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Hyperspherical partial wave theory has been applied to calculate T-matrix elements and single differential
cross-section �SDCS� results for electron-hydrogen ionization processes within the Temkin-Poet model poten-
tial. We considered three different values of step length to compute the radial part of final state wave function.
Numerical outcomes show that T-matrix elements and SDCS values depend on the step length h. Here, we
have presented T-matrix elements and the corresponding SDCS results for 0.0075, 0.009, and 0.01 a.u. values
of h and for 27.2, 40.8, and 54.4 eV impact energies. With the help of the calculated data for three different
step lengths, we have been able to evaluate a two-term error function depending on the step length h. Finally,
two-term error corrected T-matrix elements and the corresponding SDCS values have been computed. We fitted
our two-term error corrected SDCS results by a suitable curve and compared with the benchmark results of
Jones et al. �Phys. Rev. A 66, 032717 �2002��. Our fitted curves agree very well with the calculated results of
Jones et al. and two-term error corrected SDCS results show fair agreement with the benchmark results.
Two-term error corrected SDCS results are significantly better than the calculated SDCS results of different
step lengths.
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I. INTRODUCTION

The electron-impact ionization of hydrogen probes the
correlated quantal dynamics of two electrons moving in the
long-range Coulomb field of a third body. As such it remains
one of the most fundamental and interesting problems in
nonrelativistic quantum mechanics. There are many attempts
for a complete solution but all of these face enormous diffi-
culties and have only limited success. Among these the most
successful attempts are the method of convergent close-
coupling �CCC� and exterior complex scaling �ECS�. An-
other promising approach for the electron-hydrogen atom
ionization problem is the hyperspherical partial wave �HPW�
approach. After the successful applications of HPW theory to
compute triple differential equal-energy-sharing cross-
section results �1–6�, we aspire to calculate single differential
cross-section �SDCS� results. Before considering the full
electron-hydrogen ionization problem, here, we consider a
Coulomb three-body system within the Temkin-Poet �TP�
model �7,8�. The TP model of electron-hydrogen collision is
now widely considered to be an ideal testing ground for the
improvement of general methods intended for the full Cou-
lomb three-body problem. In this context, the calculated
SDCS results of other theories for the TP model potential are
praiseworthy. Among these, the attempt of Jones et al. �9,10�
is remarkable as they obtained benchmark results. They de-
veloped a variable-spacing finite-difference algorithm that
rapidly propagates the general solution of the Schrödinger
equation to large distances, originally used by Poet �11� to
solve the TP model. The ECS calculation is generally in
good agreement with the benchmark results of Jones et al.
except at the extreme asymmetric energy sharing �13�. The
calculated singlet SDCS curves of CCC method are wavy,

Bray considered a smooth curve by educated guess �12�. The
CCC results agree nicely with benchmark results of Jones et
al. only for the triplet case �generally, CCC does not yield
convergent amplitude for the triplet case, except for total
angular momentum zero�. We also note the work of Mi-
yashita et al. �14�. They have presented SDCSs for total en-
ergies of 4, 2, and 0.1 Ry using two different methods. One
produces an asymmetric energy distribution similar to that of
CCC while the other gives a symmetric distribution. Both
contain oscillations. It should be noted that recently, we have
used the HPW approach to calculate SDCS results for the
full electron-hydrogen-ionization problem at 60 eV incident
energy �15�. The resultant curve was wavy and calculated
cross-section results are irrelevant at extreme energy sharing.
We fitted our calculated SDCS data by a fourth order pa-
rabola and compared with the experimental values of Shyn
�16�. Our fitted curve agrees with the experimental results
excellently. In this article we present the SDCS results for
the TP model using the HPW method with two-term error
correction. Here, we introduce a procedure to calculate the
error function. The results are obtained for intermediate
�27.2, 40.8, and 54.4 eV� energies. We have calculated
T-matrix elements and the corresponding SDCS data for
three different values of step length h �0.0075, 0.009, and
0.01 a.u.�, used to calculate the radial part of final state wave
function numerically. Numerical observation shows that the
T-matrix elements depend on h. Using the data of various
step lengths, we calculated a two-term error function depend-
ing on h. Finally, two-term error corrected SDCS values
were computed. The nature of error corrected SDCS undu-
lating curves suggest a fit with a proper function. The HPW
method for the TP model is reproduced in Sec. II, procedure
of calculation is presented in Sec. III, two-term error correc-
tion process is given in Sec. IV, results are presented in Sec.
V with a short discussion, and some concluding remarks are
found in Sec. VI. Atomic units are used throughout this pa-
per except where otherwise noted.*spaul@pub.iams.sinica.edu.tw
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II. THEORY

