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We present a method for the accurate quantum treatment of the planar three-body Coulomb problem under
electromagnetic driving. Our ab initio approach combines Floquet theory, complex dilation, and the represen-
tation of the Hamiltonian in suitably chosen coordinates, without adjustable parameters. The resulting
complex-symmetric sparse banded generalized eigenvalue problem of rather high dimension is solved using
advanced techniques of parallel programming. This theoretical and numerical machinery is employed to pro-
vide a complete description of the bound and of the doubly excited spectrum of the field-free two-dimensional
�2D� helium atom. For the driven atom, we focus on the near resonantly driven frozen planet configuration, and
give evidence for the existence of nondispersive two-electron wave packets.
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I. INTRODUCTION

After hydrogen, helium is the simplest naturally available
atomic species. But at the same time, helium is one of the
simplest systems where neither the classical nor the quantum
dynamics are integrable. Indeed, for this microscopic realiza-
tion of the three-body problem of celestial mechanics �with
gravitational forces replaced by attractive and repulsive Cou-
lomb interactions�, the two-electron dynamics is in general
irregular or chaotic, with only rather small domains of clas-
sical phase space occupied by regular, i.e., integrable motion.
This loss of integrability, due to the electron-electron inter-
action, caused the failure of first quantization attempts on the
basis of Bohr’s quantum postulates �1�. Only with the devel-
opment of the modern semiclassical theory �2,3� and the sub-
sequent semiclassical quantization of helium �4,5� was the
nonintegrability of the quantum system understood as the
direct counterpart of the corresponding classical mixed
regular-chaotic dynamics �6�.

Under the action of an additional electromagnetic field,
the complexity of both, the classical and the quantum dy-
namics, increases dramatically. As compared to one-electron
atoms, helium adds the additional electron-electron interac-
tion term, which also is a source of electronic correlations.
Manifestations of interelectronic repulsion in driven helium
have been observed in the double ionization of helium from
the ground state, by strong laser fields �7,8�: Strong enhance-
ment �by several orders of magnitude� of the doubly charged
ion production as compared to the yield expected on the
basis of a single active electron approximation �9,10�—
where the electron-electron interaction is neglected—was ob-
served, and interpreted as a fingerprint of correlated elec-
tronic ionization processes �manifesting in nonsequential
ionization as opposed to sequential ionization, in the inde-
pendent electrons picture�, where one electron is “knocked
out” by the other during a laser-induced recollision process.
On the theoretical side, a number of rather restrictive nonse-
quential models �7,11,12� can fit many coarse-grained fea-

tures of the experiment. However, none of these models can
fully describe the geometry of the fragmentation process ob-
served in more refined experiments �13,14�—which also re-
veal a clear dependence of the excitation and ionization pro-
cess on the electronic structure �15� of He-like atoms.

While electronic correlations are essentially brought about
by the kinematics of the double ionization process sketched
above, it is also feasible to prepare the atom in a highly
correlated initial state: Strong electronic correlations are
found in doubly excited states of unperturbed helium. These
highly asymmetric, though very stable states are well local-
ized along the frozen planet configuration �6,16,17�, charac-
terized by highly correlated classical dynamics of the elec-
trons. Under near-resonant periodic driving these states
transform into nondispersive wave packets �18,19�, in one-
dimensional �1D� quantum calculations �20,21�. However,
until now, no evidence of the existence of these objects has
been found in realistic quantum calculations in more than
one dimension. This is a crucial issue, given the potential of
nondispersive wave packets for coherent control and quan-
tum information �22�, on the one hand, and the nontrivial
role of the dimension of the accessible configuration space
suggested by classical calculations and quantum spectra of
the unperturbed atom, on the other �23–25�. So far, only
results of diffusion Monte Carlo calculations suggest the ex-
istence of nondispersive two-electron wave packets along
Langmuir orbits, under the combined action of circularly po-
larized electromagnetic and static magnetic fields �25�.

A clear understanding of all the above issues requires an
accurate theoretical treatment of driven helium. The latter
defines a formidable theoretical and numerical challenge:
Even in the simplest case of the field-free, 3D helium atom
currently available approaches can only access a regime of
rather low doubly excited states and low angular momentum.
This is due to the rapid increase of the required basis size,
and of the number of nonzero matrix elements of the Hamil-
tonian as the excitation or the angular momentum is in-
creased �26–29�. An additional, linearly polarized electro-
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magnetic field will mix almost all good quantum numbers of
the field-free case, and only the projection of the total angu-
lar momentum onto the polarization axis of the field, and a
generalized parity which encompasses the phase of the driv-
ing field, remain conserved. Consequently, the density of
states dramatically increases with the excitation of the elec-
trons, as well as with the order of the multiphoton excitation
process induced by the external field. Therefore, a fully
three-dimensional treatment of the driven helium problem
for arbitrary driving frequencies and electronic excitations
still remains beyond reach even of the largest supercomput-
ers currently available, simply due to the rapidly increasing
size of Hilbert space as more and more angular momenta are
coupled. Note, however, that three-dimensional ab initio
treatments �29–33� of the ionization of helium from the
atomic ground state are available, though cannot resolve the
transient population of highly excited states in the course of
the ionization process. Neither has it been demonstrated so
far that these approaches bear the potential to describe the
dynamics of highly excited initial states under electromag-
netic driving.

Here we present an approach to the driven three-body
Coulomb problem, confined to a planar configuration space,
with the field polarization axis in the plane. While such con-
finement certainly restricts the generality of our model, semi-
classical scaling arguments suggest that the unperturbed
three-body dynamics is essentially planar at high electronic
excitations and small to moderate total angular momenta
�34�. Equally so, highly correlated fragmentation processes
starting from the atomic ground state appear to be mediated
by essentially two-dimensional configurations �15,35�. Be-
yond the atomic problem to which we will apply our machin-
ery in this contribution, the planar three-body Coulomb prob-
lem also has realizations in quasi-two-dimensional
semiconductor structures �36–41�, as well as in 2D quantum
dots �42�. As we will see, our approach to the problem allows
a description of driven helium in the entire parameter range
of weakly and doubly excited states, under optical as well as
microwave fields.

The paper is organized as follows: in Sec. II we outline
our theoretical setup, valid equally well for the exact quan-
tum description of field-free and of driven planar helium,
without adjustable parameters, designed for direct access to
the detailed spectral structure of the problem. Section III
describes the numerical implementation of our setup. Section
IV provides a complete description of the spectral properties
of field-free planar helium. Section V presents Rydberg se-
ries of doubly excited states of 2D helium localized along
frozen planet trajectories, and discusses their stability prop-
erties when the atom is subject to an external driving. Sec-
tion VI concludes the paper.

II. THEORY

The problem we have to describe with a minimum of
approximations is a helium atom exposed to a periodic
monochromatic driving field. The electrons are subject to the
combined potentials of the nucleus and of the interelectronic
repulsion, and are driven and eventually ionized by the ex-

ternal field. Therefore, our theoretical approach has to ac-
count for the following:

�i� The singularities of the Coulomb potentials.
�ii� The spectrum of the field-free atom consisting of

bound states, and of resonances embedded into the atomic
cotinua.

�iii� The spectrum of the atom “dressed” by the field.
To do so, we have to combine various tools.

A. Hamiltonian

In dipole approximation, employing the length gauge and
neglecting relativistic and QED terms, the Hamiltonian of a
helium atom exposed to a linearly polarized electromagnetic
field, of frequency �=2� /T and amplitude F, reads, in
atomic units,

H = H0 + F�x1 + x2�cos��t� , �1�

where

H0 =
p1

2 + p2
2

2
−

Z

r1
−

Z

r2
+

�

r12
, �2�

with Z=2 and �=1, is the Hamiltonian of the field-free atom
with fixed nucleus. Here, r1 and r2 are the distances of the
electrons from the nucleus, and r12 is the interelectronic
separation.

