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We investigate Bose-Einstein condensation for interacting bosons at zero and nonzero temperature. Func-
tional renormalization provides us with a consistent method to compute the effect of fluctuations beyond the
Bogoliubov approximation. For three-dimensional dilute gases, we find an upper bound on the scattering length
a which is of the order of the microphysical scale—typically the range of the van der Waals interaction. In
contrast to fermions near the unitary bound, no strong interactions occur for bosons with approximately
pointlike interactions, thus explaining the high quantitative reliability of perturbation theory for most quanti-
ties. For zero temperature we compute the quantum phase diagram for bosonic quasiparticles with a general
dispersion relation, corresponding to an inverse microphysical propagator with terms linear and quadratic in the
frequency. We compute the temperature dependence of the condensate and particle density n, and find for the
critical temperature T, a deviation from the free theory, AT,/T,=2.lan'3. For the sound velocity at zero
temperature we find very good agreement with the Bogoliubov result, such that it may be used to determine the

particle density accurately.
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I. INTRODUCTION

For ultracold dilute nonrelativistic bosons in three dimen-
sions, Bogoliubov theory gives a successful description of
most quantities of interest [1]. This approximation breaks
down, however, near the critical temperature for the phase
transition, as well as for the low temperature phase in lower-
dimensional systems, due to the importance of fluctuations.
One would therefore like to have a systematic extension be-
yond the Bogoliubov theory, which includes the fluctuation
effects beyond the lowest order in a perturbative expansion
in the scattering length. Such extensions have encountered
obstacles in the form of infrared divergences in various ex-
pansions [2]. Only recently, a satisfactory framework has
been found to cure these problems [3,4].

Functional renormalization [5] for the average action
[6-8] systematically copes with the infrared problems by
exploring the difficult long range behavior gradually by
means of nonperturbative flow equations, which are based on
an exact renormalization group equation [7]. For zero tem-
perature they lead to a consistent description of Bose-
Einstein condensation and the quantum phase transition for
nonrelativistic bosons in arbitrary dimension [4,9]. A key
ingredient is the generation of a term in the inverse propaga-
tor that is quadratic in the frequency ~#w?’. It characterizes
the long time behavior of the full propagator at long dis-
tances, even if no quadratic frequency dependence is present
in the microphysical or classical propagator. The coupling v
is due to quantum fluctuations and appears during the flow
from microphysics to macrophysics. The extreme infrared
limit is governed by a “relativistic” model where 0" domi-
nates, with an enhanced (approximate) space-time symmetry
SO(1,d) corresponding to Lorentz symmetry. In one or two
dimensions the relativistic term ~¥ in the inverse propagator
is crucial for a correct description of the low temperature
behavior. In contrast, in three dimensions the flow towards
the extreme infrared behavior is only logarithmic, such that
the quantitative influence remains quite moderate for practi-

1050-2947/2008/77(5)/053603(19)

053603-1

PACS number(s): 03.75.Hh, 05.30.Jp, 05.10.Cc

cal purposes. Nevertheless, the effective coupling o is
needed in order to avoid the infrared problems.

In this paper, we extend this formalism to a nonvanishing
temperature. We present a quantitative rather accurate picture
of Bose-Einstein condensation in three dimensions and find
that the Bogoliubov approximation is indeed valid for most
quantities. The same method can be applied for one or two
dimensions, such that the present work can also serve as a
test of the method. This is nontrivial, because insufficient
truncations of the flow equations can lead to fake dependen-
cies on the microscopic physics.

For dilute nonrelativistic bosons in three dimensions we
find an upper bound on the scattering length a. This is simi-
lar to the “triviality bound” for the Higgs scalar in the stan-
dard model of elementary particle physics. As a conse-
quence, the scattering length is at most of the order of the
inverse effective ultraviolet cutoff A~', which indicates the
breakdown of the pointlike approximation for the interaction
at short distances. Typically, A~! is of the order of the range
of the van der Waals interaction. For dilute gases, where the
interparticle distance n~!/3 is much larger than A~!, we there-
fore always find a small concentration c=an'3. This pro-
vides for a small dimensionless parameter, and perturbation
theory in ¢ becomes rather accurate for most quantities. For
typical experiments with ultracold bosonic alkali atoms one
has A™'=1077 cm, n'?=10* cm™, such that ¢ <1072 is re-
ally quite small.

Bosons with pointlike interactions can also be employed
for an effective description of many quantum phase transi-
tions at zero temperature, or phase transitions at low tem-
perature 7. In this case, they correspond to quasiparticles,
and their dispersion relation may differ from the one of non-
relativistic bosons, w=-2”ﬁ. We describe the quantum phase
transitions for a general microscopic dispersion relation,
where the inverse classical propagator in momentum and fre-
quency space takes the form G,'=—Sw—Vw?+p? (in units
where the particle mass M is set to 1/2). We present the
quantum phase diagram at 7=0 in dependence on the scat-
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tering length a and a dimensionless parameter &~ V/S?,
which measures the relative strength of the term quadratic in
 in Gal. In the limit S$—0 (0— ) our model describes
relativistic bosons.

A nonzero temperature 7" introduces a new scale into the
problem. This modifies the effective scaling behavior. In par-
ticular, near the critical temperature 7., where the Bose-
Einstein condensate dissolves, the long distance physics can
be described by classical statistics. The nonrelativistic
bosons belong to the universality class of the three-
dimensional O(2) model, with the associated universal criti-
cal exponents. The flow equations in the classical regime are
well studied and lead, for an appropriate level of the trunca-
tion, to very accurate results for the critical behavior [8,10].
Here we use a rather simple truncation, but we obtain nev-
ertheless a reasonable description of the nonanalytical criti-
cal behavior. However, the temperature range for the appli-
cability of the universal critical behavior is found to be very
small for the small values of ¢ encountered for the dilute
gases.

The value of the critical temperature for interacting
bosons cannot be computed within the Bogoliubov theory.
We find a temperature shift AT,./T.=2.1an"?, compared to
the free theory. In contrast to other estimates, which only
take the classical fluctuations into account (only the zero
Matsubara frequency), we include the full quantum statistics
(all Matsubara frequencies). We finally compute the sound
velocity at 7=0. This quantity agrees to high precision with
the Bogoliubov result. For a known scattering length a, it can
therefore be used as a precise measure of the density.

Our paper is organized as follows. As a starting point, we
specify our microscopic model in Sec. II. In the following
Sec. III, we recall the method of functional renormalization,
explain our truncation of the effective average action, and
also describe the projection of the exact flow equation onto
that truncation. The flow equations in the vacuum are inves-
tigated in Sec. IV and an upper bound for the scattering
length is derived. In Sec. V we explain our method to deter-
mine the density and also study the quantum phase diagram
at zero temperature. The effects of a nonvanishing tempera-
ture on the condensate are taken into account in Sec. VI,
while Sec. VII gives our result for the critical temperature in
dependence of the interaction strength. Finally, we investi-
gate the sound velocity and draw conclusions in Secs. VIII
and IX.

Appendixes A and B contain a motivation of our trunca-
tion in terms of a systematic derivative expansion and an
analysis of symmetries constraining the form of the effective
action. Our explicit results for the flow equations of the ef-
fective potential and the kinetic coefficients are shown in
Appendixes C and D. Appendix E analyzes the dispersion
relation.

II. MICROSCOPIC MODEL

Our microscopic action describes nonrelativistic bosons,
with an effective interaction between two particles given by
a contact potential. It is assumed to be valid on length scales
where the microscopic details of the interaction are irrelevant
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and the scattering length is sufficient to characterize the in-
teraction. The microscopic action reads

S[¢]=f{¢*(5<9¢— Vﬂi—A—U)¢+%>\(¢*¢)2}, (1)

uT
x=(7,%), f=f ded3x. (2)
x 0

The integration goes over the whole space as well as over the
imaginary time 7, which at finite temperature is integrated on
a circle of circumference 8=1/T according to the Matsubara
formalism. We use natural units i=kz=1. We also scale time
and energy units with appropriate powers of 2M, with M the
particle mass. In other words, our time units are set such that
effectively 2M =1. In particular, we use the rescaled chemi-
cal potential o=2Mu and T stands for the temperature mul-
tiplied by 2M. In these units time has the dimension of
length squared. For standard nonrelativistic bosons one has
V=0 and S=1, but we also consider quasiparticles with a
more general dispersion relation described by nonzero V.
After Fourier transformation, the kinetic term reads

with

f & (@)(iSqo + Vag+ ) (q), (3)
q

q=(q0.9), f:J f fﬂ= fd3q. )
q q0 v 4 q

At nonzero temperature, the frequency go=w,=27Tn is dis-
crete, with

with

1
(2m)?

f =T , (5)
q

0 n=—0

while at zero temperature this becomes

1f°°
=— dqy. (6)
LO 2m) q0

The dispersion relation encoded in Eq. (3) obtains by ana-
Iytic continuation,

Sw+ Va* =g 12M. (7)

In this paper, we consider homogeneous situations, i.e., an
infinitely large volume without a trapping potential. Many of
our results can be translated to the inhomogeneous case in
the framework of the local density approximation. One as-
sumes that the length scale relevant for the quantum and
statistical fluctuations is much smaller than the characteristic
length scale of the trap. In this case, our results can be trans-
ferred by taking the chemical potential position dependent in
the form o(x)=2M(u—V,(x)), where V,(x) is the trapping
potential.

