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Quasienergies and Floquet states of two weakly coupled Bose-Einstein condensates under
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We investigate the quasienergies and Floquet states of two weakly coupled Bose-Einstein condensates driven
by a periodic force. The quasienergies and Floquet states of this system are computed within two different
theoretical frameworks: the mean-field model and the second-quantized model. The mean-field approach re-
veals a triangular structure in the quasienergy band. Our analysis of the corresponding Floquet states shows
that this triangle signals the onset of a localization phenomenon, which can be regarded as a generalization of
the well-known phenomenon called coherent destruction of tunneling. With the second-quantized model, we
find also a triangular structure in the quantum quasienergy band, which is enveloped by the mean-field triangle.
The close relation between these two sets of quasienergies is further explored by a semiclassical method. With
a Sommerfeld rule generalized to time-dependent systems, the quantum quasienergies are computed by quan-
tizing semiclassically the mean-field model and they are found to agree very well with the results obtained

directly with the second-quantized model.
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I. INTRODUCTION

Due to its simplicity, a single particle in a double-well
potential has been a paradigm to demonstrate many funda-
mental quantum phenomena, in particular, quantum tunnel-
ing and its control [1]. Immediately after the experimental
creation of Bose-Einstein condensates (BECs) with dilute al-
kali atomic gases [2,3], people realize the new possibility of
putting a BEC in a double-well potential and using it to
mimic this paradigm system to demonstrate experimentally
quantum tunneling and other fundamental quantum phenom-
ena. The subsequent studies show that a BEC in a double-
well potential has richer physics due to interaction. For ex-
ample, it was found that the tunneling of BEC between the
wells can be suppressed and therefore self-trapped in one of
the wells [4,5]. This self-trapping phenomenon has now been
observed experimentally with a BEC [6,7]. More interest-
ingly, the nonlinear two-mode model derived to describe a
BEC in a double-well potential was found to be able to de-
scribe the tunneling between Bloch bands for a BEC in an
optical lattice [8]. Due to interaction, a quantum phenom-
enon called nonlinear Landau-Zener tunneling was predicted
and later observed in experiment [8,9].

It is known that, for a single particle in a double-well
potential, one can use an external periodically driving field to
control quantum tunneling, either enhancing [10-12] or sup-
pressing it [13-23] One then wonders whether this kind of
control can be also achieved for a BEC in a double-well
potential. There have been several studies in this regard
[24-30]. These studies indeed find that the periodically driv-
ing force can strongly affect the tunneling between two
weakly coupled BECs and therefore be used to control the
tunneling. Recently, we found that such a control of quantum
tunneling can also be achieved in an optical waveguide sys-
tem [31] and be used to improve the performance of an all-
optical switch [32]. Note that a two-mode BEC under an
alternating field has been studied from a different angle,
where the frequency of the changing field is tuned to the

1050-2947/2008/77(5)/053601(7)

053601-1

PACS number(s): 03.75.Kk, 03.75.Lm, 05.30.Jp

transition frequency between two nonlinear coherent modes
[33].

In this paper we investigate the quasienergies and Floquet
states of two weakly coupled BECs under periodic driving,
which can be realized experimentally with either a double-
well potential or an optical lattice [34]. Quasienergies and
Floquet states are two basic concepts and tools in describing
and understanding periodically driving systems. One can use
either a mean-field nonlinear two-mode model or a second-
quantized model to describe such a system. In this paper we
use both models to compute the quasienergies and Floquet
states. In the mean-field two-mode model, we discover that
there can be more than two Floquet states and quasienergies
in a certain range of parameters that characterize the ampli-
tude and frequency of the modulating force. With these ad-
ditional Floquet states, there appears a triangle in the
quasienergy levels. This triangular structure in quasienergies
turns out to be crucial to understanding the localization phe-
nomenon that has been found and studied previously
[24,25,27]. Our analysis shows that the localization phenom-
enon can be regarded as a generalization of a well-known
phenomenon called coherent destruction of tunneling (CDT).
Therefore, we call it nonlinear coherent destruction of tun-
neling (NCDT) [31].