Both the classical and the quantum dynamics are gov-
erned by the Hamiltonian �1� and �2�. The classical dynamics
generated by the Hamiltonian �2� is invariant under the scal-
ing transformations �43�

H0 � �E�−1H0,

ri � �E�ri, i = 1,2,

pi � �E�−1/2pi, i = 1,2,

t � �E�3/2t , �3�

where E is the energy of the two-electron system. This scale
invariance also holds for driven helium, where, additionally,
the scaled field amplitude and the scaled frequency are ob-
tained by the transformations

F � �E�−2F ,

� � �E�−3/2� . �4�

From �3�, the angular momentum scales as Lsc= �E�1/2L.
Therefore, for moderate values of L and highly doubly ex-
cited states �E�0�, the scaled angular momentum is close to
zero, tantamount to an almost planar three-body configura-
tion. Precisely this is the semiclassical energy regime where
one expects that classical and quantum dynamics are similar.

From now on, we confine the dynamics to two dimensions
of configuration space, with the Cartesian positions �x1 ,y1�
and �x2 ,y2� of the electrons. The planar helium dynamics
thus has four degrees of freedom which span an eight-
dimensional phase space.
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B. Folquet theory

The Hamiltonian �1� is periodic in time, with period T
=2� /�. For such systems, the Floquet theorem �44� guaran-
tees that the solutions ���t��= ���r1 ,r2 , t�� of the Schrödinger
equation associated with �1� can be expressed as superposi-
tions of time periodic wave functions ���i

�t��= ���i
�r1 ,r2 , t��

�45�,

���t�� = �
i

ci exp�− i�it����i
�t�� , �5�

with ���i
�t+T��= ���i

�t�� and constant coefficients ci. The �i

and ���i
�t�� are called quasienergies and Floquet states, re-

spectively, and are given as the eigenvalues and eigenvectors
of the Floquet operator �45,46�

HF = H�t� − i
�

�t
�6�

acting on the extended �by time, considered now as a gener-
alized coordinate �47�� Hilbert space of square integrable,
time periodic functions, L2�R4� � L2�T�� �96� i.e.,

HF���i
�t�� = �i���i

�t�� . �7�

Introducing the Fourier components of the Floquet states

���i
�t�� = �

k=−�

�

e−ik�t���i

k � , �8�

the time-dependent problem �7� can be rewritten as a coupled
set of time-independent equations

��i − H0 + k�����i

k � =
F

2
�x1 + x2�����i

k+1� + ���i

k−1�� , �9�

where the additional quantum number counts the number of
photons k�Z exchanged between the atom and the field
�45�. Notice that for the field-free case �F=0 and �=0� Eq.
�9� reduces to the standard eigenvalue problem on L2�R4�.

C. Complex dilation

The electron-electron interaction in helium couples differ-
ent channels of the noninteracting two-electron dynamics,
and gives rise to resonance states embedded in the continua
above the first single electron ionization threshold. In the
presence of an electromagnetic field, since k is running from
−� to +� in Eq. �9�, the dipole term in Eq. �1� couples all
remaining bound states of the field-free atom to the con-
tinuum. Therefore, the spectrum of Eq. �7� exclusively con-
sists of resonance states, with quasienergies �i and finite life-
times 1 /	i, embedded in the continuum. Poles or
autoionizing states of the field-free atom are coupled by the
driving field, what results in a strong modification of the pole
structure of the system in the complex plane, and strongly
enhances the effective density of states, due to the periodicity
of the Floquet spectrum. To extract the resonance states and
their decay rates we use complex rotation �or “dilation”�
�48–50�, which was shown to be applicable for the Coulomb
potential and in the Floquet picture in �51� and �52�, respec-
tively.

The complex dialation of any operator by an angle 
 is
mediated by the nonunitary complex rotation operator

R�
� = exp	− 

r · p + p · r

2

 . �10�

Rotation of the position and momentum operators in the
complex plane according to

r → R�
�rR�− 
� = rei
,

p → R�
�pR�− 
� = pe−i
, �11�

transforms the unperturbed Hamiltonian �2� and the Floquet
Hamiltonian �6� in complex symmetric operators with com-
plex eigenvalues. However, the spectrum of the rotated
Hamiltonian has the following important properties
�49,51–53�:

�a� The bound spectrum of H0 is invariant under the com-
plex rotation.

�b� The spectrum of the rotated Floquet Hamiltonian is
periodic with period �, as for the original Hamiltonian.

�c� The continuum states are located on half lines, rotated
by an angle −2
 around the ionization thresholds of the un-
rotated Hamiltonian, into the lower half of the complex
plane. In the specific case of the unperturbed 2D helium
Hamiltonian �2�, in analogy to the 3D case �53�, the con-
tinuum states are rotated around the single ionization thresh-
olds IN=−Z2 / �2�N−1 /2�2� �54�, with N=1,2 ,3 , . . . . In the
case of the Floquet operator, they are rotated around the mul-
tiphoton ionization thresholds IN+k� �k integer�.

�d� There are isolated complex eigenvalues �i=Ei− i	i /2
in the lower half plane, corresponding to resonance states.
These are stationary under changes of 
, provided the dila-
tion angle is large enough to uncover their positions on the
Riemannian sheets of the associated resolvent �53,55�. The
associated resonance eigenfunctions are square integrable
�50�, in contrast to the resonance eigenfunctions of the unro-
tated Hamiltonian. The latter are asymptotically diverging
outgoing waves �50,56�.

D. Appropriate coordinates

All relevant physical information is contained in the spec-
trum of the rotated Hamiltonian, and can be obtained by a
subsequent diagonalization. However, one of the main diffi-
culties to actually perform this diagonalization are the Cou-
lomb singularities in the Hamiltonian �2�. Nevertheless,
choosing an appropriate representation in parabolic coordi-
nates �54�, the singularities are rigorously regularized. The
appropriate set of parabolic coordinates is obtained after
three subsequent coordinate transformations. We start with
the Cartesian coordinates of both electrons, �x1 ,y1� and
�x2 ,y2�, respectively. After the first transformation, only r1
and r2 are polynomial functions of the new coordinates �i,
�i, i=1,2:

xi =
1

2
��i

2 − �i
2�, �i = �ri + xi,

yi = �i�i, �i = �ri − xi,
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ri = �xi
2 + yi

2 =
1

2
��i

2 + �i
2�, i = 1,2, �12�

while r12 still involves square root functions of �i, �i.
The second transformation consists just in a rotation by

45° of each pair ��1 ,�2� and ��1 ,�2� of the new coordinates:

�p = ��1 + �2�/�2, �1 = ��p + �m�/�2,

�m = ��1 − �2�/�2, �2 = ��p − �m�/�2,

�p = ��1 + �2�/�2, �1 = ��p + �m�/�2,

�m = ��1 − �2�/�2, �2 = ��p − �m�/�2. �13�

Hereafter, we have r12=���p
2 +�p

2���m
2 +�m

2 �. Hence, after an-
other parabolic transformation, also r12 will be a polynomial
function of the coordinates. Our final coordinate set is thus
defined as

�p = �xp
2 − yp

2�/2, xp = �rp + �p,

�p = xpyp, yp = �rp − �p,

�m = �xm
2 − ym

2 �/2, xm = �rm + �m,

�m = xmym, ym = �rm − �m,

rp = ��p
2 + �p

2 = xp
2 + yp

2,

rm = ��m
2 + �m

2 = xm
2 + ym

2 , �14�

leading to the following representation of r1, r2, and r12 in
terms of xp, yp, xm, and ym:

16r1 = ��xp − ym�2 + �xm + yp�2�  ��xp + ym�2 + �xm − yp�2� ,

16r2 = ��xp − xm�2 + �yp − ym�2�  ��xp + xm�2 + �yp + ym�2� ,

4r12 = �xp
2 + yp

2��xm
2 + ym

2 � . �15�

The Jacobian of the complete transformation reads

B = J1J2J3 = 16r1r2r12. �16�

In parabolic coordinates, the eigenvalue problem �9� is regu-
larized by multiplication with the Jacobian �16�. Thus, the
regularized, rotated Floquet eigenvalue problem takes the
form

��iB + e−2i
T − e−i
V + k�B����i

k � = F�
�����i

k+1� + ���i

k−1�� ,

�17�

where T, V, and F�
� are given by

T = 16r1r2r12��1
2 + �2

2� , �18�

V = − 16Zr2r12 − 16Zr1r12 + 16�r1r2, �19�

F�
� =
1

2
Fei
�x1 + x2�B . �20�

The explicit expression for the potential term V in terms of
parabolic coordinates follows upon substitution of Eq. �15�.
The expression for the kinetic term T and for the field term
F�
� are a bit more complicated,

T = �r1 + r2���xp
2 + yp

2�	 �2

�xm
2 +

�2

�ym
2 


+ �xm
2 + ym

2 �	 �2

�xp
2 +

�2

�yp
2


+ 2�r2 − r1���xmxp + ymyp�	 �2

�xm � xp
+

�2

�ym � yp



+ �ymxp − xmyp�	 �2

�xm � yp
−

�2

�ym � xp

 �21�

and

F�
� =
1

16
Fei
�xp

4 + yp
4 + xm

4 + ym
4 − 6xm

2 ym
2 − 6xp

2yp
2�B .

