regimes. Our results are compared and
contrasted with those in 3D condensates.
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I. INTRODUCTION

Investigations of Bose-Einstein condensates �BECs� have
mostly concentrated on systems with two-body short-ranged
interaction which is characterized by the s-wave scattering
length �1�. Recently, O’Dell et al. �2� proposed a configura-
tion for the occurrence of 1 /r interaction which is a totally
new regime for cold gases that have a long-range attractive
interaction. They showed that a particular spatial configura-
tion of external electromagnetic fields causes a 1 /r potential
in the near zone. The analysis of this configuration is also
important since it suggests a new way to examine the stellar
1 /r interaction in the laboratory. Apart from this possibility,
it is interesting that such a system results in stable conden-
sates even in the absence of an external trap potential �3�.
Recent experiments �4� on polar molecules and condensates
with dipole-dipole interactions have started to probe the
properties of such systems.

The gravitylike interaction of atoms in a condensate is
mostly a result of dipole-dipole interactions �2,5�. By adjust-
ment of the configuration of intense off-resonant laser
beams, the r−3 term in the dipole-dipole interaction is made
to vanish, and one can obtain an interaction of the form
U�r�=−u /r in which u is related to the material parameters
and laser intensity. In this system, two new regimes appear
where the kinetic energy, contact interaction energy, and
gravitylike attractive interaction form a stable configuration
without a trap potential �2,5�, i.e., the condensate is self-
bound. Self-bound condensates have been examined exten-
sively in the literature in the context of laser-induced gravi-
tation �6� and other systems �3�. Ghosh �7� has studied the
collective excitation frequencies of this system in three-
dimensions �3D� within the time-dependent variational
method. He showed that variational analysis agrees very well
with the results of Ref. �5�, in which the sum-rule approach
was used. Recently it has been shown that numerical solu-
tions are in very good agreement with variational solutions
for 3D systems �8�.

There is a growing interest in condensates with long-
range interactions, especially in those with dipole-dipole in-

teractions �9,10�. After the realization of Bose-Einstein con-
densation with 52Cr atoms �11�, many theoretical and
experimental studies on systems with dipolar interaction ap-
peared �12�. The recent progress in the cooling and trapping
of neutral atomic gases with an electromagnetic field has also
made it possible to study 2D Bose gases �13�. The 2D atomic
BECs have many interesting properties as revealed by ex-
periments and theoretical predictions. The excitation spec-
trum and vortex states of ordinary 2D BECs �14,15� and
BECs with dipole-dipole interaction �16� have also been in-
vestigated.

In this paper we study a 2D condensate with attractive 1 /r
interaction. We calculate the ground-state properties using a
variational approach and show that the condensate is stable
without the external potential. We also consider the dynamics
of the condensate within the time-dependent variational
method and calculate the monopole and quadrupole mode
frequencies. We examine the excitation spectrum for the
Thomas-Fermi–gravity and gravity regimes, analyze the vor-
tex states, and calculate the coherence length as well as the
critical angular frequency to create a vortex. Our work par-
allels a similar consideration for 3D condensates �7� which
allows for a comparison of the effects of dimensionality.

II. GROUND-STATE PROPERTIES AND COLLECTIVE
EXCITATIONS

We will make use of the mean-field theory together with
the variational method to investigate the ground-state prop-
erties. For a dilute gas of bosonic atoms, we can write the
equation of motion for the system,

i�
���r,t�

�t
= �−

�2

2m
�2 + Vext�r� + VH�r����r,t� , �1�

in which Vext=m�0
2r2 /2 is the external harmonic potential

and VH is the Hartree potential, consisting of hard sphere and
gravity interactions, respectively, in the form