The microscopic action (1) is invariant under the global
U(1) symmetry, which is associated to the conserved particle
number
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¢ — . (8)

On the classical level, this symmetry is broken spontane-
ously when the chemical potential ¢ is positive. In this case,
the minimum of —a¢*¢+%)\(¢*¢)2 is situated at ¢"p=7.
The ground state of the system is then characterized by a
macroscopic field ¢y, with ¢ydo=py=7. It singles out a di-
rection in the complex plane and thus breaks the U(1) sym-
metry. Nevertheless, the action itself and all modifications
due to quantum and statistical fluctuations respect the sym-
metry. For V=0 and S=1, the situation is similar for Galilean
invariance. At zero temperature, we can perform an analytic
continuation to real time and the microscopic action (1) is
then invariant under transformations that correspond to a
change of the reference frame in the sense of a Galilean
boost. It is easy to see that in the phase with spontaneous
U(1) symmetry breaking also the Galilean symmetry is bro-
ken spontaneously: A condensate wave function that is ho-
mogeneous in space and time, would be represented in mo-
mentum space by

$(@,p) = do(2m)* 87 (p) Sw). )

Under a Galilean boost transformation with a boost velocity
2q, this would transform according to

$lw.p) = ¢lo-¢".p - §) = ¢(2m* 67 (p - ) dw- ).
(10)

This shows that the ground state is not invariant under such
a change of reference frame. This situation is in contrast to
the case of a relativistic Bose-Einstein condensate, like the
Higgs boson field after electroweak symmetry breaking. A
relativistic scalar transforms under Lorentz boost transforma-
tions according to

d(p*) — ((A™)hpY), (11)

such that a condensate wave function
Bo(2m)* 3V (pt) — p(2m)* V(AT ep") = pp(2m)* 8V (p*)
(12)

transforms into itself. We will investigate the implications of
Galilean symmetry for the form of the effective action in
Appendix A. An analysis of general coordinate invariance in
nonrelativistic field theory can be found in Ref. [11].

III. NONPERTURBATIVE FLOW EQUATIONS
A. Functional renormalization group and flow equation

We start with a functional integral representation of the
grand canonical partition function

Z=Tr e'B(H"“N)sz)(e'S[X]. (13)

In this paper, we work with the formalism of quantum sta-
tistics for many particle problems. In contrast to classical
statistics, the fields y(7,x) are parametrized by a Euclidean
time variable 7 in addition to the space variable x. This Eu-
clidean time is wrapped up on a circle of circumference (8
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=%, such that the fields y(7,x) live on a (generalized) torus.

The microscopic action S[x] is of a form similar to Eq. (1).
We generalize Eq. (13) by introducing a source J for the
fields x and write

Z[J]:eu/[]]:J'D)(e_s[X]ﬂr/X. (14)

The n-point correlation functions can now be obtained by
functional differentiation of Z[J], while W[J] generates the
connected n-point functions. For example, the expectation
value of y is obtained from

() = () = i‘f[—()f (15)

The thermodynamic potential ® associated with the grand
canonical partition function is given by

1 1
(I)G=—IEIHZ=—EW[J=O]. (16)

The effective action I'[ ¢] is defined as

I'l¢]= (— W]+ f J¢) : (17)
o J=J o[ 4]
where J,, is obtained by the inversion of
SWLJ]
— =¢. (18)
ol |y

ex

It is straightforward to show ‘%M=J. In the absence of a
source J, we obtain for the thermodynamic potential of the
grand canonical partition function

B(I)G = l_‘min = F[¢eq] ’ (19)
where ¢, is defined by
or
ald] =0. (20)
6b |49,

The effective action I'[¢] is the generating functional of the
one-point irreducible correlation functions and in a sense, its
precise knowledge corresponds to the solution of the theory.

Our method determines I'[ ¢] with the help of an exact
flow equation. For that purpose, we include an infrared cut-
off term AS,[x] in Eq. (14) and define

eWilJl = f Dxe—S[X]—ASk[X]‘FJ.JX. (21)
In Fourier space, the cutoff term reads

AS[x]= f R@)x* (@)x(q), (22)
q

and has the properties
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Ri(q) — > (k— ),

R(q) =K (q—0),

Ri(g) =0 (k—0). (23)

The effective average action is defined as a modified Leg-
endre transform of W,

- AS[ 4] (24)

J=J o

I (— Wi+ | ,(,,)

It has the important property, that it interpolates between the
microscopic action S[¢] and the full effective action I'[ ¢],

Il¢]—Sl¢] (k—=),

Lil¢]l = TTe] (k—0). (25)

In physical terms I';[ @] is the effective action in the presence
of an infrared cutoff at a momentum scale k. Only fluctua-
tions with momenta larger than k are included. For example,
a finite volume V~# of the system under consideration
would lead to a situation that is described by I';[ ¢].

Our method to determine I';[ ¢] (and for k— 0 also I'[ ¢])

relies on the existence of an exact flow equation [7,8]
1
&krk = ETI(FI(CZ) + Rk)_l(ykRk. (26)

Here the trace operation includes a momentum integration
I 4 as well as a sum over internal indices i=1,2, according to
the two real components in the decomposition ¢@(x)
=+[¢(x)+ih(x)]. On the right-hand side of Eq. (26), T'\")
is the second functional derivative of I';[ ¢],

) o
I .
so—a) “sa )

It is therefore a matrix in internal and momentum space.
Correspondingly, Ry in Eq. (26) stands for Ry(g)5;6(q—p).
The flow equation (26) describes the evolution of the effec-
tive average action with the cutoff scale k.

The functional differential equation (26) is hard to be
solved exactly. In principle, I'; is described by infinitely
many couplings. We will use here an approximation with
only a finite number of couplings. This is achieved by an
ansatz for a specific form of I';[ ¢]. In the absence of anoma-
lies the effective action I'[¢] is invariant under the same
symmetries as the microscopic action S[¢]. This holds also
for the effective average action I'}[ ¢], provided that the cut-
off term AS,[ ¢] is also invariant. Our ansatz will respect all
symmetries of the classical action.

TPLoDi(g.p) = 27)

B. Truncation

Approximate solutions of the exact flow equations are ob-
tained from a truncation of the general form of the effective
action. We use here terms with up to two derivatives and
truncate
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= f (3 (50.— KA - VD) B4 2V(0— o) B (3, - )P

+U(p,0)}, (28)

with p=¢*¢. This particular form is motivated by a more
systematic derivative expansion and an analysis of symmetry
constraints (Ward identities) in Appendix A. We introduce

the renormalized fields d):ffj/z(ﬁ p=Ap, the renormalized
kinetic coefficients S =§, V=:—‘f, and we express the effective
potential in terms of the renormalized invariant p, with

U(p,0) = U(p, o). (29)

This yields

= f {¢*(S9,— A= VA p+2V(o - 00) (9, - A)

+ U(p,0)}. (30)

For the effective potential, we use an expansion around the
k-dependent minimum py(k) of the effective potential and the
k-independent value of the chemical potential oy, that corre-
sponds to the physical particle number density n. We deter-
mine py(k) and o by the requirements

(0,U)(po(k),00) =0 for all k,

= (0,U)(py,09)=n at k=0. (31)

More explicitly we take a truncation for U(p, o) of the form
U(p, o) = Ulpy, o) — ni(a = o) + [m* + alo = a)1(p = po)

+ 3Dk B = 0o o) (32)

In the symmetric phase we have p,=0, while in the phase
with spontaneous symmetry breaking, we have m?=0. In
summary, the flow of T’ for fixed o=0y, is described by four
running renormalized couplings py, A, S, and V. In addition,

we need the anomalous dimension 7=—kd, In A. A computa-
tion of n requires a flow equation of n;, which involves the
couplings linear in o— oy, namely, a and . The pressure is
calculated by following the k dependence of the height of the
minimum p,=—U(p,, oy). All couplings py.\.S,V.Anpppc.B
depend on k and 7. The physical renormalized couplings are
obtained for k— 0. They specify the thermodynamic poten-
tial U(py, o) as well as suitable derivatives of the potential
and the correlation function.

The “initial values” at the scale k=A are determined by
the requirement

Lal¢]= 5[], (33)

using the microscopic action S[¢] in Eq. (1). This implies
the initial values
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por=np= 0(00)og/Ny,  my = 6(— o)y,

Ay=1, Br=0. (34)

We remain with the free microscopic couplings \,, Sy=S,,

aA:—l,

V,=V,. The coupling A, will be replaced by the scattering
length a in the next section. We further choose units for 7
where S, =1. Then our second free coupling is

S = VA% (35)

In consequence, besides the thermodynamic variables 7" and

g, our model is characterized by two free parameters a and

v. Often, we will concentrate on “standard” nonrelativistic

bosons with a linear 7 derivative, such that 0=0. The scat-

tering length a remains then the only free parameter. In the

vacuum, where T=n=0, this sets the relevant unit of length.
Finally, we have for the infrared cutoff,

ASk=fg(7’*rk(_ A)‘?’=f d’*"k(— A) . (36)

We choose the optimized cutoff function [12]
rp?) = (2 = p* = m?) 6(k> ~ p* = m?), (37)

where we recall, that m>=0 in the regime with spontaneous
symmetry breaking. It is convenient to work with real fields
&1 2(x), ¢(x):%—[¢1(x)+i¢2(x)], with Fourier components

d’j(ﬂf):J eiqx¢j(Q)=J faei(qoﬂmﬁbj(QU’C;)- (38)
q a0 q

The inverse propagator for the fields ¢ becomes a 2 X 2 ma-
trix in the space of ¢, and ¢,, given by the second functional
derivative of I';. For a real constant background field ¢, (x)

=V2p, ¢,(x)=0 the latter becomes diagonal in momentum
space

IP(g.4") =G (@)dg—q"). (39)
For our truncation one has at o= 0y,
>2 2 ' "
_ + Vg + U +2pU", -Sq
G—l =A<q do p . 20 , ) (40)
S99, g +Vgy+U

Here, primes denote derivatives with respect to p (not p). In
the phase with spontaneous symmetry breaking, the infrared
cutoff in the flow equation (26) adds to the diagonal term in
Eq. (40) a piece A(k*—g?)6(k>—g?). This effectively replaces
¢*—k? in Eq. (26) whenever ¢><k?, thus providing for an
efficient infrared regularization.