�22�

T and V are polynomial functions of 8th degree in the para-
bolic coordinates xp, yp, xm, ym, and in their partial deriva-
tives �xp

, �yp
, �xm

, �ym
. The Jacobian B and the field term F�
�

have polynomial expressions of degree 12 and 16, respec-
tively. Therefore, the various terms of the generalized eigen-
value problem �17� are polynomials in the coordinates and
conjugate momenta, and can be expressed using the corre-
sponding creation and annihilation operators. For instance,

axp
=

1
�2

�xp + ipxp
�, axp

† =
1
�2

�xp − ipxp
� . �23�

axm
,axm

† ,ayp
,ayp

† ,aym
, and aym

† are analogously defined. From
these expressions we introduce the right and left circular op-
erators in the planes �xp ,yp� and �xm ,ym�, defined by

a1 = �axp
− iayp

�/�2,

a2 = �axp
+ iayp

�/�2,

a3 = �axm
− iaym

�/�2,

a4 = �axm
+ iaym

�/�2. �24�

The first few terms of the expression for F�
� read

F�
� =
1

2
ei
	945a1

4

64
+

945

64
a1

5a2 +
a1

9a2
5

1024
+ ¯ 
 . �25�

The full expression for this operator in normal order �cre-
ation operators on the left �57�� has 5472 terms �58�. To-
gether with the expressions for the other operators involved
in Eq. �22�, these were obtained using a home-made MATH-

EMATICA code. The polynomial expressions for T, V, and B
have 335, 357, and 1463 terms, respectively. A much simpler
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expression is available for the angular momentum Lz:

Lz =
1

4
�a1

†a1 − a2
†a2 + a3

†a3 − a4
†a4� =

1

4
�N1 − N2 + N3 − N4� ,

�26�

where Ni=ai
†ai are the corresponding number operators.

E. Selection rules

Since the circular operators satisfy the usual commutation
relations,

�ai,aj� = 0, �ai
†,aj

†� = 0, �ai,aj
†� = �ij , �27�

for i , j=1,2 ,3 ,4, we can associate a harmonic oscillator
with each pair of circular operators ai

† and ai, what induces a
natural basis set composed of tensor products of harmonic
oscillator Fock states:

�n1n2n3n4� = �n1� � �n2� � �n3� � �n4� . �28�

Due to the strictly polynomial form of Eq. �17� in the circu-
lar operators, each basis state couples to a limited number of
states. Whether two states are coupled or not by some opera-
tor A is determined by a selection rule defined in the follow-
ing way: Two elements �n1n2n3n4� and �n1�n2�n3�n4�� of the basis
set �28� are coupled or satisfy the selection rule
��n1 ,�n2 ,�n3 ,�n4�, with �ni=ni−ni�, if
�n1n2n3n4 �A �n1�n2�n3�n4���0. It is found that F�
� has 488 se-
lection rules, while the Jacobian B has 155 and the sum of
the kinetic and potential operators −1 / 2T+V has 91 �58�.
For a given selection rule �n= ��n1 ,�n2 ,�n3 ,�n4�, the ma-
trix elements �n+�n �−1 / 2T+V �n� and �n+�n �B �n�, with
�n�= �n1n2n3n4� and �n+�n�= �n1+�n1n2+�n2n3+�n3n4
+�n4�, involve square roots of integer numbers and depend
only on n1 ,n2 ,n3, and n4. For example, the matrix element of
the operator F�
� for the selection rule �n= �−9,−5,0 ,0�
reads

�n + �n�F�
��n�

= �n1�n1 − 1� ¯ �n1 − 8��n2�n2 − 1� ¯ �n2 − 4�

�n3 + n4 + 1� . �29�

This and all other matrix elements were calculated with the
help of symbolic calculus �34,58�.

In addition to the selection rules for the atomic quantum
numbers ni, there are also selection rules for the angular
momentum, and for the photon quantum number k. For un-
perturbed 2D helium, angular momentum is a conserved
quantity, �l=0, though under the action of an electromag-
netic field a state of angular momentum l is coupled to states
of angular momentum l−1 or l+1, i.e., �l= �1. Therefore,
with Eq. �26�, each selection rule ��n1 ,�n2 ,�n3 ,�n4� satis-
fies either �n1−�n2+�n3−�n4= �4 or �n1−�n2+�n3
−�n4=0. From Eq. �17� we see that the operators T, V, and
B �which are also operators of the unperturbed eigenvalue
problem� do not couple states of different k values—only the
field operator F�
� couples states where k changes by �1.
Therefore, the selection rules for k are again �k=0, �1.
Furthermore, �k+�l can only be equal to 0 ,2, or −2, thus
k+ l mod 2 is a conserved quantity.

F. Remaining symmetries

The basis set �28� does not yet account for the symmetries
of the system, and, therefore, must be appropriately symme-
trized. The Hamiltonian of the field-free atom commutes
with the angular momentum Lz, and is invariant under rota-
tions around a perpendicular axis z, under the parity � op-
eration ��x ,y ,z�→ �−x ,−y ,−z��, under the exchange opera-
tion P12, and under the reflections �x and �y with respect to
the coordinate axes x and y, respectively. Additionally, the
representation in parabolic coordinates introduces nonphysi-
cal symmetries induced by the two-fold coordinate transfor-
mation �Eqs. �12� and �13�� �34,54�. The symmetrized basis
adapted for P12 and Lz is defined by �34,54�

�n1n2n3n4�+ = �n1n2n3n4� + �n3n4n1n2� , �30�

with n1−n2+n3−n4=4Lz and n1−n2�n3−n4�c12 mod 4
�c12=0 for singlet states, and c12=2 for triplet states�.

Under external driving, the 2D helium atom is no more
invariant under rotations around a perpendicular axis z, and
its Hamiltonian �1� is not invariant under the parity � opera-
tion. Therefore, the only remaining symmetries are P12 and
�x—provided the field is polarized along the x axis. Since
�xLz=−Lz�x, the basis elements �30� are not eigenstates of
�x. Though the basis elements

�n1n2n3n4�+�x = �n1n2n3n4�+ + �x�n2n1n4n3�+, �31�

where �x= �1, are, with eigenvalue �x, and, therefore, ac-
count for the symmetries of the driven atom.

To conclude this section, let us remark that the basis �31�
can also be used to represent the unperturbed 2D helium
atom. In that case, for given values of P12, �x, and Lz

2= l2, the
eigenfunctions ��E� corresponding to a given energy are su-
perpositions of eigenfunctions with Lz= l and Lz=−l, by vir-
tue of Eqs. �31� and �26�.

III. NUMERICAL TREATMENT

The representation of the time-independent set of coupled
equations �17� in the basis set �31� leads to a generalized
eigenvalue problem,

AXi = �iBXi, �32�

in both, the driven and the unperturbed case. Due to the finite
number of selection rules in the basis �31�, A and B are
infinite sparse banded matrices which have the following
general form:

A =�
� ] ] ]

. . . H�
�k−1��
� �F��
� 0 . . .

. . . F��
� H�
�k��
� �F��
� . . .

. . . 0 F��
� H�
�k+1��
� . . .

] ] ] �

� , �33�

and
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B =�
� ] ] ]

. . . B 0 0 . . .

. . . 0 B 0 . . .

. . . 0 0 B . . .

] ] ] �

� , �34�

with H�
�k��
�=−Te−2i
 /2�8+Ve−i
 /�4−k�B. Xi is the column

vector which represents ���i

k �, with k�Z.
The basis set �31� decomposes into the subspaces of sin-

glet or triplet states, and of even or odd states with respect to
the symmetry �x, with the following identification:

��x = � 1, even or odd states with respect to �x,

n1 − n2 � n3 − n4 � 0�mod 4�, singlet states,

n1 − n2 � n3 − n4 � 2�mod 4�, triplet states.