VH�r� = g���r��2 − u� d2r�
���r���2

�r� − r�
, �2�

where g=2	2��2a /maz is the interaction strength with a
being the 2D s-wave scattering length, and az is the harmonic*sevilay@fen.bilkent.edu.tr
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oscillator length in the tightly confined direction. We con-
sider a highly anisotropic condensate, i.e., �z���, and use
the quasi-three-dimensional scattering model. In this model,
if az�a, atoms experience collisions in 3D and the contact
interaction parameter can be written in terms of the same
parameter in 3D �17–19�. One must remember that we can
write the Hartree potential in this form if the −u /r potential
is sufficiently weak and does not affect the short-range scat-
tering. We use the variational wave function in the form
��r ,��=	N /��2l0

2exp�−r2 /2�2l0
2�, where l0=	� /m�0, and

this form satisfies the normalization condition with total
number of particles N. Using this function in the energy
functional, the energy per particle can be obtained as

E���
N��0

=
1

2
��−2 + �2 + s̃�−2 − 2ũ�−1� , �3�

where we choose the dimensionless interaction parameters as
s̃=	2 /�Na /az and ũ=	� /2uN / �2l0��0�. Equation �3� im-
plies that the scattering interaction �third term� in 2D shifts
the kinetic energy by s̃. Minimizing the energy with respect
to the variational parameter �, we obtain

1 − �1 + s̃��−4 + ũ�−3 = 0. �4�

One can obtain the virial relation as −T+Vext−Es−Eu /2=0
from a scaling analysis, which is equivalent to the above
relation, where T and Vext are the kinetic and trap potential
energies and Es and Eu are the interaction energies. It is
worth mentioning here that variational calculations have

been shown �8� to be quite accurate for a large range of
parameters in the case of 3D condensates with gravitylike
interaction. Based on our variational results, Table I gives a
comparison of the four asymptotic regions on some experi-
mental quantities such as the condensate radius, release en-
ergy, and peak density. The radius and release energy are
experimentally important quantities since they are the signa-
tures of 1 /r interaction �2�. As can be seen from the phase
diagram in Fig. 1�a�, there are four regions, as in 3D. The
ideal noninteracting region �I� and ordinary Thomas-Fermi
region �TF-O� are well known from the study of ordinary
condensates �with short-range interaction only�. The gravity
�G� and Thomas-Fermi–gravity �TF-G� regions are related to
the balance of the gravitylike potential with the kinetic en-
ergy and the contact interaction, respectively. Because these
regions are not sensitive to the external potential, it can be
adiabatically turned off. The gravitylike attraction does not
induce the collapse of the condensate, unlike the contact in-
teraction. Unlike the 3D system �2�, a 2D condensate is
stable for negative scattering lengths if s̃	−1 irrespective of
the value of ũ, whereas there is a sudden collapse for s̃

−1. In 3D, the condition below which there is no stable con-
densate becomes s̃ũ
1 /4 �2�. From Fig. 1�b�, one can con-
clude that self-bound condensate is stable without the exter-
nal trap. This can be seen from Eq. �3�, which reveals that for
small radii gravitylike attraction is always weaker than the
kinetic energy; thus the stability of the condensate depends
on the balance between the kinetic energy and contact inter-
action.

We use the time-dependent variational approach to obtain
the dynamics of the condensate. The Lagrangian density can
be written as �20�

L =
i�

2
��

���

�t
− ��

��

�t
� −

�2

2m
����2 +

VH�r�
2

���2, �5�

in which the external potential is set to zero. Oscillation fre-
quencies in 3D obtained by a Gaussian ansatz are compatible
with the exact calculations �5�. Thus, we choose the trial
function

TABLE I. Comparison of four asymptotic regions.