The T-matrix element, we use in cross-section calculation,
is given by

Tfi
s = �� fs

�−��Vi��i� . �1�

In this expression �i is the unperturbed initial channel wave
function, satisfying certain exact boundary condition at large
distance and Vi is the corresponding perturbation potential.
Here, � fs

�−� is the symmetrized scattering state �see Ref. �17�
for a definition�. For information regarding electron-
hydrogen ionization within the TP model potential, one may
solve the corresponding Schrödinger equation. We start by
writing the Schrödinger equation for the full electron-
hydrogen ionization problem
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+ V12	� fs

�−� = E� fs
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To calculate the final channel symmetrized continuum state
� fs

�−� we use hyperspherical coordinate R=
r1
2+r2

2, �
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�, and �0= ��0 , p̂1 , p̂2�, where r�i and p� i �i=1,2�
are the coordinates and momenta of ith charged particles.
� fs

�−� is then expanded in symmetrized hyperspherical har-
monics �1� that are functions of five angular variables and
l1 , l2 ,n ,L ,M, which are, respectively, the angular momenta
of two electrons, the order of the Jacobi polynomial in hy-
perspherical harmonics, the total angular momentum, and its
projection. For a given symmetry s �s=0 for singlet and s
=1 for triplet�, we decompose the final state as
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= PR
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cobi polynomial Pl1l2
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function Yl1l2

LM�r̂1 , r̂2� �1�. F	
s �
� then satisfy the infinite

coupled differential equations

� d2

d
2 + 1 −
����� + 1�


2 	F	
s �
� + �

	�

2�		�
s



F	�

s �
� = 0.

�5�

Here �		�
s are the matrix elements of the full three-body

interaction potential and ��=�+3 /2 where �=2n+ l1+ l2.
For the cusp model �or TP model� the V12 term, derived

from the first term of the partial-wave expansion of the
electron-electron potential, is given by

V12 =
1

r


=
1

max�r1,r2�
. �6�

The TP model calculated in this article is simplification of
our earlier calculated full electron-hydrogen problem, and
we only consider the case where all angular momenta are
zero. Retaining only zero angular momentum terms we have

� fs
�−� =
 2

�
�

n
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5/2 �n

s��� , �7�

where �n
s =��L=l1=l2=0�,n

s . The expression of hyperspherical
harmonics where all angular momenta are zero is given by
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The radial functions Fn
s�
� satisfy an infinite coupled set of

equations
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In the above expression

�nn�
s = − ��n

s �C��n�
s �/P �10�

and

C = −
1

cos �
−

1

sin �
+
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Finally, one obtains the T-matrix element in the form �for
details see Eq. �25� of Ref �1��:

Tfi
s = �

n

Cs�n��n
s��0� . �12�

The modulus square of the T-matrix element, which is used
to calculate differential cross section, is then given by

�Tfi
s �2 = �

nn�

Tnn�
s �n

s��0��n�
s���0� . �13�

III. PRESENT CALCULATION

In our present calculation n, the degree of the Jacobi poly-
nomial, was varied from 0 to 11. We considered n=0, 2, 4, 6,
8, 10 for calculating singlet SDCS results and n=1, 3, 5, 7, 9,
11 for computing triplet SDCS values �18�. The main nu-
merical task is to calculate the radial functions Fn

s�
� over a
wide domain �0,��. As in Ref. �1�, we divide the whole
solution interval �0,�� into three subintervals �0,��, �� ,R0�,
and �R0 ,��, where � has the value of a few atomic unit and
R0 is the asymptotic matching parameter. R0 is needed to be
such that R0�1 /
E, where E is the energy in the final chan-
nel �1�. Thus for energies of 27.2, 40.8, and 54.4 eV this
range parameter R0 may be chosen greater than the values
5000, 3000, and 2500 a.u., respectively. We have chosen R0
around these values in our calculations. For �R0 ,�� we have
the simply analytic solution �1�. We applied a seven-point
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finite difference scheme �3� for solution in the initial interval
�0,�� with step length h. Implementation of the ECS method
involves solving very large and sparse system of linear equa-
tions, making its application to a four-body problem imprac-
tical with current supercomputing technology. In CCC calcu-
lations, it is necessary to solve the linear system of the form
AX=B, where A is a real symmetric matrix. The matrix A
occupies a large storage space. The computational task of
HPW approach is simpler than that of ECS and CCC meth-
ods. Now for the difference equations we divided the domain
�0,�� into 100 subintervals of length h and �=100h. Solu-
tion over �� ,R0� is very simple. Because of the simple struc-
ture of Eq. �9� a Taylor series expansion method with step
length 2h works nicely. Presently, we considered three dif-
ferent values of step length h, these are 0.0075, 0.009, and
0.01 a.u., respectively. Finally, we calculated Tnn�

s and SDCS
results for three different step lengths.