�35�

However, due to the twofold symmetrization �Eq. �30� fol-
lowed by Eq. �31�� of the basis, each element of the symme-
trized basis can be represented by four quadruplets
�n1 ,n2 ,n3 ,n4�, �n2 ,n1 ,n4 ,n3�, �n3 ,n4 ,n1 ,n2�, and
�n4 ,n3 ,n2 ,n1�, and only one of them must be contained in
the basis. Nevertheless, the basis can be defined unambigu-
ously for �x=1, if each quadruplet �n1 ,n2 ,n3 ,n4� satisfies one
of the following conditions:

�
l � 0 and n1 � n3,

l = 0, n1 � n3, and n1 � n4 � n2,

n1 � n3 and n1 � n2 � n4,

n1 � n3 and n1 = n2,

n1 = n3 and n2 � n4,

n1 = n3 = n2 = n4.

�36�

For the basis which spans the odd subspace with respect
to the x axis ��x=−1�, the basis states are defined by the same
conditions, but states with n1=n2=n3=n4 are forbidden �see
Eq. �31��.

Under external driving, the angular momentum projection
Lz is no more a conserved quantity. However, as we have
seen in the previous section, �k+ l� mod 2 is conserved.
Therefore, also for the driven case, the space can be decom-
posed into even and odd subspaces, with respect to the gen-
eralized parity �kl= �−1�k+l.

For our numerical implementation, the infinite symme-
trized basis set also needs to be truncated. In the unperturbed
case, we truncate the basis for a given angular momentum l
according to

n1 + n2 + n3 + n4 � nbase, �37�

with nbase a given positive integer. In the driven case, we
additionally have to truncate the angular momentum and the
photon number:

�l� � lmax and kmin � k � kmax, �38�

with positive integers lmax, kmin, and kmax.
This representation at last leads to sparse banded matrices

A and B in Eq. �32�, with typically huge dimensions �e.g.,

119 4606662 for the description of the spectrum of field-
free 2D helium above the 15th ionization threshold, or
521 79550 717 for the description of the Floquet spectrum
of the near-resonantly driven frozen planet configuration in
the 6th autoionization channel—see Secs. IV and V�. The
numerical diagonalization of Eq. �32� combines the Lanczos
algorithm �59–61� and advanced techniques of parallel pro-
gramming �34,62–64�, and was carried out on large comput-
ers like the HITACHI SR8000-F1 of the Bavarian Academy
of Sciences �97�, and the IBM p690 of the Max Planck So-
ciety �98�.

Finally, together with the rotation of configuration space
by an angle 
, we also introduce a dilation by a positive real
number �c, such that the �Cartesian� coordinates and mo-
menta transform according to r→�crei
 and p→pe−i
 /�c.
Since the dilation by a factor �c is a unitary transformation
described by the unitary operator �56,65�

D�c
= exp	i�ln �c�

r · p + p · r

2

 , �39�

the spectra of a Hamiltonian H and of the dilated Hamil-
tonian H�c

=D�c
HD�c

† are the same. However, when the basis
is truncated, the spectrum does depend on the parameter �c if
the basis set is not large enough. Therefore, �c can be used as
a variational parameter that has to be optimized. Addition-
ally, we note that a dilation by �c in Cartesian coordinates is
equivalent to a dilation by �c

1/4 in parabolic coordinates,
since the former are homogeneous polynomials of 4th degree
in the latter. In the sequel we always refer to the dilation
parameter in parabolic coordinates, �=�c

1/4.

IV. SPECTRUM OF 2D HELIUM

As in the three-dimensional case �6�, the eigenstates of 2D
helium are organized in Rydberg series converging to single
ionization thresholds which all converge to the double ion-
ization threshold at zero energy. The threshold structure of
the spectrum is essentially the same as for the case without
electron-electron interaction, and the location of the various
single ionization thresholds is unaffected by the term 1 /r12,
since the electron interaction vanishes at large distances.
Thus, the Nth threshold energy is given by �34,54�

IN = −
Z2

2�N − 1/2�2 , N � 1 integer, �40�

a series which obviously converges to zero with N→�.

A. Discrete spectrum

The first series of eigenenergies converges to the thresh-
old I1=−8 a.u., and above this energy all bound states with
N�1 are embedded into the continuum of lower series, i.e.,
they are resonance states with finite width �53�. The spec-
trum can be classified by the particle exchange symmetry, the
symmetry �x with respect to the x axis, and the absolute
value �l� of the angular momentum �or, equivalently, l2�.

The ground-state energy of 2D helium is found for
�l � =0, singlet, and �x= +1 symmetry. With Z=2, �=1,
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nbase=60 �what generates matrices with ntot=816 elements on
the main diagonal�, we obtain

E0 = − 11.899 822 342 953 a.u.

For the numerical calculation of the ground state �and in
general of any bound state of the first series of Rydberg
states� we do not need to use complex rotation �i.e., we can
set 
=0�, since there is no open decay channel. However,
due to the truncation of the basis, the energy depends on the
dilation parameter �. The variational character of � can be
appreciated from Fig. 1�a�, where the dependence of the en-
ergy of the 2D He �Z=2, �=1� ground state on � is illus-
trated for nbase=60 �ntot=816�. For 0.26���0.5, the nu-
merical values are stable, and for ��0.36 the curve has a
minimum �see the inset in Fig. 1�a��. In Fig. 1�b� we cor-
roborate the linear behavior of the energy of the ground state
of the 2D problem as a function of the strength � of the
electron-electron interaction, as predicted by first-order per-
turbation theory, for sufficiently small values of � ���0.3�.

The energy levels for l and −l �l�0� are degenerate, what
further implies the degeneracy of �x= +1 and �x=−1 for
given �l � �0. This degeneracy is confirmed in Table I for the
singlet �l � =1 energy levels below the first ionization thresh-
old.

In the absence of the electron-electron interaction, the
zero angular momentum energy levels below the first ioniza-
tion threshold are doubly degenerate �except for the ground
state�, with one singlet state and one triplet state. Moreover,
all these states have symmetry �x= +1. In the 2D helium
atom the interelectronic repulsion breaks this degeneracy.
The degenerate levels for �=0 split in two distinct levels for
��0, one singlet state and one triplet state, both with
�x= +1 symmetry. This can be understood if we consider the
limit �=0: the eigenstates of the noninteracting problem can
be labeled by the principal quantum numbers N1

�0�, N2
�0�

�Ni
�0��1�, and by the angular momenta L1 ,L2

�−Ni
�0�+1�Li�Ni

�0�−1� of the electrons. Therefore, symme-
trized zero angular momentum states are of the form
�N1

�0� ,N2
�0� ,L ,−L��x = �N1

�0� ,N2
�0� ,L ,−L�+�x �N1

�0� ,N2
�0� ,−L ,L�,

with �x= +1 ��x=−1� for symmetric �antisymmetric� states
with respect to �x. In particular, zero angular momentum
states of the first series carry the labels �1,N2

�0� ,0 ,0� and
�N2

�0� ,1 ,0 ,0�. Therefore, there are no �x=−1 eigenstates be-
low the first ionization threshold. Since the electron-electron
interaction does not break the �x symmetry, the latter result
remains valid for any value of �. Furthermore, we numeri-
cally verified that, for �l � =0 and �x=−1, there are no bound
states below I1 and, a forteriori, no continuum states at-
tached to this threshold. This implies that the lowest eigenen-
ergies for this symmetry correspond to bound states. Indeed,
all �x=−1, �l � =0 eigenstates of 2D helium below the second
ionization threshold are bound, and in Table II we summarize
the lowest energy levels of this series.

TABLE I. Singlet energy levels below the first ionization thresh-
old for �l � =1 and �x= �1, in atomic units. Basis truncation nbase

=250 �see Eq. �37��. The total size of the basis is 84 320, for both
�x=−1 and �x= +1. Optimal value of the scaling parameter: �
=0.40�0.02.

�x= +1 �x=−1

−8.211 542 089 886 −8.211 542 089 886

−8.077 637 328 985 −8.077 637 328 985

−8.039 947 879 467 −8.039 947 879 467

−8.024 280 94 −8.024 280 94

−8.016 303 52 −8.016 303 52

−8.011 69 −8.011 69

TABLE II. Lowest bound energy levels below the second ion-
ization threshold for �x=−1 and �l � =0, in atomic units. N and n
label the excitation of the inner and of the outer electron, respec-
tively. The truncation parameter was chosen as nbase=200, and the
optimal scaling parameter is �=0.40�0.02.