G TF-G TF-O I

Definition ũ�1 s̃� ũ4/3 s̃�1 ũ�1

s̃�1 s̃� ũ4/3 s̃�1

� 1 / ũ s̃ / ũ s̃1/4 1

Erel /��0
1
2Nũ2 1

2Nũ2s̃−1 1
2Ns̃1/2 1

2N

�N3 �N2 �N3/2 �N

max
N3u2

16l0
4�2�0

2
Naz

2u2

16a2l0
4�2�0

2

N1/2az
1/2

�2�5�1/4a1/2l0
2

N

�l0
2
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FIG. 1. �Color online� �a� Con-
tour plot of the logarithm of the
condensate radius as a function of
ln ũ and ln s̃; darker shade corre-
sponds to smaller radius. Four
asymptotic regions can be seen
from the plot. �b� Ground-state en-
ergy of the condensate for differ-
ent values of the variational pa-
rameter s̃ũ as a function of �, the
condensate radius, for large ũ. The
energy is scaled by N��0 and the
radius by l0, the harmonic oscilla-
tor length. For s̃
−1, there is no
minimum for finite radius.
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��x,y,t� =	 N

�1�1�
exp�−

1

2
���t�x2 + ��t�y2�� , �6�

where the wave function is normalized to N, x and y are
variables in units of l0=	� /m�g, and �g=mu2N2 /�3 is the
gravitational frequency. ��t�=1 /�1

2+ i�2 and ��t�=1 /�1
2

+ i�2 are the dimensionless time-dependent variational pa-
rameters, and �1 and �1 are condensate widths along the x
and y directions, respectively. The complex parts of the
variational parameters are necessary for an accurate descrip-
tion of the condensate dynamics �21�. Substituting this wave
function into the Lagrangian density and integrating over 2D
spatial coordinates, we obtain the following Lagrangian:

L =
SN2u2

g

1

2
��1

2�̇2 + �1
2�̇2� −

1

2
� 1

�1
2 + �1

2�2
2�

−
1

2
� 1

�1
2 + �1

2�2
2� −

1

�

S

�1�1

+	�

2
2F1� 1

2 , 1
2 ;1;1 − �1

2/�1
2�

�1
� , �7�

where S=gmN /2�2 is a dimensionless scattering parameter
and 2F1�1 /2,1 /2;1 ;1−�1

2 /�1
2� is the hypergeometric func-

tion. Note that the scattering parameter S in this part is re-
lated to the earlier s̃ by S=�s̃.

The ground-state energy as a function of the variational
parameter in an isotropic system is found to be

E =
SN2u2

g
� 1

�2 +
1

�

S

�2 −	�

2

1

�
� . �8�

Minimizing the energy functional with respect to the varia-
tional parameter, the equilibrium point is obtained as �
= �2 /��1/2�2+2S /��. The chemical potential �=�E /�N and
sound velocity cs

2=� /m can be calculated from Eq. �8�. Us-
ing the Euler-Lagrange equations, the time evolutions of the
widths are

�̈1 =
1

�1
3 +	�

2
� S̃

�1
2�1

+ F�1
� , �9�

�̈1 =
1

�1
3 +	�

2
� S̃

�1�1
2 + F�1

� , �10�

where S̃=	2 /�3S, and F�1
and F�1

are the derivatives of

2F1�1 /2,1 /2;1 ;1−�1
2 /�1

2� /�1 with respect to �1 and �1, re-
spectively. We are looking for low-energy excitations which
correspond to small oscillations around the equilibrium
point. Thus, we perform an expansion around the equilibrium
width by letting �1=�+��1 and �1=�+��1 for the isotropic
system. The time evolution of the widths is given by

��̈1 = 
−
3

�4 +	�

2
�−

2S̃

�4 +
5

8�3����1

+	�

2
�−

S

�4 +
3

8�3���1, �11�

��̈1 =	�

2
�−

S̃

�4 +
3

8�3���1

+ 
−
3

�4 +	�

2
�−

2S̃

�4 +
5

8�3����1. �12�

Substituting ei�t-type solutions in the above set of equations,
we obtain the following excitation frequencies:

�+
2 =

3

�4 +	�

2
�3S̃

�4 −
1

�3� , �13�

�−
2 =

3

�4 +	�

2
� S̃

�4 −
1

4�3� . �14�

The excitation spectrum for a 2D condensate with gravitylike
interaction is plotted in Fig. 2 as a function of the dimension-
less scattering parameter. We observe that, in contrast to 3D,
the 2D system can bear the negative scattering parameter
down to S=−�. For large values of the scattering parameter,
the pseudopotential term dominates the gravitational energy
and the monopole mode is more energetic than the quadru-
pole mode. At S=9.42, there is an intersection of the two
modes which can be seen from the inset of Fig. 2, where it is
not possible to distinguish two modes experimentally. A
similar crossing occurs in 3D at a larger value of S �7�.

TF-G regime. When the gravitylike potential is balanced
by the contact interaction i.e., for large s-wave scattering
lengths, the kinetic energy can be neglected. The total energy
of the ground state becomes E0=−0.62�N2u2 /g�. The
ground-state energy per particle varies with N as in 3D. In
this regime, monopole and quadrupole frequencies are ob-
tained as �Q=1.5462�gS−3/2 and �M =2.1867�gS−3/2. Their
ratio is �M /�Q=1.42, which is 1.58 in 3D. Note also that the
dependence of �Q and �M on S in 3D is �S−3/4, which is a
distinctive feature. The facility with which the s-wave scat-
tering length can be tuned through the Feshbach resonance
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FIG. 2. �Color online� Monopole �dashed line� and quadrupole
mode �solid line� frequencies ��M and �Q, respectively� as func-
tions of the dimensionless scattering parameter S. Inset shows the
intersection of two modes.
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makes the results of our calculation amenable to experimen-
tal investigations. The identification of the 2D nature of con-
densates is thus possible from the study of collective excita-
tions.

G regime. In this regime we neglect the contact interac-
tion; this is the analog of the nonrelativistic boson star �22�.
The ground-state energy per particle varies with N similarly
to the case in the TF-G regime. Quadrupole and monopole
mode frequencies are calculated as �Q=0.6269�g and �M
=0.3927�g, respectively, in terms of the gravitational fre-
quency �g. Their ratio is �M /�Q=0.63 in this regime, which
is to be compared with 0.60 in 3D.

We now discuss the experimental feasibility of 2D con-
densates with 1 /r interaction against losses. The main
sources of depletion in a gravitylike interacting gas, in the
TF-G and G regions, are losses due to 1 /r3 oscillating inter-
fering terms and those due to incoherent phonon scattering,
namely, Rayleigh scattering. The conditions necessary to ob-
serve the transition from external trapping to self-binding
have been analyzed by O’Dell et al. �2� and Giovanazzi et al.
�6� in the case of 3D condensates. They have shown that the
Rayleigh scattering rate is reduced by a factor �qRrms�2 for
sample sizes smaller than the laser wavelength �2,6�. Here q
is the wave vector associated with the laser wavelength �i.e.,
q=2� /�L� and Rrms is the root mean square of the conden-
sate size proportional to the variational width parameter. Our
numerical calculations for the TF-G region give Rrms
�0.46�L for the values a�3 nm, a��10 cm, and �L
=10.6 �m, which means that this region is experimentally
accessible.

We calculate the temporal characteristics in relation to
Rayleigh scattering rate by adopting the approach of Gio-
vanazzi et al. �6� to a 2D condensate. In the TF-G and G
regimes, the characteristic time scale for the dynamics of the
system can be estimated from the plasma frequency, which
has the form

�p
2 =

4�2upeak

m�L
�15�

in 2D �23�, where peak is the peak density and �L is the laser
wavelength. The Rayleigh scattering rate can be expressed as
�6�

�Ray =
20�

11

u

��L
. �16�

Using Eq. �16� and recoil energy ER=�2q2 /2m, one can
write the plasma frequency �p as