In the second-quantized model, our computation also re-
veals a triangular structure in the quasienergy levels. Inter-
estingly, the quantum triangle is enveloped perfectly by the
mean-field triangle, indicating a close connection between
these two different approaches. By analyzing the correspond-
ing Floquet states, we find that this quantum triangle of
quasienergies is also connected to the localization phenom-
enon called NCDT. The close relation between quantum
quasienergies and mean-field quasienergies is further ex-
plored by a semiclassical method. By using a Sommerfeld
quantization rule adapted for a time-dependent system, we
recalculate the quantum quasienergies by quantizing semi-
classically the mean-field model. The results match very well
with the quantum quasienergies obtained by directly using
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the second-quantized model. Due to the complication
brought by the chaos in the region of moderate frequencies,
the focus of our paper is on cases of high frequency modu-
lation.

II. QUASIENERGIES AND FLOQUET STATES

We consider a system of N identical bosons, which can
occupy only two quantum states. If there is interaction be-
tween bosons, the system Hamiltonian reads [3]
(@'a-b'b) -

H, =

0 [

(@b +ab") + ~—(a'a'aa + b'6bb),
2N
(1)

where vy is the energy difference between the two quantum

NIC

states denoted by a'.a and IQT,Z; and v is the coupling constant
between the two modes. The interaction strength is given by

47Tﬁ2

f |'r//o(7)| dr, (2)

where we have used a reasonable assumption that the wave
functions of the two quantum states are the same except a
possible trivial shift of the center and the wave function is
normalized [ |y (7)[?dr=1.

When the temperature is very low so that we can ignore
any thermal effect and at the same time the number of
bosons N is very large, it is appropriate to make the follow-
ing coherent substitutes:

a={(@N, b=bYN. 3)
This leads to a mean-field Hamiltonian

(Hy)

H .=
mf N

- %(|a|2 b - %(a*b +ab®) + §(|a|4 +[b]Y.

(4)

The system described above has now been realized with a
double-well potential. For the experiment in Ref. [6], there
are about 1150 atoms and a simple estimate gives
v=~65.3 s! and ¢/v~15. This system can also be realized
experimentally with an optical lattice [8,34].

In our study, we have y=A cos(wr); that is, the energy
difference between the two quantum states is changed peri-
odically. With the double-well potential, this can be achieved
by shifting periodically the power of lasers that generate the
double wells. For an optical lattice, this can be accomplished
by shaking along the lattice direction. We focus our study on
the quasienergies and Floquet states of this system as these
are two basic concepts and tools in understanding a periodi-
cally driving system.

A. Mean-field model

We first consider the mean-field model. From the mean-
field Hamiltonian (4), we can obtain a two-mode Gross-
Pitaevskii equation

PHYSICAL REVIEW A 77, 053601 (2008)

Ticlap -2
dfa 2 2 a
ek
2 2

where we have used the natural unit #=1. Although the pa-
rameters ¢, v, A, and w are of unit of energy, we shall treat
them as dimensionless parameters in the following discus-
sion because what is essential is the ratios between these
parameters, not their absolute values.

Like its linear counterpart, a nonlinear periodic time-
dependent equation admits solutions in the form of Floquet
states. For Eq. (5), its Floquet state has the following form:

ety
b & (1)

where both ¢,(¢) and ¢,(¢) are periodic functions of the pe-
riod of T=27/w and the constant & is the corresponding
quasienergy. After one period, this solution returns to its
original state by picking up an extra phase of 7. To calcu-
late numerically Floquet states and quasienergies, we follow
the strategy that was used to compute nonlinear Bloch states
and the eigenenergies [35]. In this strategy, we expand the
Floquet states in Fourier series

L L
b= 2 a,e™, b= X b, (7)

n=-L n=-L

where L is the cutoff. In our computation, the cutoff L=10 is
chosen since the high order terms a_; 19,b_¢ 1 are already
very small. With the substitution of the above Fourier series
into Eq. (5), one can obtain 4L+2 equalities for the coeffi-
cients of each Fourier term ¢™*'. The Floquet state and the
quasienergy are found by finding the roots of this set of
4L+2 nonlinear equations. Our method is different from the
previous methods used to compute Floquet states and
quasienergies. We believe that it is more powerful. For ex-
ample, it can find the Floquet states that correspond to hy-
perbolic fixed points in Poincaré section, which is difficult to
seek out with the other method because of the instability of
these Floquet states.