C. Nonperturbative flow equations

We project the flow equation of the effective average ac-
tion onto equations for the coupling constants by using ap-
propriate background fields and taking functional deriva-
tives. The flow equation for the effective potential obtains by
using a space- and time-independent background field in Eq.
(26), with t=In(k/A),
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1 _
a,Ul5= kaU|;={= Ef tr(Gp) d)(Ary). (41)

q

The propagator G, is here determined from
_(r, O _[P s P
G,;1:G—1+A< ¢ >:A<~“ N”), (42)
0 7 Py, Py

ﬁn =k + Vqé+ U' +2pU" +2V(0 - 00)q°,

with

Py == Py =Sqy+2V(0— a)qy,

Pp=k+ Vgt + U +2V(o - 00)q". (43)

Again primes denote a differentiation with respect to p. We
switch to renormalized fields by making a change of vari-
ables in the differential equation (41),

&,U|p=§+ npU’. (44)

We can now derive the flow equations for the couplings p(k)
and \(k) by appropriate differentiation of Eq. (44) with re-
spect to p. The flow equation for U is given more explicitly
in Appendix C. Differentiation with respect to o yields the
flow of ny,a,8. We use in detail

d d
N ;t(ﬂ,z,U)(Po,Uo)
= (320,U)(py, 70) + (3,U) (po, 0) 340
= T llppoy + 27N (45)

where we recall that JZU =0 in our truncation. To determine
the flow equation of py, we use the condition that U’(p,)
=0 for all k, and therefore

d
d_t(ﬁpU)(Po,U'o) =0,
(3,0,U)(po- ) + (3U)(po» 30) dypy = 0,

1 1
dipo=— X(ﬁpﬁtU)(po,cro) = —7po— Xr?,{ . (46)

P09

We show the flow of N\ and p, in Figs. 1 and 2 for n=1, T
=0 and different values of N\, (with 7'=0). The change in p,
is rather modest. This will be different for nonzero tempera-
ture.

The flow of n, is given by

d d
“np=(=3,U)(po,
dt”k dt( +U)(po, 0)
== ((90-(9[[]) (pO’ (TO) - (apaO'U) (PO’ 0-0) (9tp0
= - ‘90§|p0,0'0 - aﬁlpo’ (47)

and similar for the flow of & and g,
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FIG. 1. (Color online) Flow of the interaction strength N with
the scale parameter k for different start values, corresponding to
Ay =103 (dotted), N, =0.044 (solid), and A\, =0.0026 (dashed). The
first case is plotted for zero density (n=0) only, while the last two
cases are plotted also for unit density (n=1). The curves n=0 and
n=1 are identical within the plot resolution. The solid and the
dashed curve correspond to a=1073 and a=107*, respectively.

d d
Ea = E(ﬁpau'U)(pOa O-())

= (apaa'ﬂtU)(p@a-O) + (af)ao'U)(pO’ UO)(?IPO
= 9y05dl gy + M+ BP0+ 3,p0)

d d
E,3= d_t(afﬁgU)(Po,Uo)

= (di&U&,U)(po, op) + (azl%U)(Po’ T0)d,po
= 52054l pyoy + 2785 (48)

where the last equation holds since &Za(,U =0 in our trunca-
tion.

For a derivation of 7=—(J,A)/A and the flow equations
for S and V, we have to evaluate the flow equation (26) for a
background field depending on g, and ¢. We use an analytic
continuation go=iw and obtain the flow equation for S from

_ 0 o 1)
9(SA) = —iQ ' —— — o,
Jw 5¢2(_ (U,O) 5¢1(C{),0)

w=0

(49)

with four-volume Q:% [ ;. The projection prescription for V
is

Po

0 o In(k)
0.98
0.96
0.94

0.92

0.9

FIG. 2. (Color online) Flow of the minimum of the effective
potential for n=1. The parameters for the solid and the dashed
curves are the same as in Fig. 1.
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A8

In(k)

0.004

0.002

-10 -5 5 n(k)

FIG. 3. (Color online) Flow of the kinetic coefficients A (solid),
S (dashed), and V for a scattering length a=1073, temperature T
=0, and density n=1.

_ d B 8
a(VA)= -Q'—— — AW
IO 5¢b,(~ w,0) S¢s(,0) =0
(50)
and similar for A,
_ d B 8
dA= Q' —— —I, (51)
9P~ 8¢,(0,— p) 5¢,(0,p) 52=0

After the functional differentiation, we evaluate the expres-
sions (49)—(51) at homogeneous background fields. These
calculations are a little intricate, but standard and straightfor-
ward in principle. More explicit flow equations are given in
Appendix D. Eventually, it is always possible to perform the
Matsubara sums and also the spatial momentum integration

analytically. In Fig. 3 we show the flow of A, S, and V at zero
temperature and for density n=1. The kinetic coefficient A

starts on the large scale with A=1, increases a little around
k=n'", and saturates to a constant. In contrast, the coeffi-
cient S starts to decrease after a short period of increase with

A. For very tiny scales k, S would finally go to zero. The
frequency dependence of the propagator is then governed by
the quadratic frequency coefficient V. In three spatial dimen-
sions, however, this decrease of S is so slow that it is not
relevant on the length scales of experiments. This is one of
the reasons why Bogoliubov theory, which neglects the ap-
pearance of V, describes experiments with ultracold bosonic
quantum gases in three dimensions with so much success.
The coefficient V is always generated in the phase with spon-
taneous symmetry breaking [4]. Its k dependence is also
shown in Fig. 3.
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IV. UPPER BOUND FOR THE SCATTERING LENGTH

The vacuum is defined to have zero temperature 7=0 and
vanishing density n=0, which also implies p,=0. The inter-
action strength \ at the scale k=0 determines the four-point
vertex at zero momentum. It is directly related to the scatter-
ing length a for the scattering of two particles in vacuum,
which is experimentally observable. We therefore want to
replace the microscopic coupling A, by the renormalized
coupling a. In our units (2M=1), one has the relation

a:%)x(k:O,T:O,n:O). (52)
The vacuum properties can be computed by taking for 7=0
the limit n — 0. We may also perform an equivalent and tech-
nically simple computation in the symmetric phase by choos-
ing m?(k=A) such that m*(k—0)=0. This guarantees that
the boson field ¢ is a gapless propagating degree of freedom.
We first investigate the model with a linear 7 derivative,
Sa=1, V,=0. Projecting the flow equation (26), we find the
following equations:

&lmZ:O,
)\2> (kz _ m2)3/2
IN=|— | ———06(k> - m?). 53

The propagator is not renormalized, J,5=4,V=3A=0, =0,
d,a=0, and one finds dn,=0. The coupling B is running
according to

(L 1, )w 2 2
&,B—<3a)\ SRR |0 ). (54)

Since B appears only in its own flow equation, it is of no
further relevance in the vacuum. Also, no coupling V is gen-
erated by the flow and we have therefore set V=0 on the
right-hand side of Egs. (53) and (54).

Inserting in Eq. (53) the vacuum values m*=0 and S=1,
we find

k

IN=—5\2. 55
A= (55)
The solution
1
)\(k)=# (56)
—+—(A -k
VT

tends to a constant for k— 0, A\y=\(k=0). The dimensionless

variable N =)‘—Sk goes to zero, when k goes to zero. This shows
the infrared freedom of the theory. For fixed ultraviolet cut-
off, the scattering length

a=—=—", (57)

as a function of the initial value A, has an asymptotic maxi-
mum
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FIG. 4. (Color online) Scattering length a in dependence on the
microscopic interaction strength X, (solid). The asymptotic maxi-
3w .
MUM @y =55 is also shown (dashed).

3

=—, 58
Amax 4A ( )

The relation between a and A, is shown in Fig. 4.

As a consequence of Eq. (58), the nonrelativistic bosons
in d=3 are a “trivial theory” in the sense that the bosons
become noninteracting in the limit A — o, where a — 0. The
upper bound (58) has important practical consequences. It
tells us that whenever the “macrophysical length scales” are
substantially larger than the microscopic length A~!, we deal
with a weakly interacting theory. As an example, consider a
boson gas with a typical interparticle distance substantially
larger than A~!. (For atom gases A~! may be associated with
the range of the van der Waals force.) We may set the units in
terms of the particle density n, n=1. In these units A is large,
say A=10%. This implies a very weak interaction, a=<2.5
X 1073, In other words, the scattering length cannot be much
larger than the microscopic length A~!. For such systems,
perturbation theory will be valid in many circumstances. We
will find that the Bogoliubov theory indeed gives a reliable
account of many properties. Even for an arbitrary large mi-
crophysical coupling (A, — ), the renormalized physical
scattering length a remains finite.