�p = 0.72
�Ray

3/2 N3/2

�ER/��1/2
1

1 + s̃
. �17�

For a 2D condensate, az�a and the last quotient in the above
expression goes to unity since s̃→0. Thus, for the param-
eters given in Ref. �6�, namely, N=40 atoms, �Ray=1.58
�104 s−1, and recoil energy ER /�=1.57�105 s−1, we find
�p57�Ray, which is about three times the value in the 3D
case �23�. This estimation shows that even for a small num-
ber of atoms the proposed laser characteristics and two-
dimensional nature of the condensate allow for several oscil-

lations of the self-bound gas within the Rayleigh lifetime.
One may also compare the monopole and quadrupole

mode frequencies in the TF-G regime to the Rayleigh scat-
tering rate. Recalling, for instance, that �Q=1.5462�gS−3/2,
the ratio of the TF-G quadrupole mode to �Ray is

�Q

�Ray
= 0.94

��RayN
2S−3/2

ER
. �18�

For the parameters given above, we find that �Q /�Ray�53
for S�2 and �Q /�Ray�1 for S	28. Our estimation again
shows that excitations can be observed experimentally within
the Rayleigh lifetime.

III. VORTICES

Vortices in Bose-Einstein condensed systems are impor-
tant as they experimentally reveal the macroscopic phase co-
herence properties. To study the vortex states we again use
the time-dependent variational analysis and choose the varia-
tional wave function for the self-bound gas as

��r,t� =	 N

�q ! �2q+2rq exp�−
r2

2
�1/��t�2

+ i��t���exp�iq�� , �19�

where q is the vortex quantum number. By using the same
Lagrangian density in Eq. �5�, we obtain the Lagrangian

L =
SN2u2

g

�q + 1��2�̇ − �q + 1�� 1

�2 + �2�2�
−

gq

�

S

�2 +	�

2

cq

�
� , �20�

where gq= �2q� ! /22q�q!�2, c1=7 /16, and c2=321 /1024.
Then, one can find the energy of the vortex state as

Eq =
SN2u2

g
��q + 1�

1

�2 +
gq

�

S

�2 −	�

2

cq

�
� . �21�

The equilibrium point is found by minimizing the energy

�q =	 2

�
�2�q + 1� + �2/��gqS

cq
� . �22�

The balance between the kinetic energy and the interaction
energy terms fixes the structure of the vortex core. The co-
herence length � is a measure of the superfluid characteristics
of the system, which is obtained by equating these three
energies:

�2

2m�
=

gN

2R2 −
uN

�
, �23�

where R=g	F /2uS is the radius of the condensed state and
F=−� 1

�2 + S
��2 −	�

2
1
� �, in which � is the equilibrium width

without vortices. Thus, the coherence length is
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�

R
=

	F + 	F + 2S

2S
. �24�

The coherence length as a function of the scattering param-
eter S is shown in Fig. 3. For small values of the scattering
parameter, � /R is seen to be very large, which implies that
superfluidity is destroyed. As the scattering length increases,
the coherence length is getting much smaller, i.e., the system
keeps displaying superfluidity.

The critical angular frequency to create a vortex is found
by using the energies of the vortex and vortex-free states as

�q =
�g

2

 2

�q
2 −

1

�2 +
S

2�
� 1

2�q
2 −

1

2�2� −	�

2
� 7

16�q
−

1

�
�� .

�25�

In Fig. 4, we present the behavior of the critical angular
frequency for one vortex. From the inset one can see that �1
increases for negative S, i.e., for attractive interaction it is

harder to create a vortex, and it decreases as the scattering
parameter increases.

The frequency of the monopole mode for the vortex state
is obtained as

�q
2 = � 3

�q
4 +

3gqS

��q + 1��q
4 −	�

2

cq

�q + 1��q
3� , �26�

where �q is defined in Eq. �22�. In the presence of vortices,
the system collapses at S=−�q+1�� /gq.