Our numerical results of quasienergies are plotted in Fig.
1. It is clear from Fig. 1 that, for the linear case, there are two
quasienergies at a given value of A/w with one isolated de-
generacy point. For the nonlinear case, we notice that there
are three quasienergies within a certain range of A/w with
two of them degenerate. The three quasienergies form a tri-
angle in the quasienergy levels as seen in Fig. 1(b). Among
the three quasienergies, two quasienergy levels are similar to
their linear counterparts with one isolated degenerate point
while the third quasienergy level has no linear counterpart.
Moreover, the third quasienergy is degenerate and corre-
sponds to two different Floquet states; this is indicated by
marking the same point in Fig. 1(b) with two symbols P; and
P,. Note two things: (1) there is no threshold value of ¢ for
the triangle to appear; (2) the right corner of the triangle is
open for relatively larger nonlinear parameter c.
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FIG. 1. (Color online) Quasienergies as a function of A/ w at (a)
¢=0; (b) ¢c=0.4; and (c) ¢=0.8. Solid lines are numerical results and
circles are the approximate analytical results for high frequencies
with Egs. (9) and (10). v=1, w=10.

Despite the obvious similarity between the nonlinear Flo-
quet states and the linear ones, there are a couple of concep-
tual differences. (1) A periodically driven n-level linear sys-
tem possesses precisely n Floquet states whereas the number
of nonlinear Floquet states of the n-mode system can be
bigger than n as we have witnessed above. (2) In the linear
case, all wave functions can be decomposed into a superpo-
sition of Floquet states and, therefore, the dynamics of the
system is dictated by Floquet states. In the nonlinear case,
the superposition principle breaks down; the dynamics of the
system can no longer be completely determined by Floquet
states.

The triangular structure of the quasienergy is very similar
to the energy loop discovered within the context of nonlinear
Landau-Zener tunneling [8]. In fact, they are mathematically
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related. For high frequencies, w>max{v,c}, we take advan-
tage of the transformation

A sin(wt) A sin(wt)
a=a'exp|—i————|, b=b"exp|i——|.
2w 2w

(8)

After averaging out the high frequency terms [25,36], we
obtain a nondriving nonlinear model,

ia’ == "JAl)b’ +cla'Pa’, )

ib' = %JO(A/w)a’ +lp! P, (10)

where Jj, is the zeroth-order Bessel function. It is clear from
the transformation in Eq. (8) that the eigenstates of the above
nondriving nonlinear equations correspond to the Floquet
states of Eq. (5). We have computed the eigenstates of Egs.
(9) and (10) and the corresponding eigenenergies, which are
plotted as circles in Fig. 1. The consistency with our previous
numerical results is obvious. As is known in Ref. [8], the
above nonlinear model admits additional eigenstates when
¢>Jo(A/ w)v. Therefore, this can be regarded as the condi-
tion for the extra Floquet states to appear for the driving
nonlinear model Eq. (5) at high frequencies. Since the Bessel
function Jy(A/w) can be zero, there is no threshold value of
¢ for the triangle to appear in the quasienergy band.

The nonlinear Floquet states are also examined thor-
oughly. We find that some of them are localized, which is
very different from the Floquet states in the corresponding
linear model that are always unlocalized. To describe local-
ization, we introduce a new variable, p=(|a|*~|b[*)/2, which
measures the population difference between the two modes.
One Floquet state is localized if the average of p over one
period,