Let us mention, however, that the weak interaction
strength does not guarantee the validity of perturbation
theory in all circumstances. For example, near the critical
temperature of the phase transition between the superfluid
and the normal state, the running of \(k) will be different
from the vacuum. As a consequence, the coupling will vanish
proportional to the inverse correlation length ¢! as T ap-
proaches T., A\~T2&!. Indeed, the phase transition will be
characterized by the nonperturbative critical exponents of the
Wilson-Fisher fixed point. Also for lower-dimensional sys-
tems, the upper bound (58) for A\ is no longer valid—for
example, the running of N\ is logarithmic for d=2. For our
models with V, # 0, the upper bound becomes dependent on
V. It increases for V, >0. In the limit S, — 0, it is replaced
by the well known “triviality bound” of the four-dimensional
relativistic model, which depends only logarithmically on A.
Finally, for superfluid liquids, as “He, one has n~ A3, such
that for a~ A~! one finds a large concentration c.

The situation for dilute bosons seems to contrast with ul-
tracold fermion gases in the unitary limit of a Feshbach reso-
nance, where a diverges. One may also think about a Fesh-
bach resonance for bosonic atoms, where one would expect a
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large scattering length for a tuning close to resonance. In this
case, however, the effective action does not remain local. It
is best described by the exchange of molecules. The scale of
nonlocality is then given by the gap for the molecules, m,,.
Only for momenta c72<m/2u the effective action becomes ap-
proximately local, such that A=m,, for our approximation.
Close to resonance, the effective cutoff is low and again in
the vicinity of a~'.

V. QUANTUM PHASE DIAGRAM
A. Different methods to determine the density

The density sets a crucial scale for our problem. Its pre-
cise determination is mandatory for quantitative precision.
We will discuss two different methods for its determination
and show that the results agree within our precision. For T
=0, we also find agreement with the Ward identity n=p,.

The first method is to derive flow equations for the den-
sity. This has the advantage that the occupation numbers for
a given momentum p are mainly sensitive to running cou-
plings with k’=p>. In the grand canonical formalism, the
density is defined by

Jd 1

St . (59)

P=dy.0=0

n=

We can formally define a k-dependent density n; by

Jd 1

- Ti] == (3,U)(pp.00).  (60)

d=dy,0=0,

ng=

The flow equation for n;, is given in Eq. (47) and the physical
density is obtained for k=0. The term d,{] P00 that enters
Eq. (47) is the derivative of the flow equation (41) for U with
respect to 0. To compute it, we need the o dependence of the
propagator Gy in the vicinity of o,. Within a systematic de-
rivative expansion, we use the expansion of U(p, o) and the
kinetic coefficients Z, and Z, to linear order in (o—o0y), as
described in Appendix A. Here, Z,(p, o) and Z,(p, o) are the
coefficient functions of the terms linear in the 7 derivative
and linear in A, respectively. No reasonable qualitative be-
havior is found, if the linear dependence of Z; and Z, on
(o—0y) is neglected. Also, the scale dependence of a and B
are quite important. The flow equations for « and B can be
obtained directly by differentiating the flow equation of the
effective potential with respect to o and p, cf. Eq. (48). The
situation is more complicated for the kinetic coefficients
Z\"=0,Z,(py.00) and Z=3,Z,(py. o). Their flow equa-
tions have to be determined by taking the o derivative of the
flow equation for Z,(p, o) and Z,(p, ). As discussed in Ap-
pendix A, we use in this paper the approximation Z(l")=Zz”)
=2V=2V,(py, o).

As a check of both our method and our numerics, we also
use another way to determine the particle density. This sec-
ond method is more robust with respect to shortcomings of
the truncation, but less adequate for high precision calcula-
tions as needed, e.g., to determine the condensate depletion.
The second method determines the pressure p=—U(p,, 0y) as
a function of the chemical potential o,. Here, the effective
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FIG. 5. (Color online) Pressure and density as a function of the
chemical potential at 7=0. We use three different methods: n
==0yU i from the flow equation (triangles), n=p, as implied by
Galilean symmetry (stars), and n=4d,p, where the pressure p=—U
(boxes) was obtained from the flow equation and phenomenologi-
cally fitted by p=56.56 (solid lines). Units are arbitrary and we use
a=3.4x10" A=10°. We find perfect agreement of the three
determinations.

potential is normalized by U(py=0,0,)=0 at T=0, n=0. The
flow of the pressure can be read off directly from the flow
equation of the effective potential and is independent of the
couplings a and B. We calculate the pressure as a function of
o and determine the density nzﬁp by taking the o deriva-
tive numerically. It turns out that p is in very good approxi-
mation given by p=co?, where the constant ¢ can be deter-
mined from a numerical fit. The density is thus linear in o.

At zero temperature and for 0=0, we can additionally use
the Ward identities connected to Galilean symmetry, which
yield n=p,. We compare our methods in Fig. 5 and find that
they give numerically the same result. We stress again the
importance of a reliable method to determine the density,
since we often rescale variables by powers of the density to
obtain dimensionless variables.

B. Condensate and depletion density for 7=0

We want to split the density into a condensate part n. and
a density for uncondensed particles or “depletion density”
n,=n—n.. For our model the condensate density is given by
the “bare” order parameter

nczﬁO:ﬁO(kzo)' (61)

In order to show this, we introduce occupation numbers n(p)
for the modes with momentum p with normalization

an(ﬁ):n. (62)

One formally introduces a p-dependent chemical potential
o(p) in the grand canonical partition function

¢ Tminl0] = Ty o=BLH- 507, (63)

with three-dimensional volume ;= [;. Then one can define
the occupation numbers by
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n(p) =

(64)

- So(p) :393

This construction allows us to use k-dependent occupation
numbers by the definition

¢:¢0~0'(1;)=0'0

@)= - ———Lrlg.0] (65)

S0 (P) 593

One can derive a flow equation for this occupation number
n(p) [13] as follows:

d=dp.0(p)=0,

6 1
am(p)= ————=——Tr{(T® +R,)"'9,R
in(p) 25 () B {( W R} oo
dJd
(dpo).  (66)
(9p 50'(17) BQ3 ¢0,0'0
We split the density occupation number into a

S-distribution-like part and a depletion part, which is regular
in the limit p—0,
n(p) =11 8p) +ngi(p). (67)

One can see from the flow equation for n,(p) that the only
contribution to Jn,., comes from the second term in Eg.
(66). Within a more detailed analysis [13] one finds

TN j = OkPo k- (68)

We therefore identify the condensate density with the bare
order parameter

=Py = .- (69)

=D

Correspondingly, we define the k-dependent quantities

ek =Pojs  Mk=Nep+Ngps (70)

and compute n;=n,4(k=0) by a solution of its flow equation.

Even at zero temperature, the repulsive interaction con-
nected with a positive scattering length a causes a portion of
the particle density to be outside the condensate. From di-
mensional reasons, it is clear that n;/n=(n-n,)/n should be
a function of an'’. The prediction of Bogoliubov theory or,
equivalently, mean field theory, is n,/ n=%—7(an” 332, We
may determine the condensate depletion from the solution to
the flow equation for the particle density, n=n,_,, and n,
=po=po(k=0).

From Galilean invariance for 7=0 and 0v=0, it follows
that

na _ Po~ Po Po ]_l_’ (71)
n Po A

with A=A(k=0). This gives an independent determination of
n.. In Fig. 6 we plot the depletion density obtained from the
flow of n and p, over several orders of magnitude. Apart
from some numerical fluctuations for small an!’?, we find
that our result is in full agreement with the Bogoliubov pre-
diction.
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FIG. 6. (Color online) Condensate depletion (n—n.)/n as a
function of the dimensionless scattering length an'/3. For the solid
curve, we vary a with fixed n=1; for the dashed curve we vary the
density at fixed a=10"* The dotted line is the Bogoliubov result
(n—n.)/ n—3—(an”3)3/2 for reference. The fluctuations in the solid
curve for small an'? are due to numerical uncertainties. Their size
demonstrates our numerical precision.

C. Quantum phase transition

For T=0 a quantum phase transition separates the phases
with py=0 and py>0. In this section, we investigate the
phase diagram at zero temperature in the cube spanned by
the dimensionless parameters 6:%, a=al, and J:Z—‘Z:AZ.
This goes beyond the usual phase transition for nonrelativis-
tic bosons, since we also include a microscopic second 7
derivative ~0, and therefore models with a generalized mi-
croscopic dispersion relation. For nonvanishing ¢ (i.e., for a
nonzero initial value of V| with V,=V;=0 in Appendix A),
the Galilean invariance at zero temperature is broken explic-
itly. For large 0, we expect a crossover to the “relativistic”
0O(2) model. If we send the initial value of the coefficient of
the linear 7 derivative S, to zero, we obtain the limiting case
0 —oo. The symmetries of the model are now the same as
those of the relativistic O(2) model in four dimensions. The
space-time rotations or Lorentz symmetry replace Galilean
symmetry.

It is interesting to study the crossover between the two
cases. Since our cutoff explicitly breaks Lorentz symmetry,
we investigate in this paper only the regime v'< 1. Detailed
investigations of the flow equations for o'— can be found
in the literature [8,10,14]. The phase diagram in the G—0
plane with a=1 is shown in Fig. 7. The critical chemical
potential first increases linearly with ¢ and then saturates to a
constant. The slope in the linear regime as well as the satu-
ration value depend linearly on a for a<<1.