IV. TWO-TERM ERROR CORRECTION

In the previous section, we reproduced the values of Tnn�
s

for three different step lengths and observed that Tnn�
s are

varied with h. Now, we can consider a relation between
Tnn�

s �h� with the error term Enn�
s �h� as

Tnn�
s �h� = Tnn�

s� + Enn�
s �h� , �14�

where Tnn�
s� are the converged results with respect to the step

length h. Since in our seven-point finite difference scheme
the error term is Kh8f �8���� �3� where K is a constant and � is
a linear function of h. The error term of Tnn�

s �h� calculation is
Ch8f �8���� where C is a constant. The error term reduced, as
well as h decries. But there is a certain limitation on the

choice of step length h. For example, if we look at h
=0.001, the number of mesh points for the interval �� , R0�
becomes 1000R0. For R0=3000 a.u., it will be 3000000. It is
quite difficult to manage such a large grid points and it will
also take much time for a single run. Instead of Kh8f �8����,
we can write the error term of seven-point finite difference
scheme as

K1h8f �8��Rm� + K2h10f �10��Rm� + K3h12f �12���� ,

for a certain grid point Rm. Using the above expression, we
can easily formulate

Enn�
s �h� = Ann�

s h8 + Bnn�
s h10 + Gnn�

s h12f �12���� , �15�

where Ann�
s , Bnn�

s , and Gnn�
s are independent of h. Considering

first two terms, we get the expression of two-term error func-
tion for Tnn�

s �h� elements

Enn�
s�2��h� = Ann�

s h8 + Bnn�
s h10. �16�

Corresponding two-term error corrected Tnn�
s��2��h� elements

satisfy the equation

Tnn�
s �h� = Tnn�

s��2� + Enn�
s�2��h� . �17�

In the present context, we have considered step lengths of
three different values h1, h2, and h3. Therefore, from the Eq.
�17� we have

Enn�
s�2��hi� − Enn�

s�2��hj� = Tnn�
s �hi� − Tnn�

s �hj� �18�

for i , j=1, 2, 3 and i� j. The coefficients of h8 and h10 in the
expression �16� are given by
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,
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s = −
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 − �h2
8 − h1

8��Tnn�
s �h3� − Tnn�

s �h2�


�h2
8 − h1

8��h3
10 − h2

10� − �h3
8 − h2

8��h2
10 − h1

10�
. �19�

Here we have considered h1=0.0075, h2=0.009, and h3

=0.01 so the above expression of Ann�
s and Bnn�

s reduce to

Ann�
s = 0.05229064077�Tnn�

s �h2� − Tnn�
s �h1�


− 0.023472188�Tnn�
s �h3� − Tnn�

s �h2�
 ,

Bnn�
s = − 0.01143107936�Tnn�

s �h2� − Tnn�
s �h1�


+ 0.006630530581�Tnn�
s �h3� − Tnn�

s �h2�
 . �20�

After calculating the Tnn�
s��2� elements, we have calculated the

corresponding two-term error corrected SDCS results.

V. RESULTS AND DISCUSSION

As we discussed in Sec. III, we have considered six dif-
ferent values of the degree of Jacobi polynomial. There are
total 36 pairs of �n ,n�� in the calculation of Tnn�

s . We have
labeled those pairs by an integer variable P, varied from 1 to
36. The values of Tnn�

0 �zero indicates singlet� for three dif-
ferent step lengths and Tnn�

0��2� are presented in Fig. 1 for 27.2
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FIG. 1. �Color online� The values of Tnn�
0 �zero indicates singlet�

for three different step lengths at 27.2 eV incident electron energy.
Square points for h=0.0075, diamond points for h=0.009, and pen-
tagon points for h=0.01. Hexagon points represent the values of
Tnn�

0��2� at the same energy.

FIG. 2. �Color online� Same as in Fig. 1 but for the triplet
case.

FIG. 3. �Color online� Same as in Fig. 1 but for 40.8 eV incident
electron energy.