1 T
<p>,=;f dt p(1), (11)

0

is nonzero; it is unlocalized if (p),=0. In Fig. 2, the popula-
tion difference p is plotted as a function of time for three
stable nonlinear Floquet states marked as P,,P,,P5 in Fig.
1(b). Evidently, one of these states is unlocalized since p
oscillates around zero. However, two other states are local-
ized with p oscillating around a nonzero value. The localiza-
tion means that the BEC described by such Floquet states
tends to stay in one mode and reluctant to tunnel to the other
mode. Therefore, localization can be understood as a sup-
pression of tunneling. Our study shows that on one hand, all
the localized Floquet states correspond to the highest
quasienergies on the triangle and on the other hand, all Flo-
quet states in the linear case and all the Floquet states not
related to the quasienergy triangle are not localized. This
implies that the triangle in Fig. 1 is related to localization or
suppression of tunneling. This is indeed the case as we have
shown in Ref. [31]. We shall not repeat what we have done
in Ref. [31]; we shall look into this connection from a dif-
ferent angle.
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FIG. 2. Population imbalance p for three stable nonlinear Flo-
quet states at ¢c=0.4, v=1, w=10, A/w=2.0, for an interval of
four periods of the driving force (solid lines). The Floquet states
correspond to the quasienergies in Fig. 1(b) marked as P;,P,,P3
with triangles. The squares are for Floquet states in the highest two
quantum quasienergy levels with N=500.

In the mean-field model (5), the norm |a]>+|b*=1 is
conserved and the overall phase is not essential to the dy-
namics. Therefore, we can reduce the complex dynamical
variables a=lale’%, b=|ble'% to a pair of real variable,
p=(lal>*~|b|?)/2 and the relative phase g= 6, 6,. In terms of
p and ¢, the mean-field Hamiltonian (4) becomes

H.,=Ap cos(wf) - gvl “4pPcos g + 2(4;)2 +1). (12)

As p and g are canonically conjugate variables of the above
classical Hamiltonian system, one can derive a set of equa-
tions of motion. From the equations of motion, one can plot
the Poincaré section of this system. Two Poincaré sections
are illustrated in Fig. 3 for two sets of parameters. As the
overall phase is removed, the Floquet states correspond to
the fixed points in the Poincaré section.

The parameters for Fig. 3(a) are outside the triangle
range. In this figure, there are only two fixed points located
at p=0 and all the motions around the fixed points are oscil-
lating around p=0, indicating no localization or suppression
of tunneling. The situation is different in Fig. 3(b), whose
parameters lie in the triangle range. In Fig. 3(b), there are
four fixed points: one at g=0 (or 27), and three at g=1r.

0.5 0.5

SEPN b)

FIG. 3. Poincaré surface of section of the Hamiltonian (12). (a)
Al/w=0.1. (b) A/w=2.0. Other parameters are ¢=0.4, v=1, and
w=10.
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Among the three at g=1r, one is hyperbolic and unstable
whereas the other two are not only stable but localized.
Moreover, all the orbits surrounding these two stable fixed
points at g= 1 are localized solutions. These again show that
the triangle structure in quasienergies are related to localiza-
tion or suppression of tunneling.

In Ref. [31], the localization phenomenon discussed
above is called nonlinear coherent destruction of tunneling
(NCDT). There are two reasons for this. First, the degen-
eracy point in Fig. 1(a) is related to a localization phenom-
enon called coherent destruction of tunneling (CDT) and the
triangle can be seen as the result of enlargement of the de-
generate point by nonlinearity. Second, as we have seen in
Fig. 3, the localization phenomenon is intimately related to
the nonlinear Floquet states and we know that CDT is related
to linear Floquet states. The localization phenomenon which
we call NCDT has been called in literature self-trapping or,
more precisely, periodically modulated self-trapping
[24,25,27].

B. Second-quantized model

We now turn to the second-quantized model (1) and com-
pute its Floquet states and quasienergies. For a nondriving
system, it is well known that the eigenenergies and eigen-
states of the second-quantized model are closely connected
to its mean-field counterparts [37,38]. For this periodically
driving system, we want to explore how its quantum Floquet
states and quasienergies are related to its mean-field counter-
parts and the localization phenomenon called NCDT.