At T=0, the critical exponents are everywhere the mean
field ones (=0, v=1/2). This is expected: It is the case for

o /A?
0.2
po >0
0.15
0.1
po=0
0.05
0.2 0.4 0.6 0.8 17

FIG. 7. Quantum phase diagram in the 6—0 plane for a=1.
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a/A?

po >0

o o o o
N Oy 0 N

FIG. 8. (Color online) Quantum phase diagram in the G—a
plane for o=1 (dotted), =0.01 (dashed), and =0 (solid).

0=0 [4,15], and for o'= the theory is equivalent to a rela-
tivistic O(2) model in d=3+1 dimensions. This is just the
upper critical dimension of the Wilson-Fisher fixed point
[16].

From Sec. III we know that for 0=0 the parameter a is
limited to 5<3fx2.356. For =0 and a small scattering
length a—0, a second order quantum phase transition di-
vides the phases without spontaneous symmetry breaking for
o< 0 from the phase with a finite order parameter p,>0 for
o>0. It is an interesting question, whether this quantum
phase transition at 0=0, 0'=0 also occurs for larger scattering
length a. We find in our truncation that this is indeed the case
for a large range of a, but not for > 1.55. Here, the critical
chemical potential suddenly increases to large positive val-
ues as shown in Fig. 8. For 0> 0 this increase happens even
earlier. (For a truncation with V; =0, the phase transition
would always occur at o=0.) We plot the &—a plane of the
phase diagram for different values of ¢ in Fig. 8. The form of
the critical line can be understood by considering the limits
0—0 as well as a—0.

For a fixed chemical potential, the order parameter p, as a
function of a goes to zero at a critical value a,. as shown in
Fig. 9. This happens in a continuous way and the phase tran-
sition is therefore of second order. For 0—0, we find a,
=1.55A"". We emphasize, however, that a.. is of the order of
the microscopic distance A~!. Universality may not be real-
ized for such values, and the true phase transition may de-
pend on the microphysics. For example, beyond a critical
value for the repulsive interaction, the system may form a
solid. Ultracold atom gases correspond to metastable states
which may lose their relevance for a— A~!'. For >0 and

Po
400

300
200

100

0.0005 0.001 0.0015 0.002"

FIG. 9. Quantum phase transition for fixed chemical potential
o=1, with A=10°. The density py=n as a function of the scattering
length a goes to zero at a critical a.A=1.55, indicating a second
order quantum phase transition at that point.
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FIG. 10. (Color online) Density n/ o> (solid) and order param-
eter py/o?? (dashed) as a function of the temperature 7/c. The
units are arbitrary with a=2X 107 and A=10°. The plot covers
only the superfluid phase. For higher temperatures, the density is
given by the thermal contribution n=ny only.

o< A? the phase transition occurs for a,A <1 such that uni-
versal behavior is expected.

VI. TEMPERATURE DEPENDENCE OF CONDENSATE

So far, we have only discussed the vacuum and the dense
system at zero temperature. A nonvanishing temperature 7'
will introduce an additional scale in our problem. For small
T<n*3 we expect only small corrections. However, as T
increases the superfluid order will be destroyed. Near the
phase transition for T=T, and for the disordered phase for
T>T,, the characteristic behavior of the boson gas will be
very different from the 7— 0 limit.

For T>0 the particle density n receives a contribution
from a thermal gas of bosonic (quasi)particles. It is no longer
uniquely determined by the superfluid density p,. We may
write

n=py+nr, (72)

and observe that ny=0 is enforced by Galilean symmetry
only for 7=0, V,=0. The heat bath singles out a reference
frame, such that for 7>0 Galilean symmetry no longer
holds. In our formalism, the thermal contribution n; appears
due to modifications of the flow equations for 7# 0. We start
for high k with the same initial values as for 7=0. As long as
k> =T the flow equations receive only minor modifications.
For k= #T or smaller, however, the discreteness of the Mat-
subara sum has important effects. We plot in Fig. 10 the
density as a function of T for fixed o=1.

In Fig. 11 we show n(o), similar to Fig. 5, but now for
different a and 7. For T=0 the scattering length sets the only
scale besides n and o, such that by dimensional arguments
a’*o=f(a’n). Bogoliubov theory predicts

flx)= 87Tx<1 + 3—,2_x1/2> ) (73)
3N
The first term on the right-hand side gives the contribution of
the ground state, while the second term is added by fluctua-
tion effects. For small scattering length a, the ground state
contribution dominates. We have then o~a for n=1 and
o/n can be treated as a small quantity. For T# 0 and small a
one expects o=g(T/n*3)an. The curves in Fig. 11 for T=1
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0.001 0.002 0.003 0.004 0.005

FIG. 11. (Color online) Density n for different temperatures and
scattering length. We plot n(o) in arbitrary units, with A=10%, and
for a scattering length a=2X10"* (solid and dotted), a=10"*
(dashed and dashed-dotted). The temperature is 7=0 (solid and
dashed) and T=1 (dotted and dashed-dotted).

show that the density, as a function of o, is below the curve
obtained at 7=0. This is reasonable, since the statistical fluc-
tuations now drive the order parameter p, to zero. At very
small o, the flow enters the symmetric phase. The density is
always positive, but for simplicity, we show the density as a
function of o in Fig. 11 only in those cases where the flow
remains in the phase with spontaneous U(1) symmetry
breaking.

For temperatures above the critical temperature, the order
parameter p, vanishes at the macroscopic scale and so does
the condensate density n.=py= % po- The density is now given

by a thermal distribution of particles with nonzero momenta.
Up to small corrections from the interaction ~aT, it is de-
scribed by a free Bose gas,

3/2
n= ng(eﬁ”), (74)

with the “Bose function”

©

=— | dxw' .
gP(Z) I‘(p) 0 XX Z—lex_l

(75)
In Fig. 12 we show the dimensionless order parameter py/n
as a function of the dimensionless temperature 7/n*>. This
plot shows the second order phase transition from the phase
with spontaneous U(1) symmetry breaking at small tempera-
tures to the symmetric phase at higher temperatures. The
critical temperature 7, is determined as the temperature,

po/n

2 4 6 8 o7/

FIG. 12. Order parameter py/n as a function of the dimension-
less temperature T/(n*3) for scattering length a=10"*. Here, we
varied T keeping o fixed. Numerically, this is equivalent to varying
o with fixed T.

PHYSICAL REVIEW A 77, 053603 (2008)

A= po/ne.
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0.95
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FIG. 13. Order parameter divided by the condensate density A
=py/n,, as a function of the dimensionless temperature T/(n*?3),
and for scattering length a=10"*. Here, we varied T keeping o
fixed. Numerically, this is equivalent to varying o with fixed 7. The
plot covers only the phase with spontaneous symmetry breaking.
For higher temperatures, the symmetric phase has py=n.=0. The
divergence of A for T— T, reflects the anomalous dimension 7 of
the Wilson-Fisher fixed point.

where the order parameter just vanishes—it is investigated in

the next section. Since we find (A—1)<1, the condensate

fraction n./n=py/n=py/(An) as a function of T/n*? re-

sembles the order parameter p,/n. We plot A as a function of
T/n?? in Fig. 13. Except for a narrow region around T, the
deviations from one remain indeed small. Near 7. the gradi-

ent coefficient A diverges according to the anomalous dimen-

sion A~ &%, with 7 the anomalous dimension. The correla-
tion length £ diverges with the critical exponent v, é~|T
—T.[™, such that

A~|T-T] ™. (76)

Here, » and v are the critical exponents for the Wilson-
Fisher fixed point of the classical three-dimensional O(2)
model, 7=0.0380(4), v=0.671 55(27) [8,10,17].

In Fig. 14 we plot py/n as a function of the chemical
potential o for different temperatures and scattering lengths.
We find that py/n=1 is indeed approached in the limit T
— 0, as required by Galilean invariance. All figures of this

po/n

0.001 0.002 0.003 0.004 0.005"

FIG. 14. (Color online) Order parameter divided by the density,
po/n, as a function of the chemical potential. We use arbitrary units
with A=103. The curves are given for a scattering length a=2
X 107* (solid and dotted), a=10"* (dashed and dashed-dotted), and
temperature 7=0.1 (solid and dashed) and T=1 (dotted and dashed-
dotted). At zero temperature, Galilean invariance implies py=n,
which we find within our numerical resolution.
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FIG. 15. Dimensionless critical temperature T,/ (n*?) as a func-
tion of the dimensionless scattering length an'”® (points). We also
plot the linear fit AT,./T.=2.1an' (solid line).

section are for 0=0. The modifications for v # 0 are mainly
quantitative, not qualitative.

VII. CRITICAL TEMPERATURE

The critical temperature 7, for the phase transition be-
tween the superfluid phase at low temperature and the disor-
dered or symmetric phase at high temperature depends on the
scattering length a. By dimensional reasoning, the tempera-
ture shift AT.=T.(a)-T.(a=0) obeys AT./T.~an'3. The
proportionality coefficient cannot be computed in perturba-
tion theory [18]. It depends on 0 and we concentrate here on
0=0. Monte Carlo simulations in the high temperature limit,
where only the lowest Matsubara frequency is included,
yield AT,./T.=1.3an'? [19]. Within the same setting, renor-
malization group studies [20,21] yield a similar result (for
composite bosons see Ref. [22]). Near T, the long wave-
length modes with momenta p*><<(7T)? dominate the “long
distance quantities.” Then a description in terms of a classi-
cal three-dimensional system becomes valid. This “dimen-
sional reduction” is achieved by “integrating out” the non-
zero Matsubara frequencies. However, both AT,/ T, and n are
dominated by modes with momenta p>=~ (#T.)> such that
corrections to the classical result may be expected.