N n Triplet states Singlet states

2 2 −1.273 641 219 559

2 3 −0.984 664 061 020 −1.003 293 436 315

2 4 −0.934 882 211 552 −0.940 478 975 302

2 5 −0.915 916 000 683 −0.918 334 694 991

2 6 −0.906 668 776 66 −0.907 931 197 24
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FIG. 1. Dependence of the ground-state energy of the 2D helium
atom ��=1� in atomic units, on the dilation parameter �, for nbase

=60 �a�, and ground-state energy in a.u. as a function of the strength
� of the electron-electron interaction �b�. In �b�, the dashed line is
obtained from first-order perturbation theory, while the solid line
represents our numerical results. The inset in �a� zooms into the
apparent plateau of E vs �, in the vicinity of the actual minimum
value of E at ��0.36.
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A complete description of the spectrum below the first
ionization threshold can be found in �54�. There, the energy
levels below the first ionization threshold are labeled by the
principal quantum number n of the outer electron, as if the
electrons were noninteracting. This picture can also be ex-
tended to moderately doubly excited states, where the quan-
tum number N of the inner electron labels its Rydberg level,
equivalent to the single ionization thresholds.

B. Resonance spectrum

For the description of the resonance spectrum above the
first ionization threshold we use complex rotation, and thus,
besides the scaling parameter �, also need to adjust the ro-
tation angle 
 to achieve optimal convergence. A typical
spectrum of the rotated Hamiltonian of field-free 2D helium
is shown in Fig. 2, for singlet states with �x= +1, and zero
angular momentum. One clearly observes the continuum part
of the spectrum rotated by an angle close to 2
 into the lower
half of the complex plane, around the single ionization
thresholds I1 , I2 , . . . , I5 , . . .. Indeed, due to the truncation of
the basis, the exact thresholds cannot be reached, but only
effective ionization thresholds IN

eff �62,66�. The doubly ex-
cited states appear as isolated complex eigenvalues: the real
part is the energy E of the resonance, and the imaginary part
equals −	 /2, with 	 the decay rate.

The first resonance of 2D helium is found for zero angular
momentum and singlet exchange symmetry. The complex
eigenvalue of this resonance state is

E = − 1.411 496 328 143 − i 0.001 241 734 389 a.u.

It is obtained for the parameters 
�0.4, ��0.35,
nbase=200, and a basis size 23 426. For triplet exchange sym-
metry the lowest resonance is found for �l � =1, and its energy

and decay rate are E=−1.386 1382 101 96 a.u. and
	 /2=0.000 056 648 625 a.u., respectively.

The degeneracy of the energy levels of 2D helium without
electron-electron interaction �i.e, two coupled 2D hydrogen
atoms� is 2�2N1

�0�−1��2N2
�0�−1�, if N1

�0��N2
�0�, or �2N1

�0�−1�2,
if N1

�0�=N2
�0�. The factor 2 in the N1

�0��N2
�0� case stems from

the particle exchange symmetry. In particular, the lowest ex-
cited state �EN1

�0�=N2
�0�=N� of the Nth zero angular momentum

Rydberg series is �2N−1�-fold degenerate.
These simple considerations already impressively illus-

trate the dramatic enhancement of the density of states as we
increase the electronic excitation. Figure 3 depicts the level
and decay rate dynamics in the vicinity of the 4th ionization
threshold. In the perturbative regime of small � values we
observe a linear behavior of the energy levels, while the
decay rates grow proportionally to �2, in agreement with
perturbation theory for degenerate states �67�. Such behavior
prevails for the lowest lying resonances, over a large range
of �. However, for higher excitations, different resonances
start to interact, and deviations from the perturbative regime
are observed.

For highly excited states, different Rydberg series overlap,
what again enhances the density of states, and thus multiplies
the incidences of resonance interaction. At �=0, the energy
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FIG. 2. �Color online� Complex energy spectrum of the rotated
2D helium Hamiltonian �2�, for singlet states, �x= +1, and �l � =0.
The data were obtained by several runs of the Lanczos algorithm,
choosing the shift parameter �34,62� close to the ionization thresh-
olds IN, N=1¯5. Due to the truncation of the basis, IN

eff� IN �66�.
In all cases 
=0.3, while the parameters � and nbase have to be
readjusted to obtain optimal convergence in the different spectral
ranges. For the eigenvalues above the sixth ionization series we
used nbase=300, what implies a basis size of 76 076.
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FIG. 3. Energies �a� and decay rates �b� of the resonances of the
2D three-body problem, as a function of � for singlet exchange
symmetry, �x= +1, and �l � =0, close to the 4th helium ionization
threshold �I4=−8 /49 a.u.�. The lowest resonance ��� of the 5th Ry-
dberg series exhibits several avoided crossings before crossing the
4th ionization threshold �indicated by the long dashed line�, with
associated dramatic enhancements of its decay rate at the crossings
�note the logarithmic scale of the right-hand plot�.
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level EN=5,n=5=−�16 /81� a.u�−0.1975 a.u. lies below the
4th ionization threshold I4=−�8 /49� a.u.�−0.1633 a.u:
Hence, the 4th and the 5th Rydberg series overlap. We iden-
tify the diabatic continuation of EN=5,n=5 by its maximal over-
lap with the original eigenstate at �=0, leading to the energy
levels progression marked by � in Fig. 3. Closer inspection of
the spectral structure in the regime of highly doubly excited
states shows that the level dynamics is governed by avoided
crossings �68–70� which stem from the coupling induced by
the e-e interaction. In particular, before evolving into the
lowest resonance of the 5th series of 2D He ��=1�, the con-
tinuation of the N=5,n=5,�=0 state exhibits several
avoided crossings, due to the high density of states close to
the ionization threshold. Finally, it crosses the 4th ionization
threshold at I4, and only then settles into the corresponding
He state.

The situation for the lowest resonance of the 6th series is
a little bit different, as illustrated in Fig. 4. In this case
the resonance starts at the energy level EN=6,n=6
=−�16 /121� a.u.�−0.1322 a.u., which is far below the next
ionization threshold at I5=−�8 /81� a.u.=−0.0988 a.u. In this
energy range the number of interacting states is reduced, and
the state exhibits a prominent avoided crossing before it
settles into the corresponding 2D He state. The interaction at
��0.7 with one of the N=4, n=9 resonances, marked with
open circles ���, dramatically suppresses its decay rate �right

plot� to values close to zero �910−8 a.u.�. This behavior is
strongly reminiscent of a quasibound state in the continuum
�71�.

In Table III we show the converged energy levels and
decay rates of the lowest doubly excited states, up to the 7th
Rydberg series. All these resonances are found for singlet
exchange symmetry, �x= +1, and �l � =0. We see that the
lowest resonance of the 6th series lies below the 5th ioniza-
tion threshold I5. Hence, the 5th Rydberg series overlaps
with the 6th series of the 2D helium atom. Similarly, the 6th
and the 7th series overlap, and so forth. Thus, starting at the
5th series, all series mix.

V. THE 2D FROZEN PLANET CONFIGURATION

A. The unperturbed frozen planet

In the frozen planet configuration �FPC� �16� both elec-
trons are located on the same side of the nucleus, with asym-
metric excitation. On a first glance, this highly asymmetric
structure might appear to be unstable. However, classical
studies �72–74� show that, indeed, it is dynamically stable:
while the inner electron follows highly eccentric elliptic tra-
jectories which precess around the symmetry axis of the con-
figuration, the outer electron is localized around some equi-
librium distance far from the inner electron. It is dynamically
stabilized due to the fast oscillation of the latter, which im-
plies a rapidly oscillating potential experienced by the outer
electron, due to the competition between the electron-
electron repulsion and the Coulomb attraction exerted on the
outer electron by the screened Coulomb potential of the
nucleus. Upon averaging �47� over the characteristic time
scale of the inner electron’s motion, the outer electron expe-
riences an effective, time-independent, weakly attractive po-
tential which determines the equilibrium distance �75�. In-
deed, the existence of these configurations was shown by
accurate 3D �76� and 1D �20� quantum calculations, origi-
nally triggered by earlier laboratory experiments �77�.