We follow the well-established Floquet theory for a
quantum system [39,40] to compute numerically quantum
Floquet states and quasienergies. In the process, we
have converted the second-quantized Hamiltonian (1) into a
pseudospin Hamiltonian by introducing three angular mo-

mentum operators jx=(dTl;+l;Té)/2, jy=i(l;T&—l;dT)/2, and
jz=(aATé—l;+l;)/2, for which the Casimir invariant is
j2=(N /2)(N/2+1). The second-quantized Hamiltonian of
the system then becomes

A~ C - A C
H,=-vl] + K}J§+A cos(w)J, + Z(N— 2).  (13)

With this transformation, our system of N identical bosons
becomes a spin system, whose Hilbert space is spanned by
N+1 spin states |J=N/2,J,=M) with M=-N/2,-N/2
+1,...,N/2. The quasienergies and Floquet states are ob-
tained by diagonalizing one-period propagator U(T,0). Our
method applied to the mean-field model can also be used to
calculate the second-quantized quasienergies but is more ex-
pensive computationally than diagonalizing the one-period
propagator.

Our numerical results for quantum quasienergies for
N=40 are shown in Fig. 4. We immediately notice that these
quantum quasienergy levels have very similar structures to
their mean-field counterparts. For the noninteracting case in
Fig. 4(a), there is a single degeneracy point. For interacting
cases in Figs. 4(b) and 4(c), there are triangular structures
just as in the mean-field model. For comparison, the mean-
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FIG. 4. Quantum quasienergies (N=40) as a function of A/ w at
v=1, w=10 for (a) ¢=0.0, (b) ¢=0.4, and (c) ¢=0.8. The open
circles are mean-field quasienergies. Note that for comparison with
mean-field theory, the quantum quasienergies have been divided by
N.

field quasienergies are plotted as open circles in Fig. 4. To
one’s amazement or expectation, the quantum quasienergies
are bounded by the mean-field results perfectly. Another in-
teresting feature in Fig. 4 is that all the quasienergies in the
triangle area is doubly degenerate and this degeneracy im-
mediately breaks up outside the triangle. The feature is re-
lated to the localization phenomenon NCDT as we shall dis-
cuss next.

There is also a close relation between quantum Floquet
states and mean-field Floquet states. We examine this rela-
tion in terms of localization. To measure how a quantum
Floquet state is localized, we define
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2
Ao
FIG. 5. Population difference (P), for every Floquet state in the
highest two quantum quasienergy levels (solid line), the 149th and
150th quantum quasienergy levels (dot-dashed line), and the 249th
and 250th quantum quasienergy levels (dotted line) at c/v
=04, w/v=10, N=500. The open circles are for the population

difference (p), for the highest mean-field quasienergy level in Fig.
1(b).

T
(Ph= 1| a0l ) (19
0

for a given Floquet state |u,(¢)). This variable (P), quantifies
the population difference between the two modes. We have
plotted this variable for certain quantum Floquet states in
Fig. 5. It is apparent from this figure that only the Floquet
states for the quasienergies inside the triangle are localized.
This again establishes the connection of the triangle (quan-
tum or mean-field) to the localization phenomenon NCDT.
This localization also explains why the Floquet states inside
the triangle are doubly degenerate. When localization occurs,
there are two equal possibilities. It can localize either in
mode a or in mode b; this leads to degeneracy. The mean-
field results are also plotted in Fig. 5. They match very well
with the results for the two highest quantum Floquet states.
This good correspondence can be more clearly seen in Fig. 2;
the temporal evolution of two highest quantum Floquet states
agrees very well with the mean-field results for an interval of
four periods of the driving.

The quantum quasienergies and Floquet state were studied
in Ref. [24]. Their relation to the localization was also ex-
amined there. Our primary purpose here is to compare them
to the mean-field results and explore their relations.

III. SEMICLASSICAL QUANTIZATION

In the previous section, we have demonstrated by direct
numerical computation how the quantum Floquet states and
quasienergies are connected to their mean-field counterparts.
This relation can be further explored with a semiclassical
method as the mean-field model (4) can be regarded as the
classical limit of the second-quantized model (1) in the limit
of N—o [41]. We shall follow the procedure in Refs.
[38,42-44] and try to quantize the classical Hamiltonian in
Eq. (12), which is equivalent to Hamiltonian (4), with the
Sommerfeld rule. However, as our system is time dependent,
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FIG. 6. Periodic vortex tube. Two paths are shown. The path y,
lies in a plane of r=const and 7, is a path connecting a point (p,q)
at time ¢ with the same point at time 7+7.

the usual Sommerfeld quantization rule has to be general-
ized.