We have computed 7, numerically by monitoring the zero
of py, as shown in Fig. 12, py(T—T,)—0. Our result is
plotted in Fig. 15. In the limit a— 0 we find for the dimen-
sionless critical temperature T,/ (n*?)=6.6248, which is in
good agreement with the expected result for the free theory
T,/ (n*?)=—"~=6.6250. For the shift in 7, due to the finite

. [ LG .
interaction strength, we obtain
AT.
T‘:Kanm, k=2.1. (77)

We expect that the result for « depends on the truncation and
may change somewhat if additional higher order couplings
are included.

VIII. SOUND VELOCITY

The macroscopic sound velocity vg is a crucial quantity
for the hydrodynamics of the gas or liquid. It is accessible to
experiment. As a thermodynamic observable, the adiabatic
sound velocity is defined as
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1

M on (78)

2
US=

s
where M is the particle mass (in our units 1/M=2), p is the

pressure, n is the particle density, and s is the entropy per
particle. It is related to the isothermal sound velocity vy by

1({ 9 d
(_p )=U2T+ 2_p

V=
M\ on oT

p

JT
N T
;T

on

ﬂ"
on

’
s

(79)

n n

where we use our units 2M =1. One needs the “equation of
state” p(T,n) and

S 1dp
Tn)=—= ——| . 80
s(Tom) N ndT|, (80)
By dimensional analysis, one has
53 T 1/3
p=n""Fltc), t c=an'"”, (81)

= _’
n2/3

with F(0,c)=4me (in Bogoliubov theory), and F(r,0)

=({%§%t5/ 2 (free theory), such that for small c,
£(5/2)
= Wtsn + g(t)c. (82)

At zero temperature the second term in Eq. (79) vanishes,
such that v¢=v7. For the isothermal sound velocity one has

9 9, on| \™!
o 2 22_19(_). (83)
on | r do|r\ do|r
We can now use
J dU,;
o =— =1~ _ 5 Ulpy) =1, (84)
Jdo T do
and infer
dlnn\™!
Jo

One may also define a microscopic sound velocity cg, which
characterizes the propagation of (quasi)particles. At zero
temperature, where we can perform the analytic continuation
to real time, we can calculate the microscopic sound velocity
from the dispersion relation w(p) (with p=|p|). In turn, the
dispersion relation is obtained from the effective action by
setting det(G™')=0, where G~! is the full inverse propagator.
We perform the calculation explicitly in Appendix E and find

SZ
cit=——+V. (86)
2Npo

The Bogoliubov result for the sound velocity is in our units
cs=2\py = 16man. (87)

In three dimensions, the decrease of S is very slow and the
coupling V remains comparatively small even on macro-
scopic scales, cf. Fig. 3. We thus do not expect measurable
deviations from the Bogoliubov result for the sound velocity
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FIG. 16. (Color online) Dimensionless sound velocity ¢,/ (n'"?)

at zero temperature, as a function of the scattering length an'’3.
Within the plot resolution the curves obtained by varying a with
fixed n, by varying n with fixed a, and the Bogoliubov result, ¢,
=\167(an)"?, coincide.

at T=0. In Fig. 16, we plot our result over several orders of
magnitude of the dimensionless scattering length and, in-
deed, find no deviations from Bogoliubov’s result.

We finally show that for 7=0 the macroscopic and micro-
scopic sound velocities are equal, vg=vy=cg. For this pur-
pose, we use

on d dpo
—| == —(3,U(py)) =~ F2U(py) — 3,3,U(po) .
Jo , dO'( o (pO)) o (pO) pYo (pO) dO'

(88)
From the minimum condition U =0, it follows

% — _P_a IU @ (89)

do d‘Z)U TN
Combining this with the Ward identities from Appendix A,
namely, &(ZTU =-2Vp, and a=4,d,U=-S§, valid at T=0, it fol-
lows that the macroscopic sound velocity equals the micro-
scopic sound velocity

v3(T=0)=c3. (90)

IX. CONCLUSIONS

The use of functional renormalization yields a quantita-
tive description of the whole phase diagram for dilute non-
relativistic bosons in three dimensions. This can describe a
gas of ultracold bosonic atoms. More generally, our results
can also be applied to quantum phase transitions or low tem-
perature phase transitions, whenever the most relevant exci-
tations correspond to bosonic quasiparticles. For this reason
we deal with a general dispersion relation, involving in the
classical propagator terms linear and quadratic in the fre-
quency. As a function of temperature 7 and effective chemi-
cal potential o, we have computed the pressure p, the density
n, condensate p, superfluid density p,, and the sound veloc-
ity cg, in dependence on two system parameters, namely, the
scattering length a and a dimensionless coupling 0" param-
etrizing the classical dispersion relation. For 7=0 and 0=0
we find very good agreement with the Bogoliubov theory. As
T increases, the condensate melts at a critical temperature 7,
which exceeds the one for the free theory by AT./T,
=2.1an'®. We find a second order phase transition in the
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universality class of the three-dimensional O(2) model, with
the associated universal critical exponents.

We have found an upper bound for the scattering length,
which is of the order of the microscopic length scale A~'.
This indicates the breakdown of the pointlike approximation.
For atom gases, A~! typically corresponds to the range of the
van der Waals interaction. The upper bound is a result of
strong fluctuation effects in the presence of a large micro-
scopic interaction. Even for an arbitrary strong microscopic
interaction, the quantum fluctuations reduce the renormalized
coupling, which corresponds to the physical scattering length
in vacuum. For nonrelativistic atoms with pointlike interac-
tions, a strong interaction regime can therefore only be real-
ized at high density, n~ A>. Superfluid liquids, such as *He
are good examples for such systems. First functional renor-
malization studies for such systems have already been per-
formed [23]. Our extended treatment overcomes several
problems of this early approach and we will apply it to “He
in the future. Except for the vicinity of the phase transition,
however, the detailed microphysics may play an important
role, since all relevant length scales are of the order of the
microphysical length scale A~!. Other interesting extensions
concern lower-dimensional systems. We look forward to a
unified functional renormalization description of bosons with
pointlike interactions, for arbitrary dimensions and arbitrary
interaction strength.

APPENDIX A: DERIVATIVE EXPANSION AND WARD
IDENTITIES

We use a derivative expansion for the truncation of the
effective average action with derivative operators up to four
momentum dimensions,

L= f {U(p, o) + %Zmp, )"0, - b7+ %Zz(”’ ?

X4~ )+ o= M1+ 2 Vi(p. o # (- D)
+ (= DB+ Valp, o) ¢"(0,4) b — $(0,4) ]
+ %Vs(p,a)[qﬁ*(— A+ (- A2)¢*]}-

(A1)
Here, we employ the renormalized fields
d) — Al/zg)
p=d'¢p=Ap=A¢'d, (A2)

and coupling functions U, Z;, V;. We fix the wave function

renormalization factor A such that Z;(p,,00)=1. Terms of
the form p(=A)p or p(—é&)p are not included here, since they
are expected to play a subleading role. For a systematic de-
rivative expansion they have to be added—the terms with up
to two derivatives can be found in Ref. [4]. In terms of di-
mensions, the operator d, counts as two space derivatives for
the nonrelativistic model with V=0, while it counts as one
space dimension for the relativistic model with S=0. We
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expand the k-dependent functions U(p, o), Z,(p, o), Z,(p, o),
Vi(p,o), Vo(p,o), and Vi(p,o) around the k-dependent
minimum pg(k) of the effective potential and the
k-independent value of the chemical potential oy that corre-
sponds to the physical particle number density n. For ex-
ample, with Z,=Z,(p,, 0y), one has

Zy(p,0) = Zy + Z{(po, 30) (p = po) + Z17(po, 070) (0 = 7).
(A3)

Let us concentrate on the nonrelativistic model where S=1,
V=0 in the microscopic action. At zero temperature, we can
perform an analytic continuation to real time 7=if. The mi-
croscopic action (1) is then

1| af edicio-o-20s hisa).

(A4)

In addition to space translations, rotations, and time transla-
tions, two further symmetries constrain the possible forms of
the couplings in I'. In order to derive these constraints, we
extend Eq. (A4) to a r-dependent source o(z). First, there is a
semilocal U(1) symmetry of the form

B(1,%) — D ep(1,%),
¢ (1,%) — e (1,%),

(A5)

o— o+ da.

This holds since the combination (—id,— o) acts as a covari-
ant derivative. In addition, we have the invariance under Gal-
ilean boost transformations of the fields

B(1.5) — ¢ (6,0 = T (1,5 = 2G1),

& (1,7) — ¢ (1,7) = T3 §* (1,7 - 241).

While the invariance of the interaction term under this sym-
metry is obvious, its realization for the kinetic term is more
involved. Performing the transformation explicitly, one finds

GNP — FAG- G p+2iGFV b,

(A6)

G idip— $io,p+ G d-2igp*V b, (A7)
such that indeed the combination
id,+A (A8)

leads to this invariance. On the other hand, the validity of the
Galilean symmetry for an effective action guarantees that
only the combination (A8) or powers of this operator act on
¢. An operator of the form (id,+yA) with y# 1 would break
the symmetry. (Note that Ap is also invariant.)

Both the semilocal U(1) symmetry and the Galilean sym-
metry are helpful only at zero temperature. At nonzero tem-
perature, the analytic continuation to real time is no longer
useful. An analog version of the semilocal U(1) transforma-
tion for Euclidean time 7 would involve the imaginary part
of the chemical potential o, which has no physical meaning.
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The dependence of physical quantities on o+0¢™ is not re-
stricted. In addition, the Galilean symmetry is broken explic-
itly by the thermal heat bath.