TF-G regime. When the s-wave scattering length is very
large, the kinetic energy contribution can be neglected. Using
Eq. �24�, the superfluid coherence length is obtained as
� /R=0.7071S−1/2 where F=1.23S−1. As S increases, the co-
herence length gets smaller compared to the size of the con-
densate, i.e., superfluid properties are observed in the TF-G
regime. The critical angular frequencies needed to create vor-
tices are �1=0.3808�gS−1 and �2=0.2277�gS−1 for q=1
and 2, respectively. Unlike in the 3D case, these two frequen-
cies are larger than the chemical potentials �1 and �2; thus
the condensate state with a vortex is unbounded in this re-
gime.

G regime. In this regime the s-wave interaction energy is
very small, so it is neglected. The radius of the condensate is
Rg=g	F /2uS and the superfluid coherence length is �
=0.798Rg, close to the radius of the condensate, which
means that superfluidity disappears. This ratio is larger in the
3D system �7�. The critical angular frequencies are �1
=0.1776�g and �2=0.095�g for q=1 and 2, respectively,
and �2 is much less than �1. The chemical potentials in the
rotating frame are ��1� /�=0.0188�g and ��2� /�=0.0065�g.
In this regime, only one monopole mode is stable: �1
=0.0188�g. For q=2, the monopole mode frequency �2
=0.0096�g	−� /�, which means that this oscillation is un-
stable and particles can escape from the condensate.

A recent paper by Giovanazzi, Santos, and Pfau �12� dis-
cusses the way in which accurate determination of the
s-wave scattering length can be made using the collective
oscillation frequencies in a dipolar BEC. We surmise that a
similar idea may be developed in the present context of
gravitylike 1 /r interaction.

IV. CONCLUSIONS

In this paper, we have shown that a laser-induced attrac-
tive 1 /r interaction gives rise to a stable condensate in 2D
without a trap as in the 3D case. Unlike the 3D case, there is
no collapse till s̃=−1. We have calculated experimental
quantities such as the release energy, the peak velocity, and
the condensate radius for the I, TF-O, TF-G, and G regions.
We have also studied the dynamics of the system and calcu-
lated the monopole and quadrupole frequencies and analyzed
them within the TF-G and G regimes. These modes depend
on the scattering length a in the TF-G regime, unlike the case
in the ordinary TF regime. We have shown that the monopole
mode exists not only for positive S values but also for nega-
tive values down to S=−�, in contrast to the situation in 3D
�7� where the monopole mode exists for S	0 only. Our es-
timate of the main loss mechanism, namely, the Rayleigh
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FIG. 3. �Color online� Coherence length as a function of the
dimensionless scattering parameter S.
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FIG. 4. �Color online� Critical angular frequency for q=1 as a
function of the dimensionless scattering parameter S. Inset is a
zoom plot for negative S values.
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scattering, shows that these collective oscillations may be
observed in 2D condensates for reasonable parameters.

We have also investigated the vortex states and calculated
the energy, the coherence length, the critical angular frequen-
cies, and the monopole mode frequencies for q=1,2. The
presence of vortices in the condensate extends the range of S
in which the condensate is stable. As the scattering parameter
increases, the system keeps displaying superfluidity since the
coherence length is getting smaller. We have examined the
TF-G and G regimes and have shown that in the TF-G re-
gime the condensate state is unbounded. In the G regime,
superfluidity disappears and only the monopole mode for the
vortex state for q=1 is stable.

It would be interesting to study the collective excitations
of the present system within the sum-rule approach �5�.

Comparison of the time-dependent variational method and
the sum-rule approach has yielded a very good agreement in
3D condensates with gravitylike attraction. A similar com-
parison would provide a further assessment of the reliability
of our results. Finally, the results of our calculations should
be useful in analyzing experiments performed on 2D conden-
sates. The distinctive features of collective modes may help
in the identification of the 2D nature of condensates in vari-
ous regimes compared to the 3D case.
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