Starting from the third series �N=3� of the 2D helium
spectrum we have identified quantum states which are local-
ized on the FPC. These are organized in subseries converg-
ing to the respective single ionization thresholds, and typi-

TABLE III. Lowest energy levels and decay rates of doubly
excited helium states, for vanishing angular momentum, singlet ex-
change symmetry, and �x= +1, up to the 7th series. For the higher
excitations we used nbase=300, with a basis size 76 076. The rela-
tively poor convergence of the 5th state is due to its interaction with
the rotated continuum emanating from the I4 threshold �see also
Fig. 3 �a�, at �=1�.

N ,n IN Energy �a.u.� 	 /2 �a.u.�

2,2 −0.88889 −1.411 496 328 143 −0.001 241 734 389

3,3 −0.32000 −0.516 872 103 407 −0.001 165 786 319

4,4 −0.16327 −0.265 531 275 47 −0.000 774 567 15

5,5 −0.09877 −0.161 223 759 −0.000 572 27

6,6 −0.06612 −0.108 510 920 110 −0.000 008 262 814

7,7 −0.04734 −0.077 577 461 413 −0.000 044 363 709
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FIG. 4. Energy �a� and decay rate �b�, in atomic units, of the
lowest resonance N=6,n=6 �•� of the 6th Ryberg series for singlet
exchange symmetry, �x= +1, and �l � =0, under variation of the
electron-electron interaction �. This resonance exhibits a clear
avoided crossing with one of the N=4,n=9 resonances ���, at �
�0.7, where its decay rate is dramatically reduced.
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cally exhibit small decay rates, as compared to other
eigenstates. Therefore, each frozen planet state �FPS� can be
labeled by the excitation N of the inner electron, and by a
quantum number nF which refers to its position within the
associated subseries converging to IN. In Table IV we sum-
marize the energies and decay rates of the lowest �nF=1�
singlet �1S� and triplet �3S� FPS of the subseries converging
to the Nth ionization threshold, for N=3,4 , . . . ,14.

While the role of the dimension of configuration space for
the characteristic properties �lifetimes and energies� of the
FPS was discussed in �24�, we focus here on the localization
properties of 2D FPS in configuration and phase space:
When restricted to the collinear FPC, the classical two-
electron dynamics is regular �see Fig. 5�a�� �5,73�. Further-
more, the equilibrium distance xmin of the outer electron to
the nucleus, as well as the minimum EN of the effective
potential can be expressed in terms of the principal quantum
number N of the inner electron, as a consequence of the scale
invariance �3� and �4� of the classical equations of motion.
Also the maximum static field strength FI that can be applied
to the configuration without ionizing it, and the frequency �I
of small oscillations around the equilibrium point can be
expressed as function of N. Altogether we have

xmin = 2.6�N − 0.5�2, �41�

EN = − 2.22�N − 0.5�−2, �42�

�I = 0.3�N − 0.5�−3, �43�

FI = 0.03�N − 0.5�−4. �44�

The mapping of FPS wave functions on the classical
phase space is achieved with the projective Husimi distribu-
tions described in Appendix Sec. 2. Figure 5 shows the phase
space projections of the first three FPS of the sixth triplet

series in comparison to the Poincaré surface of section of the
FPC. The localization of the frozen planet states is apparent
in these plots: while the fundamental state of the series is
well localized on the regular frozen planet periodic orbit, at
the minimum of the effective potential at 2.6 scaled units,
excited states are localized along frozen planet trajectories
well identified by the position of the maximum in the Husimi
function at the outer turning point of the classical orbit.

This is also spelled out by the configuration space repre-
sentation of the electronic density in Fig. 6 �see Appendix
Sec. 1 for technical details�. The electrons are localized at
different regions of space: The maximum in the radial dis-
tance r2 of the inner electron remains invariant for all excited
states, what shows that the excitation of the inner electron
�i.e., the quantum number N� remains invariant. On the other
hand, the density of the outer electron peaks at different ra-
dial distances r1, and this distance increases with nF. Thus,
nF is a quantum number that labels the excitation of the outer
electron. This is, additionally, reflected in the nodal structure
of the wave functions �along r1�.

B. The resonantly driven frozen planet

Apart from its independent interest for the field free, au-
tonomous helium problem already discussed above, the fro-
zen planet configuration is of potentially high relevance in
the context of coherent control �78–80� in the electronic dy-
namics of Rydberg systems in the presence of electron-
electron interactions �81�: During the last decade, it has been
realized that near-resonant electromagnetic driving of atomic
electrons in one-electron Rydberg systems allows to create
nondispersive electronic wave packets �82–85� �in a quantum

TABLE IV. Energies and decay rates of the fundamental
�nF=1� singlet �1S� and triplet �3S� frozen planet states �FPS� below
the Nth single ionization threshold. For the accurate numerical cal-
culation of the N=14, nF=1 FPS the optimal parameters were �
�0.5, 
�0.25, and nbase=350 �producing banded matrices of di-
mension 119 4606662�. All values are in a.u.

N E�2D��1S� E�2D��3S� �	 /2��2D��1S� �	 /2��2D��3S�

3 −0.354 907 546 −0.352 128 586 0.000 003 372 0.000 001 529

4 −0.180 560 506 −0.180 360 429 0.000 000 877 0.000 000 418

5 −0.109 297 550 −0.109 260 500 0.000 003 748 0.000 000 021

6 −0.073 207 046 −0.073 203 013 0.000 010 180 0.000 000 005

7 −0.052 445 661 −0.052 443 726 0.000 001 443 0.000 000 129

8 −0.039 408 949 −0.039 408 949 0.000 000 317 0.000 000 31

9 −0.030 693 094 −0.030 693 093 0.000 000 158 0.000 000 390

10 −0.024 578 744 −0.024 578 820 0.000 000 087 0.000 000 037

11 −0.020 125 003 −0.020 125 045 0.000 000 105 0.000 000 016

12 −0.016 780 71 −0.016 780 695 0.000 000 03 0.000 000 007
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FIG. 5. Contour plots of the Husimi representation of the
nF=1 �b�, nF=2 �c�, and nF=3 �d� triplet frozen planet states �FPS�
of the sixth series, compared with the classical phase space of the
collinear frozen planet configuration �FPC� in �a� �16,73�. The Hu-
simi functions show perfect phase space localization: while the fun-
damental state �a� is localized at the minimum of the effective po-
tential, at 2.6 scaled units �20,75�, the excited states are localized
along frozen planet trajectories with higher energy, with outer turn-
ing points �at the maxima of the Husimi densities� at 4.2 �c� and 5.5
�d� scaled units.
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system with a nonharmonic spectrum� which propagate
along Kepler trajectories of essentially arbitrary eccentricity
and orientation for very long times �19,82,85�. This field has
by now been investigated theoretically in much detail and is
well understood, and first experimental realizations of such
long living “quantum particles” have been reported very re-
cently �22,86–89�. An immediate question is of course
whether such a localization and stabilization effect is also to
be expected in systems with additional electron-electron in-
teraction, e.g., in helium. Indeed, two-electron wave packets
have been experimentally prepared in barium atoms, though
eventually dispersed �90�. Furthermore, diffusion Monte
Carlo calculations suggest that circularly polarized electro-
magnetic together with static magnetic fields can prevent
two-electron wave packets launched along Langmuir orbits
from spreading �25�. As for the frozen planet configuration, it
was shown that nondispersive two-electron wave-packet
eigenstates which propagate along the frozen planet trajec-
tory do exist in a one-dimensional model of helium
�20,21,23�, if an external oscillating field’s frequency is
tuned into resonance with the associated eigenfrequency
�43�. However, a demonstration of this stabilization effect
beyond the 1D treatment was hitherto missing.

For our numerical investigation of the time evolution of
frozen planet states under periodic driving we choose the
field frequency �=0.2�N−0.5�−3 a.u., close to the intrinsic
frequency �43�, and the field amplitude F=0.005�N
−0.5�−4 a.u. With these field parameters, a driving-induced
1:1 resonance island and an intrinsic island—the remainder
of the regular phase space structure of the unperturbed con-
figuration, see Fig. 5�a�—are very well distinguishable in the

classical phase space dynamics. As observed in Fig. 7 �bot-
tom� �20�, the intrinsic regular island is centered around the
equilibrium position of the configuration, and remains basi-
cally unaffected by the field, while the resonant island oscil-
lates around the intrinsic island, under variation of the phase
�t of the drive.