Combining semilocal U(1) symmetry and Galilean sym-
metry at 7=0, we find that the derivative operators id,, A,
and the chemical potential term (o—o,) are combined to
powers of the operator

D=[-id,— (oc—- 0y — Al (A9)

In addition to powers of that operator acting on ¢, only spa-
tial derivatives of terms, which are invariant under U(1)
transformations such as pAp, may appear. Since the symme-
try transformations act linearly on the fields, the full effective
action I'[ ¢] is also invariant. This also holds for the average
action I';[ @], provided that the cutoff term AS,[ @] is invari-
ant. We can write the effective action as an expansion in the
operator D,

- | {U0<p> #3210~ (0= o) - Al )

1~
+ EV(P)((ﬁ*[_ id,— (0'— 0'0) - A]2¢+ C.C.) + }
(A10)

Performing the Wick rotation back to Euclidean time, we can
compare this to Eq. (A1), and find for T=0 the relations

Z\(p,00) = Zy(p, o) = Z(P),
Vi(p,ay) = Valp,ap) = V(p, o) = V(P),

Zpo, 30) = 2[V(po) + poV’ (po)],

75 (po ) =2V(py), (A11)
and therefore
a==[Z(py) + poZ' (py)].
ne= Z(Po)l)o,
B==1[2Z"(po) + poZ’ (po)]- (A12)

We next compute the inverse propagator in a constant back-
ground field by expanding I'; to second order in the fluctua-
tions around this background. For this purpose, it is conve-
nient to decompose

1
(ﬁ(T,)Z) = ¢0 + V’TE[le(T’)?) + id)Z(T’f)]- (AIS)

The constant condensate field ¢, can be chosen to be real
without loss of generality. The fluctuating real fields are the
radial mode ¢, and the Goldstone mode ¢,, and p=p,
+ \5¢>0¢1 + %¢%+ %¢§ The truncation of the effective average
action (A1) reads in that basis
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1 1
Llél= f {U(P’ o)+ 521(P, U)[iVE¢of97¢2 +ip0,0y = ihyd ] + Ezz(P’ U)[N’E%(— A)py + di (= D)y + dr(— A) ]

+ VPN )b+ 1= D) + sl P ) + Vil N2 0(3.0) 5+ i6h (38) b~ a9, 0) 1]

1
+ 5V3(P, 0')[\54’0(— A%y + (= ANy + (- A?) ¢2]}-

The inverse propagator Fff)

(A14)

can be inferred from an expansion in second order in ¢; and ¢,. We keep the linear order in o

— 0y, which will be needed for the flow equation for the density. This yields

1 1 1
Lilél= f {U(pO’UO) + U(U)(G'— op) + E(U' + 2P0U'/)¢% + EU,¢§ + E(Zl +Z1po +Z(1U)(0'— o))i19:r — iy b))

1 1
+5(1+2Zpg + Z(a = 0) (¢ (= A) b)) + 5(1 + 20 = 00)) (ha(= A) by)

+= (v1+2v1po+W(cr 00)(pi(= P b)) +

vl+w”(o 00)(a(= PV ) + (Vo + Vipy + V57 (0 = o)

X (i) (9,0) by — ihs(9,0) b)) + §<v3 +2Vip + Vi (0= 00)) (b1 (= A2 b)) + é(vs + Vi (o~ a0) (s~ A2)¢2>},

where we dropped the argument (p,,0q) at several places
and used the implicit rescaling condition Z,(py,00)=1. In
our simple truncation, we take at o=0y only

S =Z(po, 00) + Z1(po. 50) o>

V=V,(py, o) (A16)

into account. We neglect the contribution of the other cou-
plings, i.e., set Z}=V,=V3=V|{=V,=V;=0. As shown above,
it follows from the symmetry requirements at zero tempera-
ture that V,=V,=V;=V. Z(1”)=2(1~/+ V' po), and Z<2")=2‘7. The
truncation V,=V3=0 therefore violates the Galilean symme-
try, as does our choice of the cutoff term ~R,. Within our
approximation, it is consistent to set Z(") Z ”§—2V at zero
temperature. Also the deviations from th1s relatlon at finite
temperature are neglected for simplicity in this paper. This
yields Eq. (30).

APPENDIX B: SYMMETRIES AND NOETHER CURRENTS

In the following we discuss the role of continuous sym-
metries of the microscopic action S[ ¢]. Since all these sym-
metries are linear in the fields, the full effective action I'[ @]
is also symmetric. In the case that the cutoff term AS,[ ] is
chosen invariant under the symmetry transformation in ques-
tion, this also holds for the average action I';[®] for finite k.
From Noether’s theorem it follows that there exists a con-

served current j#=(j°, j) connected with every such symme-

try. If the action is formulated as an integral over the imagi-
nary time 7 the conservation equation implies for the current

(A15)

07 +V - j= (B1)
At zero temperature, we can perform a Wick rotation to real
time, 7—it, and Eq. (B1) takes the usual form

9j"+V-j=0 (B2)

The Noether charge C=[d’xj" is conserved in time, i.c.,
%C:O. This holds if f falls off sufficiently fast at spatial
infinity. At finite temperature however, the situation is differ-
ent. A simple analytic continuation to real time is no longer
possible, since the configuration space is now a torus with
periodicity 1/7 in the 7 direction. Instead, we can integrate
Eq. (B1) over complex time 7, giving

T
V.J=V. (f drj) =j7(0) - jO(1/T)=0.  (B3)
0

From the symmetry, it now follows that there exists a sole-

noidal vector field or three component current J=[ Tf.

A global symmetry of an action I'[¢] (where T could be
replaced by S or Iy if appropriate) can be formulated in its
infinitesimal form as

I'p+esgp] =T ], (B4)
with € independent of x. Here s is the infinitesimal generator
of the symmetry transformation. For a local transformation,
where € depends on x, e=€(x), we can expand
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6+ )= TT61+ [ 10,0+ (10,0004

(BS)

The global symmetry implies that the expansion on the right-
hand side of Eq. (B5) starts with d,e. Here and in the fol-
lowing it is implied that € as well as its derivatives are in-
finitesimal, i.e., we keep only terms that are linear in €. The
index u goes over (0,1,2,3), representing (¢,x',x%,x3) in the
real time case and (7,x!,x%,x%) for imaginary time. Equation
(B5) implies for arbitrary ¢(x),

L {%(Zﬂesd)— (0,60 T" = (d,0,e) I + - } =0.

(B6)

Our notation is for real fields and implies a summation over
components, if appropriate. In a complex basis one replaces
or o DA
gesqb by %6S¢+ (Wesd) .

Equation (B6) is valid for all field configurations ¢ and
not only for those that fulfill the field equation 5—1;%'2:0. In

consequence, the integrand is a total derivative

ol ¢]
5—¢ s — (&Me)f‘ - (&M&VG)/C'“V+ e
== G+ KD e ). (B7)
We can now specialize to d,e=d,,d,€=---=0 and find
or
%sd)(x) ==d,j". (BY)

This defines the Noether current j*. For solutions of the field
equation %%:0, the current j* is conserved, é’#j"=0.
For a given x we can also specialize to

€(x)=0, J,e(x)#0, d,0,e(x)=0,..., (B9)

which leads to

jr=J" -, k™. (B10)
This process can be continued, leading us to a whole tower
of identities for the conserved current j*.

If the action I'[¢] includes derivatives only up to a finite
order n, i.e., can be written in the form

r[¢]:f L(b,d,00, ...,d" ), (B11)

the expansion on the right-hand side of Eq. (B5) only con-
tains terms up to order "€ such that the tower of equations
for j* can be solved. Moreover, for homogeneous situations
where ‘%[ﬂ is solved by a constant ¢, the second term on the
right-hand side of Eq. (B10) vanishes since it includes a
derivative. We have then j*=J*.

A convenient way to find the local currents employs pa-
rameters €(x) that decay sufficiently fast at infinity such that
we can partially integrate Eq. (B6).

PHYSICAL REVIEW A 77, 053603 (2008)

f G(x){quﬂ 9T = 3,0, JCH + - } -0.

o9
(B12)
This yields the local identity
or
%s¢:—&ﬂﬂ+&ﬂﬁ,ﬁ””— (B13)

An expansion of the left-hand side in derivatives often yields
substantial information on J*, etc., by inspection.

Our construction yields a unique conserved local current
j¥ for every generator of a continuous symmetry. We note,
however, that aj*+b* is also a conserved local current if «
and b* are independent of x. This remark is important if we
want to associate j* with the current for a physical quantity.
A rotation invariant setting implies »'=0, but 4° and « may
differ from zero.

After these general considerations we now specialize to
nonrelativistic real time actions of the form

I'¢]= f” dtf dxL(p, (i, + A) ¢, (id,+ A),...).

(B14)

We assume that I" is invariant under the same symmetries as
the action (A4). From the symmetry under time translations

¢— p+els)p=d+€dgb,

L— L+edL=L+ed,(hL), (B15)

we find a conserved current (jg)*. Up to a possible additive
constant its ¢+ component is the energy density, while the
spatial components describe energy flux density. The multi-
plicative constant « gets fixed if we choose the units to mea-
sure energy. The choice =1 corresponds to a=1. Similarly,
the invariance under spatial translations

b— D+ ej(SM)i¢= ¢—€i5i¢,

L—L-€dL=L~-€d (L) (B16)

implies a conserved current (j,,)¥ for each spatial direction
i=1,2,3. Up to an additive constant (b,,)? the  component
is the conserved momentum density, p;=(j)° +(by,)", while
the spatial components can be interpreted as a momentum
flux density, with the diagonal components (j M)f: describing
pressure.