FIG. 4. �Color online� Same as in Fig. 3 but for the triplet
case.

FIG. 5. �Color online� Same as in Fig. 1 but for the 54.4 eV
incident electron energy.

FIG. 6. �Color online� Same as in Fig. 5 but for the triplet
case.
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eV energy, in Fig. 2 for 40.8 eV energy, and in Fig. 3 for 54.4
eV energy. In Figs. 4–6 we have presented the values of Tnn�

1

�one indicates triplet� for three different step lengths and
Tnn�

1��2� for energies of 27.2, 40.8, and 54.4 eV, respectively.
Figures show that the magnitudes of Tnn�

s are diminished with
the decreasing of the step length. As shown in the figures, the
magnitudes of Tnn�

s��2� are lowest than the values of Tnn�
s for

various step length. The curves were drowned joining the
points square for h=0.0075, diamond for h=0.009, pentagon
for h=0.01, and hexagon for Tnn�

s��2�; show that in the figures,
comparatively similar. In our previous calculation primarily
to calculate the double differential cross section �DDCS�,
SDCS results, and triple differential cross section �TDCS�

results, we established good qualitative results. There were
significant discrepancies in the magnitude for extreme asym-
metric energies. These types of phenomena, that happen due
to the behavior of the Tnn�

s elements, depend tremendously on
h. At that time, we drew full electron-hydrogen problem, and
it was difficult to envisage the convergence analysis with
respect to step length. These figures also show that the cal-
culation of Tnn�

s elements is stable concerning h. The two-
term error corrected elements Tnn�

s��2� are almost less than
Tnn�

s �0.0075� and in few cases equal with Tnn�
s �0.0075�. This

implies that the two-term error correction procedure will be
fruitful. In this section, we will show that the SDCS results
for Tnn�

s��2� elements are significantly better than the SDCS
results for h=0.0075 and other values. In Figs. 7–12, we
have compared our calculated SDCS results for three differ-
ent step lengths and for Tnn�

s��2� �s=0 for singlet and s=1 for
triplet� elements. As shown in the figures, the SDCS curves
are less corrugated and smaller in magnitude with a decreas-
ing step length. The calculated SDCS results for the Tnn�

s��2�

elements are smallest in magnitude and least undulating in
comparison with the SDCS values for three different step
lengths. In the case of singlet for 27.2 and 54.4 eV energies,
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FIG. 7. �Color online� Singlet SDCS ��a0
2 /Ry� vs the energy

fraction Eb /E for three different step lengths and for Tnn�
0��2� elements

at 27.2 eV impact electron energy. Continuous curve, Tnn�
0��2� ele-

ments; dashed curve, for h=0.0075 a.u.; dash-dotted curve, for h
=0.009 a.u.; dash-double dotted curve, for h=0.01 a.u. .
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FIG. 8. �Color online� Triplet SDCS ��a0
2 /Ry� vs the energy

fraction Eb /E for three different step lengths and for Tnn�
1��2� elements

at 27.2 eV impact electron energy. Continuous curve, Tnn�
1��2� ele-

ments; dashed curve, for h=0.0075 a.u.; dash-dotted curve, for h
=0.009 a.u.; dash-double dotted curve, for h=0.01 a.u. .
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FIG. 9. �Color online� Same as Fig. 7 for 40.8 eV.
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FIG. 10. �Color online� Same as Fig. 8 for 40.8 eV.
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FIG. 11. �Color online� Same as Fig. 7 for 54.4 eV.
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FIG. 12. �Color online� Same as Fig. 8 for 54.4 eV.
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FIG. 13. �Color online� Singlet SDCS ��a0
2 /Ry� vs the energy

fraction Eb /E for incident energy 27.2 eV. Continuous curve, fitted
function; dashed curve, present results corresponding Tnn�

0��2� ele-
ments; dotted curve, calculated results of Jones et al. �10�.
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FIG. 14. �Color online� Triplet SDCS ��a0
2 /Ry� vs the energy

fraction Eb /E for incident energy 27.2 eV. Continuous curve, fitted
function; dashed curve, present results corresponding Tnn�

1��2� ele-
ments; dotted curve, calculated results of Jones et al. �10�.
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FIG. 15. �Color online� Same as Fig. 13 for 40.8 eV.
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FIG. 16. �Color online� Same as Fig. 14 for 40.8 eV.
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FIG. 17. �Color online� Same as Fig. 13 for 54.4 eV.
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the SDCS results for Tnn�
0��2� elements are significantly differ-

ent to that of for three different values of h. At 54.4 eV
energy, there is an irrelevant peak at equal energy sharing
case for h=0.009 and 0.01. The peak vanishes for h
=0.0075 and is deep for Tnn�

0��2� elements. For 40.8 eV energy,
the shape of the curves is approximately the same with the
exception of magnitude. The same thing happened in the
cases of the triplet, the scale of curves reduced and the wavy
nature vanished. With the change of step lengths, the nature
of curves change rapidly, its magnitude reduced and its wavy
nature abolished swiftly with the modification of the step
length, in decreasing order. The magnitude of the curves re-
duced significantly at the extreme asymptotic region.