In order to assess the effects of the near resonant driving
on the quantum mechanical FPS, the eigenvalue problem
�32� has to be solved. Since the frozen planet states emerge
from the highly excited spectrum, we expect that semiclassi-
cal aspects can be imported. Indeed, the classical dynamics
of the driven frozen planet suggest that the system decays via
ionization of a single electron �20�. Therefore, we assume
that single ionization is the dominant decay process, and
only need to resolve the next higher single ionization thresh-
old. This significantly reduces the size of the eigenvalue
problem to be solved. For example, for N=6, the number of
photons necessary to reach the next single ionization thresh-
old IN=6 from the nF=1 FPS is four—in contrast to 61 pho-
tons that separate this state from the double ionization
threshold.

However, even for small photon numbers, due to the pe-
riodicity of the Floquet spectrum, the local density of states
increases dramatically as compared to the field-free case. For
instance, the complex-valued Floquet resonance spectrum
obtained by diagonalization of Eq. �17�, for kmin=−2, kmax
=4, lmax=3, and near-resonant driving of the periodic orbits
associated with the N=6 series ��=0.0012 a.u., and F=5.5
10−5 a.u.� is shown in Fig. 8. In such a spectrum, those
eigenstates ��� emerging from the FPS ��FPS� of the field free
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FIG. 6. Conditional probability densities �with a fixed interelec-
tronic angle 
12=0� of the first four triplet frozen planet states �FPS�
of the sixth series �N=6�: �a� nF=1; �b� nF=2; �c� nF=3; �d� nF

=4. The maxima of the electronic densities in the radial distance r2

of the inner electron remain invariant, while the most likely position
of the outer electron �at the outer turning point of its classical orbit�
increases with nF. The number of nodes in the radial coordinate r1

is precisely given by nF−1.
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FIG. 7. Contour plot of the Husimi distribution �A13� of two
different wave-packet triplet eigenstates �top and middle� along a
N=6 frozen planet trajectory of 2D helium, under electromagnetic
driving at frequency �=0.0012 a.u. and amplitude F=5.5
10−6 a.u., projected onto the phase space component spanned by
x1 and p1 �the position and momentum of the outer electron�. For
comparison, also the classical phase space structure of the restricted
collinear problem �20� is shown �bottom�, for the same driving field
parameter. Clearly, the electronic density is associated with the cha-
otic phase space region, and is localized around the hyperbolic fix
point of the 1:1 resonance.
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atom can be identified by inspection of the overlaps
��� ��FPS��2. The state marked by a black spot in Fig. 8 shows
the largest overlap, 83%, with the N=6, nF=3 FPS of the
unperturbed atom.

A direct comparison of the time evolution of the 2D Flo-
quet states with the classical dynamics can be obtained from
the projection of the outer electron’s density on the phase
component spanned by the symmetry axis of the
configuration—which is fixed by the polarization axis of the
driving field �along x�. Technical details can be found in
Appendix Sec. 4. Figure 7 shows the phase space projection
of the triplet Floquet states with largest overlap with the N
=6, nF=1 �top�, and nF=3 �middle� FPS, for phases �t=0
�left�, �t=� /2 �center�, and �t=� �right� of the driving
field. The nF=1 wave packet is rather uninteresting: it is
localized on the intrinsic island, and almost unaffected by the
driving field. However, the nF=3 Floquet state is anchored to
the unstable �hyperbolic� fix point of the 1:1 resonance and
oscillates around the minimum of the effective potential of
the field free atom, with no apparent dispersion in the x di-
rection. There are also wave packets associated with the
stable elliptic fix point of the resonance, though no con-
verged triplet eigenstates of the N=6 series could be found.
An example of such an elliptic wave packet is shown in Fig.
9, and was found below the singlet N=6 ionization thresh-
old.

The electronic density of the above wave packet in con-
figuration space �Figs. 10 and 11� reveals remarkably accen-
tuated fingerprints of the different unperturbed FPS—which
are now coupled coherently by the external field: the triplet
wave packet reminds us of the nF=3 FPS �see Fig. 6�c�� at
phase �t=0, and of the nF=1 FPS �see Fig. 6�a�� at �t=�
�Figs. 10�a1�, 10�a2�, 10�a3�, 11�a1�, 11�a2�, and 11�a3��.
The influence of the external driving is particularly pro-
nounced in the dynamics of the outer electron: the latter fol-
lows the oscillations of the field �Figs. 10�c1�, 10�c2�,
10�c3�, 11�c1�, 11�c2�, and 11�c3��, while the inner electron
remains unaffected �Figs. 10�b1�, 10�b2�, 10�b3�, 11�b1�,
11�b2�, and 11�b3��.

Figures 10 and 11 also highlight the multifaceted appear-
ance of the electronic density, when represented in a two-
dimensional plot: The localization properties of either one of
the electrons are always conditioned on the other: While we
fix the interelectronic angle 
12=0 in Fig. 10�a�, we fix the
outer electron’s position at x1�165 a.u., y1=0 in Fig. 10�b�,
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E
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FIG. 8. Complex-valued Floquet spectrum of Eq. �17�, for trip-
let states, within one Floquet zone of width �. The real parts of the
resonance poles �crosses� correspond to the energies, the imaginary
parts to half the decay rates of the atomic resonance states in the
field. The state highlighted by a black spot and an arrow at Re�E�
=−0.073 172 3 a.u. exhibits the largest overlap with the third ex-
cited FPS of the N=6 series �see Fig. 5�d��. F=5.510−6 a.u., �
=0.0012 a.u., nbase=200, 7 photon blocks, kmin=−2, kmax=4, lmax

=3, ntot=521795.
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parameters. The electronic density remains localized around the el-
liptic fix point of the driving-induced 1:1 resonance.
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FIG. 10. Electronic density of the N=6 triplet wave packet �Fig.
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12=0. �b1�–�b3� depict the electronic density
of the inner electron, when the outer electron is fixed at a distance
r1�165 a.u. along the x axis—its outer turning point in �a1�–�a3�.
In �c1�–�c3� the probability density of the outer electron is shown,
for the inner electron fixed at r2�23 a.u. along the x axis.
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and the inner electron at x2�23 a.u., y2=0 in Fig. 10�c�.
Figure 11�a� shows that the outer electron’s transverse local-
ization is only weakly spreading as we displace the inner
electron’s initial condition from the field polarization axis,
and exhibits the same dependence on �t. Figures 11�b� and
11�c� are finally obtained for an arbitrary angular position of
the inner electron on a circle of radius 23 a.u.. Correspond-
ingly, also the outer electron’s angular position is distributed
over the entire circle, though with a clear time-dependent
modulation in phase with the driving field.

Despite the impressive size of the basis used in the diago-
nalization of the eigenvalue problem �521 795 basis ele-
ments� we have not been able to obtain a converged value of
the lifetime of this wave packet. Our numerical analysis sug-
gests a lifetime 	−1�1002� /�, which is already satisfac-
tory for standard wave packets �91�, though still far from the
lifetimes expected for nondispersive wave packets in one
electron Rydberg systems �19,89�. Though, from the point of
view of coherent control, it is precisely the long lifetime
which makes these objects so interesting �they allow the
“storage” of electronic density at essentially arbitrary loca-
tions of phase space�, calling for further numerical or semi-
classical studies in the future.

VI. SUMMARY AND CONCLUSIONS

We have given a detailed description of an ab initio treat-
ment of planar helium under periodic driving. Our accurate
numerical treatment provides, on the one hand, a complete
description of the spectrum of unperturbed 2D helium, and,

on the other hand, a description of the dynamics of the near-
resonantly driven atom in the doubly excited spectral range.