The generalization of the Sommerfeld rule has been done
for any time-dependent system [45,46]. The basic idea is to
regard time as a dynamic variable and introduce a new ca-
nonical momentum which conjugates time. We shall not go
into the details of this theory and shall only describe how this
generalization works for the case of our interest, a periodic
time-dependent system. As seen in the Poincaré section of
Fig. 3, there are closed orbits around fixed points. These
closed orbits will change their positions and shapes in the
phase space with time and return to their original points and
shapes after one period. This kind of evolution forms a tube
in the space spanned by p,q,t as depicted in Fig. 6. This tube
is called vortex tube. As the system is periodic in time, the
tube in Fig. 6 is essentially a torus. The quantization can be
done by choosing two independent closed paths on the vor-
tex tube which cannot be homotopically deformed onto each
other and requiring

1
I,=—® pdg=nhIN, (15)
2 "
1 T
L=—® (pdg—H.dt)+ ——e=nh, (16)
2 v, 2

where n; and n, are non-negative integers. The quantization
is done in two steps: (1) we first find a path 7, that fulfills the
quantization condition for I;; (2) the quantization condition
for I, is then used to compute the quasienergy € as

1
Enimy =" }% (pdg — H.dt) + nyo. (17)
2

In the above, n,w means that quasienergy e is only defined
modulo w, reflecting the unique nature of quasienergy. One
can view f/N in Eq. (15) as the effective Planck constant
[38,42,43], which goes to zero at the limit of N— oo,

Our semiclassical results of quasienergies are plotted in
Fig. 7 to compare with the quantum quasienergies obtained
directly from the second-quantized model. They match per-
fectly, indicating the success of the generalized Sommerfeld
quantization rule. In our calculation, the path vy, is chosen as
the closed orbit in the Poincaré section and 7, is the path
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FIG. 7. Comparison between the quantum quasienergy levels
(solid lines) with N=40 and semiclassical quasienergy levels (open
circles) at ¢=0.4, v=1, w=10. (a) Nondegenerate quasienergy
levels. (b) Degenerate quasienergy levels. For clarity, we have only
plotted a portion of the quasienergy levels.

along the maximal points of p on the tube as illustrated in
Fig. 6. Note that the natural unit #=1 is used in our calcu-
lation.

These semiclassical results are very helpful in understand-
ing why the quantum quasienergies are enveloped by the
mean-field quasienergies as seen in Fig. 4. We first look at
the simple case where there are only two fixed points in the
Poincaré section, as in Fig. 3(a). The fixed point at g=0
corresponds to the nonlinear Floquet state with lower
quasienergy and the other fixed point corresponds to the Flo-
quet state with higher quasienergy. This implies that the
quantization for orbits around the fixed point at g=0 pro-
duces quasienergies that are higher than the corresponding
mean-field quasienergy and the quantization for orbits
around the fixed point at g=1r yields quasienergies that are
lower than the corresponding mean-field quasienergy. As a
result, the quantum quasienergies are bounded by the mean-
field quasienergies. The double degeneracy of the quantum
quasienergies within the triangle can also be explained with
this semiclassical approach. As shown in Fig. 3(b), there are
two stable fixed points at g=7. These two fixed points cor-
respond to two Floquet states with the same quasienergy.
This indicates that if one quantizes semiclassically the orbits
around these two fixed points, one would get two identical
sets of quasienergies. This explains the double degeneracy.
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IV. CONCLUSIONS

To summarize, we have studied the quasienergies and Flo-
quet states of two weakly coupled Bose-Einstein condensates
subject to a periodic driving. Both the mean-field model and
the second-quantized model are used. A triangular structure
was found in both mean-field quasienergy levels and quan-
tum quasienergy levels. Moreover, we have revealed that the
quantum quasienergy levels are bound by their mean-field
counterparts and we have explained it with semiclassical
quantization. In addition, by looking into the Floquet states,
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we have found that the triangle in the quasienergies is related
to a localization phenomenon which we call nonlinear coher-
ent destruction of tunneling (NCDT).
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