From the global U(1) symmetry

¢— b+ elsc)p=—ied,
¢ — P +elsc)p" =@ +ied,

L— L, (B17)

we can infer the conservation of the current (j)* associated
to the conserved particle number. In order to identify the
total particle number with the charge of this current,
Jd*x(j)°, we need to fix a possible multiplicative constant
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a. For this purpose, we use the Galilean boost invariance,
described already in Eq. (A6). It reads in its infinitesimal
form

¢ — P+ €(sg)ip= p+2€10,p— i€x;p,
¢* — ¢* + Ei(SG)i¢* = ¢* + 26’[07,¢* + i&ixi(ﬁ*,

L— L+a,284L), (B18)

and the conserved charge of (s¢;) is the center of mass, again
up to an additive constant. The generator (s;) can be decom-
posed as

(s6)i=xi(s¢) = 2t(spp);- (B19)
This implies for the current
o) =x0)" =2t (B20)

Specializing to the ¢t component, identifying the momentum
density p;=(jy)"+(by,)? and reintroducing the particle mass
2M =1 we find

pi—(by)?

(o) =xije)’ == (B21)
From this we can conclude that up to an additive constant
(jo)? is the particle density n=(j)"+(bo)°.

For the effective action (A10) we find for o=0y and con-

stant ¢(x)=1p, the current

(ic)o = Z(PO)PO-

Using the normalization condition Z(p,)=1, this gives (j)°
=po- At zero temperature, this is the particle density and the
additive constant (b)" vanishes. At nonzero temperature we
can compare to Eq. (72) and find (bo)’=n.

For completeness we also mention the symmetry under
spatial rotations

(B22)

#(t,5) — ¢(t,R7'%),

L(1,%) — L(t,R7'X), (B23)
with orthogonal matrix Rl;::(e." i, generators (J,-){(=is,»j‘k, and
&;jx the antisymmetric tensor in three dimensions. The infini-
tesimal transformation reads

B(1.5) — $(1.5) + 78X 9,p(1.%),

L(t,x) — L(t,x) + niﬁl(sijkxkﬁ}ﬁ). (B24)

The time component of the conserved current (jz)¥ is, of
course, the angular momentum density.

APPENDIX C: FLOW EQUATION FOR EFFECTIVE
POTENTIAL

We derive the flow equation for the effective potential by
evaluating the flow equation for the average action (29) for
constant fields. Inserting a real constant field ¢(x)=vp one
finds for U=I";/Q) the flow at fixed p,
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d,U(p,0) = npU' + {(p,0),

o

{p,0) =T 2v, J dp p*' 0(k* - p* — m*)
n 0

X[2k% = 9(k* = p* = m?) + 9,m?]
% g1+8+2(V, +PV;)‘U;21
W o+ (g +(V, +2pV)w)) (g2 + Vi)
(Cn

Here, d is the number of spatial dimensions and we use the
abbreviations

g =k -m*+(Z,- 1 +2pZ)p*
—(V3+2pVip*+ U’ +2pU",
&=k —m*+(Z,- )p* = Vyp*+ U,
h=Z,+pZ, = (Vs + pVi)p*,
w,=27Tn,

vy= 2" 72T (d2)]7. (C2)

We dropped the arguments (p,o) at several places on the
right-hand side. Primes denote derivatives with respect to p.
In the phase with spontaneous symmetry breaking, we have
m*=dm*=0.

The Matsubara sums over n can be carried out by virtue
of the formulas

- 1 — Ib—d
E I 5 = ?T—[\rb+dcoth< 'n')
e AN+ bR+ d\2c 2a
— b+d
—\b—d coth )|,
2a

- 2 b+d
S = L{\rb+dcoth<\/ 'n'
ne—oe AN+ b0+ d\2a 2a
Ib-d
—Vb—dcoth( v w)] (C3)
a

with d=+b*~4ac. This brings us to

K-m?

dp p*'[2k* = n(k* - p* — m*) + gm*]

— ( BiDL 2B D) th<\"B_D>
=\ VB+D—=-2VB-D |co
\@D \J’E’ V@T

—— ——E VB+D
+|2VB+D - \VB-D—= |cothl ———] |, (C4)

\/Z' VBAT

{(p,0) =2Udf

0

where we introduced
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A=V(Vi+2pV)),
B=h>+g\V,+g(V,+2pV}),

C=g8,
D=+\B>-4AC,

E=g,+g,. (C5)

In our simple truncation with S=Z,+Z[p,, V=V,, Z;=V,
=V3=V|=V;=V;=0, and at o=0y, the integrand in Eq. (C4)
becomes mostly independent of the spatial momentum. The
integral can than be carried out and we find

7 \\20,
{(p, o) = (1 - m)w
X [ ( B+DZ _2\B- D)coth( \'B;D)
\C VAT
R
+ (2\’3 +D—-\B- Di)coth( \”B;D> ] ,
VC V8AT
(Co)
with
A=V,

B=S>+2V(K*+ U’ + pU"),
C=(*+U" +2pU") K>+ U'"),
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D=\B*-4AC,

E=2(K*+U' +pU"). (c7)
That the momentum integral can be performed analytically is
a nice feature of the cutoff (37). The limit 7— 0 is obtained
by substituting the coth functions with unity.

The flow of the effective potential contains a subtlety that
can be seen in the limit V;—0 (i=1,2,3), where we find

2o
aU(p.0) = ppU’ +2v, f dp p™ 2k = p(k? = p* = m?)

0

81+8 V818 1
+dm?] : fz coth( ] 2) +- 1.
! 2hV\gi1g» Z\ET h

(C8)

The term 1/4 in the last line is not present if V| is set to zero
from the outset. If Z; is independent of p, this term is inde-
pendent of p and gives only an overall shift of the effective
potential.

APPENDIX D: FLOW EQUATIONS FOR KINETIC
COEFFICIENTS

We show in this appendix our results for the flow equation

of the kinetic coefficients S, Z, and V. We neglect all contri-
butions from momentum dependent vertices. In other words,

we use p-independent constants S=Z,+pyZ, A=Z,, and V
=V,. In our truncation with Z,=V,=V;=0, and with the cut-
off (37), we can perform all momentum integrations analyti-
cally, leading us to

320 k>IN p[K2(S% + K2V) + (82 + 2K2V)Npy — 2V(S? + KV + VApy) 0> = 3V3 )]

d+2

aV=nV- (1 —L)TZ

" dlk* + 26N py + (8% + 2K°V + 2V py) 0> + V! P

s

gS=ns—|1-
’"<d+2

7 )TE 320 k>SN polk* = 2N po (k> + Npo) + S2w? + 2V(K? = Npo) > + V']
; dlk* + 263N py + (8% + 2KV + 2V py) 0> + Ve P

s

16v dk2+d)\2p0

a_
L
A

Here, d is the number of spatial dimensions, and v, and w,
are as in Eq. (C2). The Matsubara sums over n can be per-
formed analytically again by using Eq. (C3) and derivatives
thereof.

In the limit 7— 0, the Matsubara frequencies are continu-
ous w,—¢qy and the sum becomes an integral 72,
H%T JZ..dq,. The expressions for 7 and 4,S in Eq. (D1) agree

o dkt 4+ 20N py + (8% + 2K2V + 2VApy) @ + Ve P

(D1)

with those derived in [4], while our result for 4,V corrects an
error in a first version of [4] [in Eq. (C8)].

APPENDIX E: PROPAGATOR AND DISPERSION
RELATION

The inverse propagator is given by the second functional
derivative of the effective action
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) 3‘151(_‘1) - - 1
=1 Ti(84,p)s Oyp) = G~ 8P = q), (E1)
45(-q)
and we find from the truncation (A1),
| (HA2T+ (Vi +20V)qd, —qo\2K
G'= — ] (E2)
qoV2K, H+ Vg
Here we use the abbreviations
H=2Zp*-Vyp*+ U,
J=pZyp* = pVip*+ pU",
2K =[Z,+pZ; =2(V, + pVy)p' T (E3)

At zero temperature, we can analytically continue to real
time gy— iw, and find

o (H+ 2 - (VIILZpV[)wZ, - ivaKZ ) o
iwV2K, H-Vw
The dispersion relation is found from the on shell condition
detG™'=0, (ES)
which yields
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H?+2HJ = 2[H(V, + pV}) + JV, + K]w? + V,(V, + 2pV}) 0®
=0. (E6)

The solutions for w define the dispersion relation. We find
two branches, according to

(%) = [H(V, +pV})) +JV, + K = {(K+JV,)?

Vi(Vy +2pV))
+2H[K(V, +pV}) =JVpV ]+ H(pV})*}'?]. (ET)
In the phase with spontaneous symmetry breaking, the (+)
branch of this solution is an “optical mode,” while the (-)

branch is a sound mode. The microscopic sound velocity is
co= Z—:’|l,=0. Using p=p,, U'=0, U"=\, and Z,=1, we find

2= ! = Ay (ES)
(Z, + poZ)) S7+2NpV
LTy,
2Npy

The optical mode has at vanishing spatial momentum the
frequency

(Z,+ poZy)

. 2\
0§ =0)= ——10 —,
Vi(Vi+2pyV1)

- Vl + ZpOV{

(E9)

which diverges wiﬂw in the limit V; —0.
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