The method developed in this paper can be adapted easily
to account for the motion of the nucleus, which may become
relevant for different mass ratios, e.g., in the case of exci-
tonic trions of two electron systems in quantum dots. Fur-
thermore, our Floquet approach is valid in the entire nonrel-
ativistic parameter range of the field, and thus opens new
perspectives for a unified understanding of various driving-
induced fragmentation processes of the three-body Coulomb
problem.
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APPENDIX: VISUALIZATION OF THE WAVE
FUNCTIONS

Wave functions in the field-free case

The electronic density of a given state �E� can be obtained
from the projection operator �82,92,93�

�E��E� =
1

2�i
�

i
�R�− 
��Ei
��Ei
�R�
�

Ei
 − E

−
R�− 
��Ei
��Ei
�R�
�

Ei
 − E
 �A1�

on the given state, where �Ei
� denotes the complex conju-
gate of �Ei
�, i.e., the transpose of �Ei
�. The electronic prob-
ability density in configuration space reads �93�

��E�r��2 = �r�E��E�r�

=
1

�
Im �

j

�r�R�− 
��Ej
��Ej
�R�
��r�
Ej
 − E

=
1

�
Im �

j

�r�R�− 
��Ej
�2

Ej
 − E
. �A2�

A well-isolated resonance �Ej
� with Ej
�E and �Ej
−Ei
 �
� �Ej
−E � , ∀ i� j, gives the dominant contribution to the
above sum, and justifies the single pole approximation �93�

��E�r��2 �
1

��Im Ej
�
Re �r�R�− 
��Ej
�2. �A3�

�r �R�−
� �Ej
� in terms of the basis set �31� reads

�r�R�− 
��Ej
� = �
n

�r�n�+�x+�x�n�R�− 
��Ej
� , �A4�

where n denotes the set of quantum numbers n1, n2, n3, and
n4. Therefore, we need an expression for the basis states
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FIG. 11. Electronic density of the N=6 triplet wave packet
�Figs. 7 and 10� in configuration space, for different phases of the
driving field: �t=0 ��a1�, �b1��, �t=� /2 ��a2�, �b2��, �t=� ��a3�,
�b3��. �a1�–�a3� shows the electronic density of the outer electron
for the inner electron fixed at a distance r2=23 a.u. on the diagonal
y=x. �b1�–�b3� represents the electronic density of the outer elec-
tron when the inner electron is delocalized over a circle with radius
r2=23 a.u. The x profiles of �b1�–�b3� are shown in �c1�–�c3�.
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�n1n2n3n4�+�x in the coordinate representation, together with a
matrix representation of the operator R�−
�. In both cases, it
is sufficient to derive that for the product states �n1n2n3n4�,
by virtue of Eqs. �30� and �31�.

Since the circular operators given by Eq. �24� are inde-
pendently defined for the pairs �xp ,yp� and �xm ,ym� of para-
bolic coordinates, �r �n1n2n3n4�, if written in parabolic coor-
dinates, can be expressed as a product of two functions
depending on �xp ,yp� and �xm ,ym�, respectively, i.e.,
�r �n1n2n3n4�= �xp ,yp �n1n2��xm ,ym �n3n4�, where

�xp,yp�n1n2� =� 1

�
� np!

�np + �mp��!
eimp�p

rp
�mp�e−rp

2/2Lnp

��mp���rp
2� , �A5�

with np=min�n1 ,n2�, mp=n1−n2, and Lnp

��mp���r� the general-
ized Laguerre polynomial �94�. By analogy, the expression
for �rm ,�m �n3n4� has precisely the same form.

For the calculation of the matrix elements of R�−
�, we
note that this operator can be expressed as a product of two
rotation operators Rp�−
� and Rm�−
�, acting on the spaces
�xp ,yp� and �xm ,ym�, respectively, and thus, as before

�n1n2n3n4�R�− 
��n1�n2�n3�n4��

= �n1n2�Rp�− 
��n1�n2���n3n4�Rm�− 
��n3�n4�� . �A6�

The matrix elements of Rp�−
� in the representation given by
the product states �n1n2� read �65�

�n1n2�Rp�− 
��n1�n2��

= �− 1�np��	np + �mp�
np


	np� + �mp�
np�


inp+np�

�sin 
�np+np��cos 
�−�np+np�+�mp�+1�

F	− np,− np�, �mp� + 1;−
1

sin2


�mpmp�

, �A7�

where np=min�n1 ,n2�, mp=n1−n2, np�=min�n1� ,n2��,
mp�=n1�−n2�, and F�a ,b ,c ;x� is the hypergeometric function
�94� �which here reduces to a polynomial�. Analogously, we
obtain the expression for the matrix elements of Rm�−
�,
with a formally identical result.

Combining Eqs. �A7�, �A5�, and �A3�, we obtain the elec-
tronic density in configuration space.

Husimi distributions of frozen planet states

The Husimi function W��q , p� of a quantum state ��� is
defined as the diagonal element of the associated density
matrix with respect to harmonic oscillator coherent states �z�
with squeezing parameter �s �which is nothing but the har-
monic oscillator frequency�, i.e., W��q , p�= ��z ����2. The co-
herent state �z� is a minimum uncertainty Gaussian wave
packet with coordinate representation

�r�z� = exp	−
1

2
�s�r − q�2 − irp
 , �A8�

centered at the point �p ,q� in phase space �95� �with appro-
priate scaling according to z= ���sq+ ip /��s� /�2�.

However, for the study of the FPC this definition has to be
amended �20,73�. Let us assume that x1 and p1 �x2 and p2�
are the position and the momentum of the outer �inner� elec-
tron in the collinear FPC. Then, for each point �x1 , p1� of the
Poincaré surface of section shown in Fig. 5�a�: x2=0 and
p2=0. Hence, in order to compare the 2D FPS with the clas-
sical phase space of the collinear FPC, we first have to
project the 2D FPS onto the �x , px� subspace, and then to
calculate its overlap with the Gaussian wave packets in
�x1 , px1

� space, while imposing x2�0. For this purpose, Eq.
�A8� has to be multiplied by ��y1���x2−x2

0���y2�, where x2
0 is

close to zero �though not precisely zero, since the wave func-
tion vanishes at the origin�. We finally obtain for the modi-
fied coherent state

�q,p�x1,y1,x2,y2� = e−�1/2��s�x1 − q�2−ix1p��y1���x2 − x2
0���y2� ,

�A9�

where we choose �s=�I=0.3�N−1 /2�−3, i.e., the intrinsic
frequency �43� of the FPC, as squeezing parameter.

The projected Husimi function W��q , p�= ���q,p �E��2 of an
energy eigenstate �E�, obtained after substitution of the pro-
jection operator �A1� in the single resonance approximation,
is finally given by �20�

W��q,p� �
1

��Im Ej
�
Re � dr�q,p�r��r�R�− 
��Ej
�

� dr��q,p
* �r���r��R�− 
��Ej
� . �A10�

Time evolution of the wave functions

The temporal dynamics of the electronic density at real
energy E=Ep is essentially given by the time evolution of a
Floquet eigenstate �Ep
� under the action of the time evolu-
tion operator �66,82�

U�t2,t1� = �
j,k1,k2

e−i�j�t2−t1�eik1�t1e−ik2�t2

R�− 
����j,

k2 ����j,


k1 �R�
� . �A11�

If ��p

k � are the Fourier components of �Ep
� at t=0 �i.e.,

�Ep
�=�k ��p

k �� and �p�r , t�=U�t ,0� �Ep�, at any time t, we

obtain

��p�r,t��2 = e2�Im �p,
�t Re �
k,k�

e−i�k−k���t

�r�R�− 
����j,

k ��r�R�− 
����j,


k� � , �A12�

as a generalization of Eq. �A3�, up to normalization. Here,
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the product �r �R�−
� ���j,

k� � is equivalent to the expression

�A4�, and can be calculated in precisely the same way as
described in the previous section.

Husimi distributions of driven frozen planet states

For the driven case, using a similar reasoning as the one
presented in Sec. 3 of this appendix for the deduction of the
electronic density �A12� of Floquet states in configuration
space, the time evolution operator �A11�, together with Eq.
�A9�, yields the following expression for the projection of
the Husimi function of a Floquet eigenstate �Ep� on the col-

linear subspace along the field polarization axis:

W��q,p,t� = �� dr�q,p�r��p�r,t��2

= e2 Im��p,
t� Re�
k,k�

e−i�k−k���t� dr�
q,p
* �r��r�R�− 
�

���p,

k � � dr��q,p�r���r��R�− 
����p,


k� � , �A13�

with �q,p�r� the projection �A9� of the coherent states, and
���p,


k � the Fourier components of the Floquet state ���p,
�t��.
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