VI. COMPARISON WITH BENCHMARK RESULTS

In this section, we present two-term error corrected results
and fitted curves corresponding these values along with the
benchmark results of Jones �see Figs. 13–18�. The oscillating
nature of two-term error corrected curves suggest a fit, with a
proper function and a symmetry around E /2 �E is the energy
in the final channel�. We looked at the linear-linear function
for singlet SDCS values �y=a+bx+c�x−d� where x is the
energy of the secondary electron and y is the corresponding
singlet SDCS value� and a maximum six degree polynomial
for the triplet SDCS data �y=a+bx+cx2+dx3+ex4+ fx5

+gx6, where x is the energy of the secondary electron and y
is the corresponding triplet SDCS value�. For 27.2 eV en-
ergy, a four degree polynomial proved sufficient for curve
fitting. First, we neglected broader data �maximum of eight
data out of eighty� from the extreme asymptotic region, ir-
relevant with other data, fitted a function for the rest of the
values and drew the fitted curve for the entire energy do-
main. In Tables I and II, we have presented the coefficients
of the fitted curves for three different energies and triplet,

singlet cases. Our fitted curves agree very well with the re-
sults of Jones. Sometimes, our calculated two-term error cor-
rected results cut and touch the curves of benchmark data. It
is very important for the HPW approach that our two-term
error corrected results are free from any kind of scale, except
triplet SDCS results at 27.2 eV which have been scaled by a
factor of 0.03. In earlier DDCS and SDCS calculations, we
multiplied our data by a suitable factor to lower the magni-
tude and compared with experimental values.

VII. CONCLUSION

In the HPW approach, we calculate the radial part of the
final state wave function numerically, which is very crucial.
For evaluate appropriate cross-section results, it is essential
to compute the radial part of final wave function very pre-
cisely. The condition of convergence depends on several pa-
rameters for the full electron-hydrogen problem. The model
calculation is a simplification of the exact problem. Only a
few parameters are involved here. In this paper we tested the
dependence of the calculation of radial wave function on the
step length. In the figures, presented in the paper, we have
seen that with the reduction of step length, calculated SDCS
results were better �smooth and less magnitude�. By using
the values of Tnn�

s elements for three different step lengths,
we have been able to calculate two-term error corrected
SDCS results. Comparison of the two-term error corrected
SDCS results with that of for three different step lengths
shows that our endeavor to calculate error corrected results
has been fruitful. Our computed error corrected results are
less satisfactory, still there are some oscillations. Although
the magnitude of our evaluated results is quite relevant ex-
cept when in the extreme asymptotic energy region. The
main difficulty is that when we diminish the step length, the
number of mesh points is increased so there is a limitation
of digital manipulation. The fitted curves corresponding
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FIG. 18. �Color online� Same as Fig. 14 for 54.4 eV.

TABLE I. Coefficients for the fitted curve at various impact energies and triplet case.

Energy a b c d e f g

27.2eV 0.042012 −0.650385 3.8148108 −10.0556766 10.054884

40.8eV 0.046054 −0.49753 2.90446 −9.505798 16.482738 −14.075808 4.691936

54.4eV 0.0563445 −0.420831 1.529658 −3.071799 3.3675705 −1.874718 0.416538

TABLE II. Coefficients for fitted curve at various impact ener-
gies and singlet case.

Energy a b c d

27.2eV 0.0405 0.00567 0.20568 0.25395

40.8eV 0.018326 0.001411 0.049555 0.864263

54.4eV 0.00373 −0.000005 0.00694 0.74947
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equipped error corrected SDCS data agree excellently with
the benchmark results of Jones et al. �10�. If one considers a
higher point finite difference scheme with the error term is of
the order of h12. At this point, it is possible to avoid the use

of the two-term error correction. However, it will be more
difficult to compute a higher finite difference scheme. From
this point of view, two-term error correction is particularly
significant.
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